JP5384072B2 - Absorption type water heater - Google Patents

Absorption type water heater Download PDF

Info

Publication number
JP5384072B2
JP5384072B2 JP2008254187A JP2008254187A JP5384072B2 JP 5384072 B2 JP5384072 B2 JP 5384072B2 JP 2008254187 A JP2008254187 A JP 2008254187A JP 2008254187 A JP2008254187 A JP 2008254187A JP 5384072 B2 JP5384072 B2 JP 5384072B2
Authority
JP
Japan
Prior art keywords
heat
exhaust heat
pipe
regenerator
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008254187A
Other languages
Japanese (ja)
Other versions
JP2010085006A (en
Inventor
仁志 鹿沼
進 江原
猛夫 梨本
克美 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008254187A priority Critical patent/JP5384072B2/en
Publication of JP2010085006A publication Critical patent/JP2010085006A/en
Application granted granted Critical
Publication of JP5384072B2 publication Critical patent/JP5384072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Description

本発明は、吸収液を加熱して冷媒を蒸発分離する再生器の熱源として、他の設備から供給される排熱なども利用する吸収式冷温水機に係わるものである。   The present invention relates to an absorption chiller / heater that uses exhaust heat supplied from other equipment as a heat source of a regenerator that evaporates and separates refrigerant by heating an absorption liquid.

これまでの吸収式冷温水機では、燃焼装置を備えた再生器と、再生器で生成された冷媒を冷却水により冷却して凝縮させる凝縮器と、凝縮器で凝縮された冷媒を2次冷媒(水)が流通する伝熱管へ散布して再度蒸発させる真空状態の蒸発器と、再度蒸発した冷媒を濃吸収液へと吸収させて稀吸収液を生成する吸収器とを吸収液管および冷媒管で接続し、前記燃焼装置の燃焼量を制御しながら吸収液および冷媒を循環させて、負荷へと前記2次冷媒の供給運転を行うものとなっている。そして、近年では、省エネルギーを推進させた、コ・ジェネレーションシステム等から排出される排熱から熱回収する排熱再生器を備え、前記排熱を利用して前記燃焼装置で消費される燃料消費量の削減を可能とした排熱回収型の吸収式冷温水機が提案されている。(例えば、特許文献1参照。)   In the conventional absorption chiller / heater, a regenerator equipped with a combustion device, a condenser that cools and condenses the refrigerant generated in the regenerator with cooling water, and the refrigerant condensed in the condenser is a secondary refrigerant. Absorbing liquid pipe and refrigerant are vacuum evaporators that are sprayed and re-evaporated on heat transfer tubes through which (water) circulates, and absorbers that absorb the re-evaporated refrigerant into concentrated absorbent and generate a rare absorbent. It connects with a pipe | tube, circulates an absorption liquid and a refrigerant | coolant, controlling the combustion quantity of the said combustion apparatus, and supplies the said secondary refrigerant | coolant to load. In recent years, it has a waste heat regenerator that recovers heat from exhaust heat exhausted from co-generation systems, etc. that promoted energy saving, and uses the exhaust heat to consume fuel consumed by the combustion device. An exhaust heat recovery type absorption chiller / heater that can reduce the amount of heat is proposed. (For example, refer to Patent Document 1.)

この特許文献1の吸収式冷温水機においては、ガスバーナ1Aで天然ガスなどを燃やしたときに出る燃焼熱と、排熱流体供給管30を介してコ・ジェネレーションシステムなどの他の設備から供給される排熱流体とを熱源として吸収液を加熱し沸騰させるので、熱効率が高い。したがって、省資源であり、また、二酸化炭素の排出量を削減することができると云ったメリットもある。
特開2005−300069号公報
In the absorption chiller / heater of Patent Document 1, combustion heat generated when natural gas or the like is burned by the gas burner 1 </ b> A and supplied from other equipment such as a cogeneration system via the exhaust heat fluid supply pipe 30. Since the absorbing liquid is heated and boiled using the exhaust heat fluid to be heated as a heat source, the thermal efficiency is high. Therefore, there is a merit that it is resource saving and the amount of carbon dioxide emission can be reduced.
Japanese Patent Laid-Open No. 2005-300069

しかしながら、前記排熱の供給がある場合には、ガスバーナ1A(燃焼装置)の燃焼運転を行わずとも、排熱流体供給管30を介して供給される前記排熱からの熱回収量を制御して運転させることにより、冷水供給運転が可能であったものの、温水供給運転を行う場合は、吸収器7から送出された稀吸収液を高温再生器1へと送り、この稀吸収液をガスバーナ1A(燃焼装置)の燃焼によって高温再生器1で加熱しなければならないものとなっており、地球温暖化防止などの観点から、この改善が望まれていた。   However, when the exhaust heat is supplied, the amount of heat recovered from the exhaust heat supplied through the exhaust heat fluid supply pipe 30 is controlled without performing the combustion operation of the gas burner 1A (combustion device). In the case of performing the hot water supply operation, the rare absorbing liquid sent from the absorber 7 is sent to the high temperature regenerator 1, and this rare absorbing liquid is supplied to the gas burner 1A. It has to be heated by the high-temperature regenerator 1 by combustion of the (combustion device), and this improvement has been desired from the viewpoint of preventing global warming.

以上のことから、本発明は、前記排熱からの充分な熱回収が行なえるとともに、温水供給運転時にも前記排熱からの熱回収を利用可能とした吸収式冷温水機を提供するものである。   In view of the above, the present invention provides an absorption chiller / heater that can perform sufficient heat recovery from the exhaust heat and that can utilize the heat recovery from the exhaust heat even during hot water supply operation. is there.

本発明の吸収式冷温水機は、バーナなどの加熱装置により加熱される高温再生器と、低温再生器と、前記低温再生器に並設された凝縮器と、蒸発器と、吸収器と、コ・ジェネレーションシステム等他設備から排熱流体供給管を通して供給される排熱流体が流通する排熱再生器用伝熱管によって熱回収する排熱再生器と、前記排熱再生器に並設された排熱凝縮器とを吸収液および冷媒が循環するように吸収液配管および冷媒配管で接続され、前記吸収器内の稀吸収液が吸収液ポンプにより搬送されて前記排熱再生器用伝熱管と熱交換するよう配管され、前記蒸発器内に設置した伝熱管を介して加熱または冷却された水が供給される冷温水管を備え、前記排熱再生器用伝熱管への前記排熱流体の供給が前記加熱装置による加熱に優先する吸収式冷温水機において、
前記蒸発器内に貯留される冷媒液に没し前記排熱流体が流通するよう配設した蒸発器用伝熱管を設け、
前記排熱流体が、前記排熱再生器用伝熱管へ流れるか前記蒸発器用伝熱管へ流れるかの切り替えを行なう流路切り替え弁を設け、
前記冷温水管から冷水が供給される冷水供給運転時には、前記流路切り替え弁によって、前記排熱流体が前記排熱再生器用伝熱管へ流れるが前記蒸発器用伝熱管へは流れない状態となり、
前記冷温水管から温水が供給される温水供給運転時には、前記流路切り替え弁によって、前記排熱流体が前記蒸発器用伝熱管へは流れるが前記排熱再生器用伝熱管へは流れない状態となることを特徴とする。
The absorption chiller / heater of the present invention includes a high-temperature regenerator heated by a heating device such as a burner , a low-temperature regenerator, a condenser arranged in parallel to the low-temperature regenerator , an evaporator, and an absorber. A waste heat regenerator that recovers heat by a heat transfer pipe for a waste heat regenerator through which a waste heat fluid supplied from another facility such as a co-generation system flows through a waste heat fluid supply pipe , and a waste heat regenerator arranged in parallel to the waste heat regenerator. The absorption liquid pipe and the refrigerant pipe are connected so that the absorption liquid and the refrigerant circulate through the heat condenser, and the rare absorption liquid in the absorber is conveyed by the absorption liquid pump to exchange heat with the heat transfer pipe for the exhaust heat regenerator. And a cold / hot water pipe to which heated or cooled water is supplied via a heat transfer pipe installed in the evaporator, and the supply of the exhaust heat fluid to the heat transfer pipe for the exhaust heat regenerator is the heating priority to heating by the device absorption type cold In the water machine,
An evaporator heat transfer tube disposed in the refrigerant liquid stored in the evaporator and disposed so that the exhaust heat fluid flows;
A flow path switching valve for switching whether the exhaust heat fluid flows to the exhaust heat regenerator heat transfer pipe or to the evaporator heat transfer pipe ;
During the cold water supply operation in which cold water is supplied from the cold / hot water pipe, the exhaust heat fluid flows to the exhaust heat regenerator heat transfer pipe by the flow path switching valve, but does not flow to the evaporator heat transfer pipe,
During the hot water supply operation in which hot water is supplied from the cold / hot water pipe, the exhaust heat fluid flows to the evaporator heat transfer pipe but does not flow to the exhaust heat regenerator heat transfer pipe by the flow path switching valve. It is characterized by.

本発明では、蒸発器内に設置した冷温水管から冷水が供給される冷水供給運転時には、コ・ジェネレーションシステム等の他の設備から供給される排熱流体が排熱再生器用伝熱管へ流れるが蒸発器用伝熱管へは流れず、吸収器で冷媒を吸収して濃度の薄くなった吸収液の排熱流体を加熱することによって、冷媒を蒸発分離して濃縮される効果が得られる。また、冷温水管から温水が供給される温水供給運転時には、排熱流体が蒸発器用伝熱管へは流れるが排熱再生器用伝熱管へは流れない状態となる制御によって、冷媒の凝縮作用による温水生成効果の向上が図れ、従来よりも向上した吸収式冷温水機を提供できる。更に、冷水供給運転(冷房運転)では、排熱流体が排熱再生器用伝熱管へ流れるが蒸発器用伝熱管へは流れない状態であって、排熱流体の供給がガスバーナの燃焼に優先させる運転制御とし、温水供給運転では、排熱流体の熱回収を利用して、ガスバーナでの燃料消費量を低減することができ、省エネルギーを推進した経済的な運転を行なうことができる。更にまた、排熱流体が供給されない状態では、ガスバーナの燃焼により高温再生器での吸収液の加熱作用によって、冷水供給運転(冷房運転)と温水供給運転(暖房運転)を行なうことができる。このため、従来よりも向上した冷水供給運転(冷房運転)と温水供給運転(暖房運転)が行なえる吸収式冷温水機を提供できる。 In the present invention, during cold water supply operation in which cold water is supplied from a cold / hot water pipe installed in the evaporator, the exhaust heat fluid supplied from other equipment such as a co-generation system flows to the heat transfer pipe for the exhaust heat regenerator. The refrigerant does not flow to the heat exchanger tube, but the refrigerant absorbs the refrigerant by the absorber and heats the exhaust heat fluid of the absorption liquid whose concentration is reduced, whereby the refrigerant is concentrated by evaporating and separating. Also, during the hot water supply operation in which hot water is supplied from the cold / hot water pipe, hot water is generated by the condensing action of the refrigerant by controlling the exhaust heat fluid to flow to the evaporator heat transfer pipe but not to the exhaust heat regenerator heat transfer pipe. The improvement of an effect can be aimed at and the absorption type cold / hot water machine improved rather than before can be provided. Furthermore, in the cold water supply operation (cooling operation), the exhaust heat fluid flows into the heat transfer pipe for the exhaust heat regenerator but does not flow into the heat transfer pipe for the evaporator, and the supply of the exhaust heat fluid has priority over the combustion of the gas burner. In the hot water supply operation, the fuel consumption in the gas burner can be reduced by utilizing the heat recovery of the exhaust heat fluid, and an economical operation promoting energy saving can be performed. Furthermore , in the state where the exhaust heat fluid is not supplied, the cold water supply operation (cooling operation) and the hot water supply operation (heating operation) can be performed by the heating action of the absorbing liquid in the high temperature regenerator by the combustion of the gas burner. For this reason, the absorption-type cold / hot water machine which can perform the cold water supply operation (cooling operation) and warm water supply operation (heating operation) improved compared with the past can be provided.

本発明の吸収式冷温水機は、バーナなどの加熱装置により加熱される高温再生器と、低温再生器と、前記低温再生器に並設された凝縮器と、蒸発器と、吸収器と、コ・ジェネレーションシステム等他設備から排熱流体供給管を通して供給される排熱流体が流通する排熱再生器用伝熱管によって熱回収する排熱再生器と、前記排熱再生器に並設された排熱凝縮器とを吸収液および冷媒が循環するように吸収液配管および冷媒配管で接続され、前記吸収器内の稀吸収液が吸収液ポンプにより搬送されて前記排熱再生器用伝熱管と熱交換するよう配管され、前記蒸発器内に設置した伝熱管を介して加熱または冷却された水が供給される冷温水管を備え、前記排熱再生器用伝熱管への前記排熱流体の供給が前記加熱装置による加熱に優先する吸収式冷温水機において、前記蒸発器内に貯留される冷媒液に没し前記排熱流体が流通するよう配設した蒸発器用伝熱管を設け、前記排熱流体が、前記排熱再生器用伝熱管へ流れるか前記蒸発器用伝熱管へ流れるかの切り替えを行なう流路切り替え弁を設け、前記冷温水管から冷水が供給される冷水供給運転時には、前記流路切り替え弁によって、前記排熱流体が前記排熱再生器用伝熱管へ流れるが前記蒸発器用伝熱管へは流れない状態となり、前記冷温水管から温水が供給される温水供給運転時には、前記流路切り替え弁によって、前記排熱流体が前記蒸発器用伝熱管へは流れるが前記排熱再生器用伝熱管へは流れない状態となるものであり、本発明の実施例を以下に記載する。 The absorption chiller / heater of the present invention includes a high-temperature regenerator heated by a heating device such as a burner , a low-temperature regenerator, a condenser arranged in parallel to the low-temperature regenerator , an evaporator, and an absorber. A waste heat regenerator that recovers heat by a heat transfer pipe for a waste heat regenerator through which a waste heat fluid supplied from another facility such as a co-generation system flows through a waste heat fluid supply pipe , and a waste heat regenerator arranged in parallel to the waste heat regenerator. The absorption liquid pipe and the refrigerant pipe are connected so that the absorption liquid and the refrigerant circulate through the heat condenser, and the rare absorption liquid in the absorber is conveyed by the absorption liquid pump to exchange heat with the heat transfer pipe for the exhaust heat regenerator. And a cold / hot water pipe to which heated or cooled water is supplied via a heat transfer pipe installed in the evaporator, and the supply of the exhaust heat fluid to the heat transfer pipe for the exhaust heat regenerator is the heating priority to heating by the device absorption type cold In water machine, the evaporator heat transfer tube is disposed so that the exhaust heat fluid immersed in the coolant liquid reserved in the evaporator flows is provided, the exhaust heat fluid flows into the exhaust heat regenerator heat transfer tube Or a flow path switching valve for switching between the flow to the evaporator heat transfer pipe, and during the cold water supply operation in which cold water is supplied from the cold / hot water pipe, the exhaust heat fluid is regenerated as the exhaust heat by the flow path switching valve. At the time of hot water supply operation in which hot water is supplied from the cold / hot water pipe, the exhaust heat fluid is transferred to the evaporator heat transfer pipe by the flow path switching valve when flowing to the evaporator heat transfer pipe but not to the evaporator heat transfer pipe. Will flow but will not flow to the heat transfer pipe for the exhaust heat regenerator , and examples of the present invention will be described below.

次に、本発明の吸収式冷温水機の実施の形態について説明する。図1は本発明に係る吸収式冷温水機の配管構成図、図2は本発明に係る吸収式冷温水機の冷水供給運転(冷房運転)での流体の流れを示す図、図3は本発明に係る吸収式冷温水機の温水供給運転(暖房運転)での流体の流れを示す図である。   Next, an embodiment of the absorption chiller / heater of the present invention will be described. FIG. 1 is a piping configuration diagram of an absorption chiller / heater according to the present invention, FIG. 2 is a diagram showing a flow of fluid in a chilled water supply operation (cooling operation) of the absorption chiller / heater according to the present invention, and FIG. It is a figure which shows the flow of the fluid in the hot water supply operation (heating operation) of the absorption-type cold / hot water machine which concerns on invention.

本発明に係る吸収式冷温水機100は、冷媒に水を使用し、吸収液に臭化リチウム(LiBr)を使用したものであり、1は高温再生器であり、加熱装置であるガスバーナ1Aにおいて発生する燃焼熱を吸収液の加熱源とし、吸収液を加熱し沸騰させて蒸発器6に送る冷媒を蒸発分離すると共に、吸収液を濃縮再生する再生器である。2は低温再生器であり、高温再生器1から供給される冷媒蒸気を吸収液の加熱源とする。3は排熱再生器であり、コ・ジェネレーションシステムなどの他の設備から供給される排熱流体を加熱源とする。   The absorption chiller / heater 100 according to the present invention uses water as a refrigerant and lithium bromide (LiBr) as an absorbent, 1 is a high-temperature regenerator, and in the gas burner 1A which is a heating device This is a regenerator that uses the generated combustion heat as a heating source of the absorbing liquid, heats and boils the absorbing liquid, evaporates and separates the refrigerant sent to the evaporator 6, and concentrates and regenerates the absorbing liquid. Reference numeral 2 denotes a low-temperature regenerator, which uses the refrigerant vapor supplied from the high-temperature regenerator 1 as a heating source for the absorbing liquid. Reference numeral 3 denotes an exhaust heat regenerator, which uses an exhaust heat fluid supplied from another facility such as a cogeneration system as a heating source.

更に、4は低温再生器2内で吸収液から蒸発分離された冷媒蒸気が流入可能に低温再生器2に並設された凝縮器、5は排熱再生器3内で吸収液から蒸発分離された冷媒蒸気が流入可能に排熱再生器3に並設された排熱凝縮器、7は蒸発器6内で蒸発した冷媒蒸気が流入可能に蒸発器6に並設された吸収器、8は低温熱交換器、9は高温熱交換器、10は冷媒ポンプ、11と12は吸収液ポンプ、13は三方弁からなる流量制御弁、14〜17は開閉弁、18〜23は吸収液管、24〜29は冷媒管、30は排熱流体供給管、31はバイパス管、32は冷温水管、33は冷却水管、34は均圧管であり、これらが配管接続されて、蒸発器6内に設置された伝熱管6Aの管壁を介して所定温度に冷却/または加熱された水が、冷温水管32を介して図示しない熱負荷に循環供給可能に構成されている。流量制御弁13は、後述のように、排熱流体供給管30から排熱再生器3へ供給される排熱流体の入熱量を制御する流量制御弁である。   Further, 4 is a condenser arranged in parallel with the low-temperature regenerator 2 so that the refrigerant vapor evaporated and separated from the absorption liquid in the low-temperature regenerator 2 can flow in, and 5 is evaporated and separated from the absorption liquid in the exhaust heat regenerator 3. An exhaust heat condenser arranged in parallel with the exhaust heat regenerator 3 so that the refrigerant vapor can flow in, an absorber arranged in parallel with the evaporator 6 so that the refrigerant vapor evaporated in the evaporator 6 can flow in, and 8 Low-temperature heat exchanger, 9 is a high-temperature heat exchanger, 10 is a refrigerant pump, 11 and 12 are absorption liquid pumps, 13 is a flow control valve composed of a three-way valve, 14 to 17 are on-off valves, 18 to 23 are absorption liquid pipes, Reference numerals 24 to 29 are refrigerant pipes, 30 is a waste heat fluid supply pipe, 31 is a bypass pipe, 32 is a cold / hot water pipe, 33 is a cooling water pipe, 34 is a pressure equalizing pipe, and these are connected by piping and installed in the evaporator 6. Water cooled / heated to a predetermined temperature via the pipe wall of the heat transfer pipe 6A is passed through the cold / hot water pipe 32. Is circulated and supplied can be configured to the heat load (not shown). As will be described later, the flow control valve 13 is a flow control valve that controls the heat input amount of the exhaust heat fluid supplied from the exhaust heat fluid supply pipe 30 to the exhaust heat regenerator 3.

また、排熱再生器3内には、両端に排熱流体供給管30が接続された排熱再生器用伝熱管3Bを配置しており、排熱再生器3の底部には吸収液の吐出口3Aが設けられている。この吐出口3Aには吸収液管19の一端が接続されて、吐出口3Aより高い位置にある排熱再生器3の吸収液が吸収液管19に介在する吸収液ポンプ12の運転により高温再生器1に搬送可能に設けられている。そして、伝熱管3Bは、全体が吸収液の吐出口3Aの上方に位置するように、排熱再生器3の中段部分に設置されている。   Further, in the exhaust heat regenerator 3, a heat transfer pipe for exhaust heat regenerator 3 </ b> B having exhaust heat fluid supply pipes 30 connected to both ends is disposed, and an absorption liquid discharge port is provided at the bottom of the exhaust heat regenerator 3. 3A is provided. One end of an absorption liquid pipe 19 is connected to the discharge port 3A, and the absorption liquid of the exhaust heat regenerator 3 located higher than the discharge port 3A is regenerated at a high temperature by the operation of the absorption liquid pump 12 interposed in the absorption liquid pipe 19. It is provided in the container 1 so that conveyance is possible. The heat transfer tube 3B is installed in the middle portion of the exhaust heat regenerator 3 so that the entire heat transfer tube 3B is positioned above the discharge port 3A for the absorbing liquid.

また、伝熱管3Bの上方に散布器3Cが設置され、その散布器3Cに吸収液管18の一端が接続されて、吸収液管18に介在する吸収液ポンプ11の運転により、冷媒を吸収して濃度が低下した吸収器7内の稀吸収液が伝熱管3Bの上に散布可能に構成されている。   In addition, a spreader 3C is installed above the heat transfer tube 3B, and one end of the absorption liquid pipe 18 is connected to the spreader 3C, and the refrigerant is absorbed by the operation of the absorption liquid pump 11 interposed in the absorption liquid pipe 18. Thus, the rare absorption liquid in the absorber 7 whose concentration has been reduced is configured to be sprayable on the heat transfer tube 3B.

また、冷温水管32の蒸発器6出口側に温度センサ35が設けられて、蒸発器6内の伝熱管6Aの管壁を介して冷媒と熱交換し、冷媒が蒸発する際の潜熱により冷却されて蒸発器6から吐出した冷温水の温度が計測可能に構成されている。また、温度センサ35が計測した冷温水の温度に基づいて、ガスバーナ1A、冷媒ポンプ10、吸収液ポンプ11、吸収液ポンプ12、流量制御弁13等を制御するための制御部36も設けられている。   In addition, a temperature sensor 35 is provided on the outlet side of the evaporator 6 in the cold / hot water pipe 32 to exchange heat with the refrigerant through the tube wall of the heat transfer pipe 6A in the evaporator 6 and is cooled by latent heat when the refrigerant evaporates. Thus, the temperature of the cold / hot water discharged from the evaporator 6 can be measured. Further, a control unit 36 for controlling the gas burner 1A, the refrigerant pump 10, the absorption liquid pump 11, the absorption liquid pump 12, the flow rate control valve 13 and the like based on the temperature of the cold / hot water measured by the temperature sensor 35 is also provided. Yes.

本発明では、蒸発器6の底部に溜まる液冷媒を、排熱流体供給管30の排熱流体によって加熱し蒸発させるための蒸発器用伝熱管6Bが、伝熱管6Aの下方で蒸発器6内に貯留される冷媒液に没するよう設けられている。そして、排熱流体供給管30の排熱流体が、伝熱管3B側へ流れるか、伝熱管6B側へ流れるかの切り替えを流路切り替え弁によって行なう。その1つの構成は、図1乃至図3に示すように、伝熱管6Bへの分岐部S1、S2が、排熱再生器3の伝熱管3Bへ供給される排熱流体の入熱量を制御する流量制御弁13よりも、排熱再生器3側で分岐されるようにしている。このため、流量制御弁13よりも排熱再生器3側の位置において、排熱流体供給管30の排熱流体の往路30Aと復路30Bの途中に分岐部S1、S2を設け、この分岐部S1、S2に伝熱管6Bの往路6B1と復路6B2が接続されている。そして、この分岐部S1、S2に流路切り替え弁37A、37Bを設け、排熱流体供給管30の排熱流体が、伝熱管3B側へ流れるか、伝熱管6B側へ流れるかの切り替えを行なう。   In the present invention, an evaporator heat transfer pipe 6B for heating and evaporating the liquid refrigerant accumulated at the bottom of the evaporator 6 with the exhaust heat fluid of the exhaust heat fluid supply pipe 30 is disposed in the evaporator 6 below the heat transfer pipe 6A. It is provided to be immersed in the stored refrigerant liquid. Then, switching of whether the exhaust heat fluid of the exhaust heat fluid supply pipe 30 flows to the heat transfer pipe 3B side or the heat transfer pipe 6B side is performed by a flow path switching valve. In one configuration, as shown in FIGS. 1 to 3, branch portions S <b> 1 and S <b> 2 to the heat transfer tube 6 </ b> B control the heat input amount of the exhaust heat fluid supplied to the heat transfer tube 3 </ b> B of the exhaust heat regenerator 3. The exhaust heat regenerator 3 is branched from the flow rate control valve 13. For this reason, branch portions S1 and S2 are provided in the midway of the exhaust heat fluid forward path 30A and the return path 30B of the exhaust heat fluid supply pipe 30 at a position closer to the exhaust heat regenerator 3 than the flow rate control valve 13, and this branch section S1. The forward path 6B1 and the return path 6B2 of the heat transfer tube 6B are connected to S2. Then, the flow path switching valves 37A and 37B are provided in the branch portions S1 and S2 to switch whether the exhaust heat fluid of the exhaust heat fluid supply pipe 30 flows to the heat transfer pipe 3B side or the heat transfer pipe 6B side. .

先ず、冷水供給運転(冷房運転)について図2に基づき説明する。上記構成の吸収式冷温水機100においては、排熱流体が利用できる状態であれば、流路切り替え弁37A、37Bは、冷水供給運転(冷房運転)に連動して切り替えられるようにするために、流路切り替え弁37A、37Bは、冷水供給運転(冷房運転)スイッチの操作に基づき排熱再生器3側の伝熱管3B側へ切り替えられた状態である。即ち、排熱流体供給管30の入口から流入した排熱流体が、往路30Aから伝熱管3Bを流れて復路30Bから帰還する状態であり、伝熱管6Bへ排熱流体が流れない状態である。また、開閉弁14〜17は閉弁した状態である。   First, the cold water supply operation (cooling operation) will be described with reference to FIG. In the absorption chiller / heater 100 having the above-described configuration, the flow path switching valves 37A and 37B can be switched in conjunction with the chilled water supply operation (cooling operation) if the exhaust heat fluid is available. The flow path switching valves 37A and 37B are switched to the heat transfer tube 3B side on the exhaust heat regenerator 3 side based on the operation of the cold water supply operation (cooling operation) switch. That is, the exhaust heat fluid flowing in from the inlet of the exhaust heat fluid supply pipe 30 flows from the forward path 30A through the heat transfer pipe 3B and returns from the return path 30B, and the exhaust heat fluid does not flow to the heat transfer pipe 6B. The on-off valves 14 to 17 are in a closed state.

この状態で、ポンプP1の運転によって冷却水管33に冷却水を流し、ガスバーナ1Aで天然ガスなどを燃焼させると共に、排熱流体供給管30を介して排熱再生器3内に設けられた伝熱管3Bにコ・ジェネレーションシステムなどから供給される高温・高圧の水蒸気、高温水などの排熱流体を流しながら、吸収液ポンプ11を運転して吸収器7の吸収液溜りに溜まった吸収液を散布器3Cから伝熱管3Bの上に散布する。   In this state, the cooling water is caused to flow through the cooling water pipe 33 by the operation of the pump P1, the natural gas or the like is combusted by the gas burner 1A, and the heat transfer pipe provided in the exhaust heat regenerator 3 through the exhaust heat fluid supply pipe 30. While the exhaust heat fluid such as high-temperature and high-pressure steam and high-temperature water supplied from a co-generation system is supplied to 3B, the absorption liquid pump 11 is operated to spray the absorption liquid accumulated in the absorption liquid reservoir of the absorber 7 It sprays on the heat exchanger tube 3B from the vessel 3C.

高温再生器1で生成された高温の冷媒蒸気は、冷媒管24を通って低温再生器2に入り、高温再生器1で濃縮され、吸収液管20により高温熱交換器9を経由して低温再生器2に入った吸収液を加熱して放熱凝縮し、凝縮器4に入る。   The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the low-temperature regenerator 2 through the refrigerant pipe 24, is concentrated in the high-temperature regenerator 1, and passes through the high-temperature heat exchanger 9 through the high-temperature regenerator 1. The absorption liquid that has entered the regenerator 2 is heated and condensed by heat dissipation, and then enters the condenser 4.

また、低温再生器2における加熱により吸収液から分離された冷媒蒸気は凝縮器4に入り、冷却水管33内を流れる冷却水と熱交換して凝縮液化し、冷媒管24から凝縮して供給される冷媒と一緒になって冷媒管26を通って蒸発器6に入る。   Further, the refrigerant vapor separated from the absorption liquid by heating in the low temperature regenerator 2 enters the condenser 4, is heat-exchanged with the cooling water flowing in the cooling water pipe 33 to be condensed and liquefied, and is condensed and supplied from the refrigerant pipe 24. The refrigerant enters the evaporator 6 through the refrigerant pipe 26 together with the refrigerant.

排熱再生器3で生成された高温の冷媒蒸気も排熱凝縮器5に入り、冷却水管33内を流れる冷却水と熱交換して凝縮液化し、冷媒管27、26を通って蒸発器6に入る。   The high-temperature refrigerant vapor generated in the exhaust heat regenerator 3 also enters the exhaust heat condenser 5 and exchanges heat with the cooling water flowing in the cooling water pipe 33 to be condensed and liquefied. to go into.

蒸発器6に入って冷媒液溜りに溜った冷媒液は、冷温水管32が接続された伝熱管6Aの上に冷媒ポンプ10によって散布され、ポンプP2の運転によって冷温水管32を介して伝熱管6Aへ循環供給される水と熱交換して蒸発し、伝熱管6Aの内部を流れる水を冷却する。   The refrigerant liquid that has entered the evaporator 6 and accumulated in the refrigerant liquid reservoir is sprayed by the refrigerant pump 10 on the heat transfer pipe 6A to which the cold / hot water pipe 32 is connected, and the heat transfer pipe 6A is passed through the cold / hot water pipe 32 by the operation of the pump P2. Heat is exchanged with water that is circulated and evaporated to cool the water flowing inside the heat transfer tube 6A.

そして、蒸発器6で蒸発した冷媒は吸収器7に入り、低温再生器2で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まって再生された吸収液、すなわち吸収液管21により低温熱交換器8を経由して供給され、上方から散布される濃吸収液に吸収される。   Then, the refrigerant evaporated by the evaporator 6 enters the absorber 7 and is heated by the low-temperature regenerator 2 to evaporate and separate the refrigerant. By the absorption liquid regenerated by increasing the concentration of the absorption liquid, that is, the absorption liquid pipe 21. It is supplied via the low-temperature heat exchanger 8 and is absorbed by the concentrated absorbent dispersed from above.

吸収器7で冷媒を吸収して濃度の薄くなった吸収液、すなわち稀吸収液は吸収液ポンプ11の運転により低温熱交換器8を経由して排熱再生器3に搬送され、散布器3Cから伝熱管3Bの上に散布され、前記したように排熱流体供給管30から供給される排熱流体と熱交換して加熱され、冷媒を蒸発分離して濃縮される。   Absorbing liquid whose concentration has been reduced by absorbing the refrigerant in the absorber 7, that is, the rare absorbing liquid, is transported to the exhaust heat regenerator 3 via the low-temperature heat exchanger 8 by the operation of the absorbing liquid pump 11, and spreader 3 </ b> C. The heat is then sprayed onto the heat transfer pipe 3B and heated by exchanging heat with the exhaust heat fluid supplied from the exhaust heat fluid supply pipe 30 as described above, and concentrated by evaporating and separating the refrigerant.

上記のように運転が行われると、蒸発器6内の伝熱管6Aにおいて冷媒の気化熱によって冷却された冷水が、冷温水管32を介して図示しない熱負荷に循環供給できるので、冷房などの冷却運転が行える。   When the operation is performed as described above, the cold water cooled by the heat of vaporization of the refrigerant in the heat transfer pipe 6A in the evaporator 6 can be circulated and supplied to a heat load (not shown) via the cold / hot water pipe 32. You can drive.

この場合、排熱流体供給管30から伝熱管3Bへの排熱流体の供給が、ガスバーナ1Aでの天然ガスなどの燃焼に優先される。すなわち、制御部36は、制御部36内に設定した冷温水データと温度センサ35が計測する冷温水の温度との温度差から、ポンプP2により供給される負荷の負荷量を演算して流量制御弁13の開度を算出し、この流量制御弁13の開度を制御して、冷温水の温度が所定の設定温度、例えば7℃まで低下するように先ず流量制御弁13が排熱流体の入熱量を制御し、冷温水管32から負荷への冷温熱の供給運転を行う。   In this case, the supply of the exhaust heat fluid from the exhaust heat fluid supply pipe 30 to the heat transfer pipe 3B has priority over the combustion of natural gas or the like in the gas burner 1A. That is, the control unit 36 calculates the load amount of the load supplied by the pump P2 from the temperature difference between the cold / hot water data set in the control unit 36 and the temperature of the cold / hot water measured by the temperature sensor 35, thereby controlling the flow rate. First, the flow control valve 13 calculates the opening degree of the valve 13 and controls the opening degree of the flow rate control valve 13 so that the temperature of the cold / hot water is lowered to a predetermined set temperature, for example, 7 ° C. The amount of heat input is controlled, and cold / hot heat supply operation from the cold / hot water pipe 32 to the load is performed.

このとき、流量制御弁13を全開状態として伝熱管3Bに流れる排熱流体の量を最大にしても、前記負荷量に対する前記冷温熱の供給量が不足する場合には、即ち、温度センサ35が計測する冷温水の温度が設定温度の7℃まで低下しないときは、流量制御弁13は全開状態のままで、この不足分を補うようにガスバーナ1Aの点火により高温再生器1で吸収液の加熱を行って、高温再生器1でも冷媒蒸気の生成と、吸収液の濃縮再生を行い、蒸発器6で冷却されて冷温水管32に吐出する冷温水の温度が設定温度の7℃になるように、ガスバーナ1Aによる燃焼量を制御して、所定温度の冷温水の供給運転を行う。   At this time, even if the flow control valve 13 is fully opened and the amount of exhaust heat fluid flowing through the heat transfer pipe 3B is maximized, if the supply amount of the cold / hot heat relative to the load amount is insufficient, that is, the temperature sensor 35 When the temperature of the cold / hot water to be measured does not decrease to the set temperature of 7 ° C., the flow rate control valve 13 remains fully open, and the high temperature regenerator 1 heats the absorbing liquid by ignition of the gas burner 1A so as to compensate for this shortage. The high temperature regenerator 1 also generates refrigerant vapor and concentrates and regenerates the absorption liquid so that the temperature of the cold / warm water cooled by the evaporator 6 and discharged to the cold / hot water pipe 32 becomes 7 ° C., which is the set temperature. Then, the amount of combustion by the gas burner 1A is controlled to supply cold / hot water at a predetermined temperature.

上記のように、吸収器7にて冷媒を吸収した稀吸収液は、吸収液ポンプ11により排熱再生器3内へ散布され、熱源伝熱管3B内を流通する前記排熱流体からの熱回収を行なって、温度および濃度が上昇し、吸収液ポンプ12によって、高温熱交換器9を流通し、高温再生器1へと送られる。このとき、該稀吸収液は、排熱再生器3で前記排熱流体からの熱回収を行ない、ある程度、温度および濃度が上昇しているため、燃焼装置1Aの燃焼量を低減しても、前記負荷に対し、充分な冷熱供給を行なうことができる。   As described above, the rare absorption liquid that has absorbed the refrigerant in the absorber 7 is sprayed into the exhaust heat regenerator 3 by the absorption liquid pump 11, and heat is recovered from the exhaust heat fluid flowing through the heat source heat transfer tube 3B. As the temperature and concentration rise, the absorption liquid pump 12 circulates the high-temperature heat exchanger 9 and sends it to the high-temperature regenerator 1. At this time, the rare absorbing liquid recovers heat from the exhaust heat fluid in the exhaust heat regenerator 3, and since the temperature and concentration are increased to some extent, even if the combustion amount of the combustion device 1A is reduced, Sufficient cold heat can be supplied to the load.

そして、ガスバーナ1Aによる加熱量を最少に絞っても、温度センサ35が計測する冷温水の温度が設定温度の7℃まで上昇しない場合は、前記排熱流体による加熱温度が十分であるため、ガスバーナ1Aによる加熱を停止し、更に流量制御弁13を制御して伝熱管3Bへの排熱流体の供給量を絞り、蒸発器6で冷却されて冷温水管32に吐出する冷温水の温度が設定温度の7℃になるように制御される。   If the temperature of the cold / hot water measured by the temperature sensor 35 does not rise to the set temperature of 7 ° C. even if the amount of heating by the gas burner 1A is minimized, the heating temperature by the exhaust heat fluid is sufficient. The heating by 1A is stopped, the flow rate control valve 13 is further controlled to reduce the supply amount of the exhaust heat fluid to the heat transfer pipe 3B, and the temperature of the cold / hot water cooled by the evaporator 6 and discharged to the cold / hot water pipe 32 is set temperature. It is controlled to be 7 ° C.

なお、排熱流体供給管30へ排熱流体が供給されない状態では、伝熱管3Bによる加熱作用は期待できないため、上記のように、ガスバーナ1Aの燃焼により高温再生器1での吸収液の加熱を促進させる作用によって、冷水供給運転(冷房運転)を行なうことができる。   In the state where the exhaust heat fluid is not supplied to the exhaust heat fluid supply pipe 30, the heating action by the heat transfer pipe 3B cannot be expected. Therefore, as described above, the absorption liquid is heated in the high temperature regenerator 1 by the combustion of the gas burner 1A. A cold water supply operation (cooling operation) can be performed by the promoting action.

次に温水供給運転(暖房運転)について図3に基づき説明する。この場合、上記構成の吸収式冷温水機100において、流路切り替え弁37A、37Bは、温水供給運転(暖房運転)に連動して切り替えられるようにするために、温水供給運転(暖房運転)スイッチの操作に基づき流路切り替え弁37A、37Bは、排熱再生器3側から蒸発器6内の伝熱管6B側へ切り替えられた状態である。即ち、排熱流体供給管30の入口から流入した排熱流体は、伝熱管6Bの往路6B1へ流入し、伝熱管6Bと復路6B2を順次流れて、復路30Bから帰還する状態であり、伝熱管3Bへ排熱流体が流れない状態である。また、開閉弁14乃至17は開弁した状態である。   Next, the hot water supply operation (heating operation) will be described with reference to FIG. In this case, in the absorption chiller / heater 100 having the above-described configuration, the flow path switching valves 37A and 37B are switched in conjunction with the hot water supply operation (heating operation) to switch the hot water supply operation (heating operation). Based on this operation, the flow path switching valves 37A and 37B are switched from the exhaust heat regenerator 3 side to the heat transfer tube 6B side in the evaporator 6. That is, the exhaust heat fluid flowing in from the inlet of the exhaust heat fluid supply pipe 30 flows into the forward path 6B1 of the heat transfer pipe 6B, sequentially flows through the heat transfer pipe 6B and the return path 6B2, and returns from the return path 30B. In this state, the exhaust heat fluid does not flow to 3B. The on-off valves 14 to 17 are open.

この状態で、ガスバーナ1Aで天然ガスなどを燃焼させて高温再生器1内の吸収液を加熱し沸騰させると、高温再生器1で稀吸収液から蒸発した冷媒蒸気は、冷媒管24の途中から流路抵抗の小さい冷媒管25を通って吸収器7に流入し、また、吸収液は、吸収液管23から開閉弁14を通って吸収器7内へ進入する。そして、この冷媒蒸気が蒸発器6と吸収器7との間のエリミネータを通って蒸発器6に入り、主として、この冷媒蒸気によって伝熱管6Aが加熱される。即ち、この冷媒蒸気が伝熱管6Aの管壁に触れることにより、この冷媒蒸気は、冷温水管32から供給される水と伝熱管6Aを介して熱交換して、伝熱管6A内の水を加熱して凝縮し、蒸発器6の底部に溜まる。   In this state, when natural gas or the like is burned by the gas burner 1A to heat and boil the absorption liquid in the high-temperature regenerator 1, the refrigerant vapor evaporated from the rare absorption liquid in the high-temperature regenerator 1 passes from the middle of the refrigerant pipe 24. The refrigerant flows into the absorber 7 through the refrigerant pipe 25 having a low flow resistance, and the absorbing liquid enters the absorber 7 from the absorbing liquid pipe 23 through the on-off valve 14. And this refrigerant | coolant vapor | steam passes through the eliminator between the evaporator 6 and the absorber 7, and enters the evaporator 6, and the heat exchanger tube 6A is mainly heated by this refrigerant | coolant vapor | steam. That is, when this refrigerant vapor touches the tube wall of the heat transfer tube 6A, the refrigerant vapor exchanges heat with the water supplied from the cold / hot water tube 32 via the heat transfer tube 6A to heat the water in the heat transfer tube 6A. And condensed at the bottom of the evaporator 6.

一方、上記のように、伝熱管6Bへ排熱流体供給管30の排熱流体が流れるため、蒸発器6の底部に溜まる液冷媒は、伝熱管6Bの管壁と熱交換し、伝熱管6B内の排熱流体からの熱回収により加熱され、それによって蒸発器6内の温度が上昇し、冷温水管32から供給される水は、伝熱管6Aの管壁を通して加熱される。また、蒸発器6の底部に溜まる液冷媒は、伝熱管6Bによって加熱されて蒸発し、上方の伝熱管6Aと熱交換して伝熱管6A内の水を加熱して凝縮することにより、冷媒管25を通って吸収器7から蒸発器6に入った冷媒蒸気の凝縮による加熱作用に付加される。   On the other hand, since the exhaust heat fluid of the exhaust heat fluid supply pipe 30 flows to the heat transfer pipe 6B as described above, the liquid refrigerant accumulated at the bottom of the evaporator 6 exchanges heat with the tube wall of the heat transfer pipe 6B, and the heat transfer pipe 6B. Heat is recovered by heat recovery from the exhaust heat fluid inside, and thereby the temperature in the evaporator 6 rises, and the water supplied from the cold / hot water pipe 32 is heated through the pipe wall of the heat transfer pipe 6A. In addition, the liquid refrigerant accumulated at the bottom of the evaporator 6 is heated and evaporated by the heat transfer tube 6B, and exchanges heat with the upper heat transfer tube 6A to heat and condense the water in the heat transfer tube 6A, whereby the refrigerant tube 25 is added to the heating action by condensation of the refrigerant vapor entering the evaporator 6 from the absorber 7 through 25.

このようにして、伝熱管6A内を流れている水が、冷媒の凝縮熱により加熱されると共に、伝熱管6B内を流れる排熱流体からの熱回収により加熱されて温水となるので、その温水を負荷に循環供給することで、暖房などの加熱運転が行える。   In this way, the water flowing in the heat transfer tube 6A is heated by the heat of condensation of the refrigerant, and heated by the heat recovery from the exhaust heat fluid flowing in the heat transfer tube 6B to become hot water. By circulating and supplying to the load, heating operation such as heating can be performed.

この場合、制御部36は、制御部36内に設定した冷温水データと温度センサ35が計測する冷温水の温度との温度差から、ポンプP2により供給される負荷の負荷量を演算して流量制御弁13の開度を算出し、この流量制御弁13の開度を制御して、冷温水の温度が所定の設定温度、例えば55℃まで上昇するように先ず流量制御弁13が制御され、冷温水管32から負荷への冷温熱の供給運転を行う。   In this case, the control unit 36 calculates the load amount of the load supplied by the pump P2 from the temperature difference between the cold / hot water data set in the control unit 36 and the temperature of the cold / hot water measured by the temperature sensor 35, and the flow rate. The opening degree of the control valve 13 is calculated, the opening degree of the flow rate control valve 13 is controlled, and the flow rate control valve 13 is first controlled so that the temperature of the cold / hot water rises to a predetermined set temperature, for example, 55 ° C. Supply operation of cold / hot heat from the cold / hot water pipe 32 to the load is performed.

このとき、流量制御弁13を全開状態として伝熱管6Bに流れる排熱流体の量を最大にしても、前記負荷量に対する前記冷温熱の供給量が不足する場合には、即ち、温度センサ35が計測する冷温水の温度が設定温度の55℃まで上昇しないときは、流量制御弁13は全開状態のままで、この不足分を補うようにガスバーナ1Aの燃焼量を増加させる制御によって、高温再生器1での吸収液の加熱を促進させる。このようにして、蒸発器6で冷却されて冷温水管32に吐出する冷温水の温度が設定温度の55℃になるように、ガスバーナ1Aによる燃焼量を制御して、所定温度の冷温水の供給運転を行う。   At this time, even if the flow control valve 13 is fully opened and the amount of the exhaust heat fluid flowing to the heat transfer pipe 6B is maximized, if the supply amount of the cold / hot heat relative to the load amount is insufficient, that is, the temperature sensor 35 When the temperature of the cold / hot water to be measured does not rise to the set temperature of 55 ° C., the high-temperature regenerator is controlled by increasing the combustion amount of the gas burner 1A so as to compensate for this shortage while the flow rate control valve 13 remains fully open. 1 promote the heating of the absorbent. In this way, the amount of combustion by the gas burner 1A is controlled so that the temperature of the cold / warm water cooled by the evaporator 6 and discharged to the cold / hot water pipe 32 becomes the set temperature of 55 ° C., and the cold / warm water at a predetermined temperature is supplied. Do the driving.

また、伝熱管6Bへ排熱流体が流れることにより、この排熱流体からの熱回収のみで冷温水管32に接続される負荷への温水供給(温熱供給)が十分にできない場合でも、高温再生器1へ送り込まれる吸収液の温度を上昇させることができるため、高温再生器1で加熱するバーナ1Aの燃焼量を低減することができ、省エネルギーを推進した経済的な運転ができるものとなる。   Further, even when the exhaust heat fluid flows to the heat transfer pipe 6B, even when the hot water supply (warm heat supply) to the load connected to the cold / hot water pipe 32 cannot be sufficiently performed only by recovering the heat from the exhaust heat fluid, the high temperature regenerator Therefore, the amount of combustion of the burner 1A heated by the high-temperature regenerator 1 can be reduced, and an economical operation that promotes energy saving can be performed.

この温水供給運転(暖房運転)において、蒸発器6の底部に溜まる液冷媒は、冷媒ポンプ10によって冷媒管29から吸収器7に入り、高温再生器1で冷媒を蒸発分離して吸収液管23から吸収器7に流入する吸収液と混合され、吸収液ポンプ11、12の運転によって高温再生器1へ帰還する。   In this hot water supply operation (heating operation), the liquid refrigerant accumulated at the bottom of the evaporator 6 enters the absorber 7 from the refrigerant pipe 29 by the refrigerant pump 10, evaporates and separates the refrigerant in the high temperature regenerator 1, and absorbs the liquid pipe 23. Is mixed with the absorption liquid flowing into the absorber 7 and returned to the high-temperature regenerator 1 by the operation of the absorption liquid pumps 11 and 12.

なお、排熱流体供給管30へ排熱流体が供給されない状態では、伝熱管6Bによる加熱作用は期待できないため、上記のように、ガスバーナ1Aの燃焼により高温再生器1での吸収液の加熱を促進させる作用によって、温水供給運転(暖房運転)を行なうことができる。   In the state where the exhaust heat fluid is not supplied to the exhaust heat fluid supply pipe 30, the heating action by the heat transfer pipe 6B cannot be expected. Therefore, as described above, the absorption liquid is heated in the high temperature regenerator 1 by the combustion of the gas burner 1A. The hot water supply operation (heating operation) can be performed by the promoting action.

なお、開閉弁17が介在する冷媒管29は、冷媒ポンプ10の上流側と吸収器7の底部との間に設け、温水供給運転(暖房運転)において、冷媒ポンプ10を運転しない構成でもよい。   In addition, the refrigerant | coolant pipe | tube 29 in which the on-off valve 17 interposes may be provided between the upstream of the refrigerant | coolant pump 10, and the bottom part of the absorber 7, and the structure which does not drive the refrigerant | coolant pump 10 in warm water supply operation (heating operation) may be sufficient.

上記のように、排熱流体供給管30を流れる排熱流体を利用して、ガスバーナ1Aでの燃料消費量を低減しながら冷水供給運転(冷房運転)と温水供給運転(暖房運転)を行なうことができる。また、排熱流体供給管30へ排熱流体が供給されない状態では、ガスバーナ1Aの燃焼により高温再生器1での吸収液の加熱作用によって、冷水供給運転(冷房運転)と温水供給運転(暖房運転)を行なうことができる。   As described above, the exhaust heat fluid flowing through the exhaust heat fluid supply pipe 30 is used to perform the cold water supply operation (cooling operation) and the hot water supply operation (heating operation) while reducing the fuel consumption in the gas burner 1A. Can do. In the state where the exhaust heat fluid is not supplied to the exhaust heat fluid supply pipe 30, cold water supply operation (cooling operation) and hot water supply operation (heating operation) are performed by the heating action of the absorbing liquid in the high-temperature regenerator 1 by the combustion of the gas burner 1 </ b> A. ) Can be performed.

上記において、高温再生器1での吸収液の加熱装置として、ガスバーナ1Aを用いたが、これに替わって、100℃を超える高温蒸気を加熱装置として用いるものでもよい。   In the above description, the gas burner 1A is used as the absorbing liquid heating device in the high-temperature regenerator 1, but high-temperature steam exceeding 100 ° C. may be used as the heating device instead.

本発明は、吸収式冷凍機の配管や制御機構等は、種々変更ができ、上記の形態に限定されず、本発明の技術的範囲を逸脱しない限り種々の形態に適用できるものである。   The present invention can be variously changed in the piping and control mechanism of the absorption refrigeration machine, and is not limited to the above-described form, and can be applied to various forms without departing from the technical scope of the present invention.

本発明に係る吸収式冷温水機の配管構成図である。It is a piping lineblock diagram of an absorption type cold / hot water machine concerning the present invention. 本発明に係る吸収式冷温水機の冷水供給運転(冷房運転)での流体の流れを示す図である。It is a figure which shows the flow of the fluid in the cold water supply operation (cooling operation) of the absorption-type cold / hot water machine which concerns on this invention. 本発明に係る吸収式冷温水機の温水供給運転(暖房運転)での流体の流れを示す図である。It is a figure which shows the flow of the fluid in the hot water supply operation (heating operation) of the absorption type cold / hot water machine which concerns on this invention.

符号の説明Explanation of symbols

1・・・・高温再生器
2・・・・低温再生器
3・・・・排熱再生器
3A・・・吸収液の吐出口
3B・・・排熱再生器用伝熱管
3C・・・散布器
4・・・・凝縮器
5・・・・排熱凝縮器
6・・・・蒸発器
6A・・・伝熱管
6B・・・蒸発器用伝熱管
7・・・・吸収器
8・・・・低温熱交換器
9・・・・高温熱交換器
10・・・冷媒ポンプ
11・・・吸収液ポンプ
12・・・吸収液ポンプ
13・・・流量制御弁(三方弁)
14〜17・・・開閉弁
18〜23・・・吸収液管
24〜29・・・冷媒管
30・・・排熱流体供給管
31・・・バイパス管
32・・・冷温水管
33・・・冷却水管
34・・・均圧管
35・・・温度センサ
36・・・制御部
37A・・流路切り替え弁
37B・・流路切り替え弁
100・・吸収式冷温水機
DESCRIPTION OF SYMBOLS 1 ... High temperature regenerator 2 ... Low temperature regenerator 3 ... Waste heat regenerator 3A ... Absorption liquid discharge port 3B ... Heat transfer tube 3C for waste heat regenerator ... Spreader 4 ... Condenser 5 ... Exhaust heat condenser 6 ... Evaporator 6A ... Heat transfer tube 6B ... Evaporator heat transfer tube 7 ... Absorber 8 ... Low temperature Heat exchanger 9 ... High temperature heat exchanger 10 ... Refrigerant pump 11 ... Absorbing liquid pump 12 ... Absorbing liquid pump 13 ... Flow control valve (three-way valve)
14-17 ... On-off valve 18-23 ... Absorption liquid pipe 24-29 ... Refrigerant pipe 30 ... Waste heat fluid supply pipe 31 ... Bypass pipe 32 ... Cold / hot water pipe 33 ... Cooling water pipe 34 ... Pressure equalizing pipe 35 ... Temperature sensor 36 ... Control unit 37A ... Flow path switching valve 37B ... Flow path switching valve 100 ... Absorption chiller / heater

Claims (1)

バーナなどの加熱装置により加熱される高温再生器と、低温再生器と、前記低温再生器に並設された凝縮器と、蒸発器と、吸収器と、コ・ジェネレーションシステム等他設備から排熱流体供給管を通して供給される排熱流体が流通する排熱再生器用伝熱管によって熱回収する排熱再生器と、前記排熱再生器に並設された排熱凝縮器とを吸収液および冷媒が循環するように吸収液配管および冷媒配管で接続され、前記吸収器内の稀吸収液が吸収液ポンプにより搬送されて前記排熱再生器用伝熱管と熱交換するよう配管され、前記蒸発器内に設置した伝熱管を介して加熱または冷却された水が供給される冷温水管を備え、前記排熱再生器用伝熱管への前記排熱流体の供給が前記加熱装置による加熱に優先する吸収式冷温水機において、
前記蒸発器内に貯留される冷媒液に没し前記排熱流体が流通するよう配設した蒸発器用伝熱管を設け、
前記排熱流体が、前記排熱再生器用伝熱管へ流れるか前記蒸発器用伝熱管へ流れるかの切り替えを行なう流路切り替え弁を設け、
前記冷温水管から冷水が供給される冷水供給運転時には、前記流路切り替え弁によって、前記排熱流体が前記排熱再生器用伝熱管へ流れるが前記蒸発器用伝熱管へは流れない状態となり、
前記冷温水管から温水が供給される温水供給運転時には、前記流路切り替え弁によって、前記排熱流体が前記蒸発器用伝熱管へは流れるが前記排熱再生器用伝熱管へは流れない状態となることを特徴とする吸収式冷温水機。
Exhaust heat from other equipment such as a high temperature regenerator heated by a heating device such as a burner , a low temperature regenerator, a condenser, an evaporator, an absorber, and a cogeneration system. The waste heat regenerator that recovers heat by the heat transfer pipe for the exhaust heat regenerator through which the exhaust heat fluid supplied through the fluid supply pipe circulates, and the exhaust heat condenser that is arranged in parallel with the exhaust heat regenerator, the absorption liquid and the refrigerant It is connected by an absorption liquid pipe and a refrigerant pipe so as to circulate, and the rare absorption liquid in the absorber is conveyed by an absorption liquid pump and is exchanged for heat exchange with the heat transfer pipe for the exhaust heat regenerator. Absorption type cold / hot water having a cold / hot water pipe to which heated or cooled water is supplied via an installed heat transfer pipe, wherein the supply of the exhaust heat fluid to the heat transfer pipe for the exhaust heat regenerator has priority over the heating by the heating device In the machine
An evaporator heat transfer tube disposed in the refrigerant liquid stored in the evaporator and disposed so that the exhaust heat fluid flows;
A flow path switching valve for switching whether the exhaust heat fluid flows to the exhaust heat regenerator heat transfer pipe or to the evaporator heat transfer pipe ;
During the cold water supply operation in which cold water is supplied from the cold / hot water pipe, the exhaust heat fluid flows to the exhaust heat regenerator heat transfer pipe by the flow path switching valve, but does not flow to the evaporator heat transfer pipe,
During the hot water supply operation in which hot water is supplied from the cold / hot water pipe, the exhaust heat fluid flows to the evaporator heat transfer pipe but does not flow to the exhaust heat regenerator heat transfer pipe by the flow path switching valve. Absorption type hot and cold water machine characterized by.
JP2008254187A 2008-09-30 2008-09-30 Absorption type water heater Expired - Fee Related JP5384072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254187A JP5384072B2 (en) 2008-09-30 2008-09-30 Absorption type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254187A JP5384072B2 (en) 2008-09-30 2008-09-30 Absorption type water heater

Publications (2)

Publication Number Publication Date
JP2010085006A JP2010085006A (en) 2010-04-15
JP5384072B2 true JP5384072B2 (en) 2014-01-08

Family

ID=42249144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254187A Expired - Fee Related JP5384072B2 (en) 2008-09-30 2008-09-30 Absorption type water heater

Country Status (1)

Country Link
JP (1) JP5384072B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5513979B2 (en) * 2010-05-14 2014-06-04 荏原冷熱システム株式会社 Absorption heat pump
JP5513980B2 (en) * 2010-05-14 2014-06-04 荏原冷熱システム株式会社 Absorption heat pump
CN102155810B (en) * 2011-04-09 2012-07-25 大连理工大学 Absorption high-temperature heat pump system
KR101342379B1 (en) * 2012-02-03 2013-12-16 엘지전자 주식회사 Low temperature generator and absorption type chiller-heater including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210463A (en) * 1982-06-01 1983-12-07 三洋電機株式会社 Absorption heat pump device
JP4315855B2 (en) * 2004-04-14 2009-08-19 三洋電機株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JP2010085006A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2011075180A (en) Absorption type refrigerating machine
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2002147885A (en) Absorption refrigerating machine
JP5384072B2 (en) Absorption type water heater
KR101210968B1 (en) Hybrid absorption type air conditioning system
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP3883894B2 (en) Absorption refrigerator
JP2009243706A (en) Absorption heat pump
JP4315855B2 (en) Absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
JP3889655B2 (en) Absorption refrigerator
JP3851204B2 (en) Absorption refrigerator
JP4086505B2 (en) Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine
JP4326478B2 (en) Single double-effect absorption refrigerator
JP2003343939A (en) Absorption refrigerating machine
JP2010276252A (en) Absorption type refrigerating machine
JP4260099B2 (en) Absorption refrigerator
JP7054855B2 (en) Absorption chiller
JP4007541B2 (en) Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
JP3851837B2 (en) Waste heat recovery type absorption refrigerator
JP2004286244A (en) Absorption heat pump device
JP3857955B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

LAPS Cancellation because of no payment of annual fees