JP3851837B2 - Waste heat recovery type absorption refrigerator - Google Patents

Waste heat recovery type absorption refrigerator Download PDF

Info

Publication number
JP3851837B2
JP3851837B2 JP2002120870A JP2002120870A JP3851837B2 JP 3851837 B2 JP3851837 B2 JP 3851837B2 JP 2002120870 A JP2002120870 A JP 2002120870A JP 2002120870 A JP2002120870 A JP 2002120870A JP 3851837 B2 JP3851837 B2 JP 3851837B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant solution
exhaust gas
supply path
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002120870A
Other languages
Japanese (ja)
Other versions
JP2003314922A (en
Inventor
佳夫 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2002120870A priority Critical patent/JP3851837B2/en
Publication of JP2003314922A publication Critical patent/JP2003314922A/en
Application granted granted Critical
Publication of JP3851837B2 publication Critical patent/JP3851837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内部が真空空間となされた缶体の底部に冷媒溶液を貯留する貯留部を有するとともに、前記貯留部に貯留された冷媒溶液を加熱部により加熱して冷媒溶液と冷媒蒸気とを分離する高温再生器と、前記高温再生器から送られてきた冷媒溶液を前記高温再生器から送られてきた冷媒蒸気により加熱する低温再生器と、前記低温再生器を通過した冷媒蒸気を冷却して凝縮させる凝縮器と、前記凝縮器で得られた冷媒液体を蒸発させる蒸発器と、前記蒸発器で発生した冷媒蒸気を前記低温再生器から送られてきた冷媒溶液で吸収させる吸収器とを備えて構成された排熱回収型吸収式冷凍機に関する。
【0002】
【従来の技術】
吸収式冷凍機は、吸収剤と冷媒との冷媒溶液を利用したものであって、図2に示すように、加熱部8で低濃度冷媒溶液を加熱して高温の中濃度冷媒溶液と冷媒蒸気とを分離する高温再生器1、高温再生器1から送られてきた中濃度冷媒溶液を、同じく高温再生器1から送られてきた冷媒蒸気により加熱し高濃度冷媒溶液を得る低温再生器2、低温再生器2を通過した冷媒蒸気を冷却して凝縮させる凝縮器3、凝縮器3で得られた冷媒液体を蒸発させる蒸発器4、蒸発器4で発生した冷媒蒸気を低温再生器2から送られてきた高濃度冷媒溶液で吸収させて稀釈し低濃度冷媒溶液を得る吸収器5、吸収器5から高温再生器1に送られる低濃度冷媒溶液と、低温再生器2から吸収器5に送られる高濃度冷媒溶液とを熱交換させる低温熱交換器6、低温熱交換器6を通過した低濃度冷媒溶液と、高温再生器1から低温再生器2に送られる中濃度冷媒溶液とを熱交換させる高温熱交換器7、とを備えて構成される。
【0003】
蒸発器4内部には、凝縮器3から送られてきた冷媒液体を散水可能とする第一散水装置19と、内部に水が流通する水流通管とが設けられており、凝縮器3から散布された冷媒液体は、水流通管内を流れる水から気化熱を奪って蒸発して水を冷却し、冷水が製造されるようになっており、製造された冷水が冷房などに供されるのである。
【0004】
さて、上述した吸収式冷凍機の近傍に焼却装置などの燃焼システムが設置されている場合、燃焼システムから排出される高温の排ガスの熱エネルギーを利用し、冷媒溶液の加熱エネルギーの節約を行う場合がある。
【0005】
例えば、図2に示すように、吸収器5から排出され高温再生器1に流入する低濃度冷媒溶液と排ガスとの熱交換を間接的に行うことができる温水を用い、昇温された低濃度冷媒溶液を高温再生器1に流入させることで、前記高温再生器1内部に貯留された冷媒溶液を加熱する際において加熱エネルギーの節約を行う場合がある。
即ち、燃焼システムから排出される排ガスと温水との熱交換を可能とする第一温水熱交換部51を排ガスが流通する排ガス管50の途中に設けるとともに、吸収器5から排出され高温再生器1に流入する低濃度冷媒溶液と温水との熱交換を可能とする第二温水熱交換部52とを設ける。そして、前記第一温水熱交換部51から前記第二温水熱交換部52へ温水が流入する第一温水管53を設けるとともに、前記第二温水熱交換部52から前記第一温水熱交換部51へ温水が流入する第二温水管54を設け、前記第二温水管54の途中には温水の配管内の流れ形成を行う温水ポンプ55が設けられている。
しかし、前述の排熱回収型吸収式冷凍機では間接的熱交換手法を採用しているため、熱エネルギー損失を避けることは困難であり、効率的に排ガスと冷媒溶液との熱交換を行うことはできなかった。さらに前記第一温水管53及び前記第二温水管54内の温水温度は100℃以下であるため、冷媒溶液の昇温は比較的低いものであった。
【0006】
そこで、吸収器5から排出され高温再生器1に流入する低濃度冷媒溶液と排ガスとの熱交換を直接的に行い、昇温された低濃度冷媒溶液を高温再生器1に流入させることで、高温再生器1に貯留された冷媒溶液を加熱する加熱エネルギーの節約を行う排熱回収型吸収式冷凍機が考えられた。即ち、図3に示すように、燃焼システムから排出される排ガスと吸収器5から排出された低濃度冷媒溶液との熱交換を可能とする排ガス熱交換部60を、吸収器5から高温再生器1まで冷媒溶液が通流する配管の途中に設けるとともに、排ガスを前記排ガス熱交換部60へ流入させる第一排ガス管61と、前記排ガス熱交換部60から図示していない排ガス浄化装置等へ排ガスを排出可能とする第二排ガス管62とを設ける。
【0007】
ここで、排熱回収型吸収式冷凍機の運転を停止状態にする場合は、加熱部8の加熱を停止するのみならず、排ガスが冷媒溶液と熱交換することを停止させる。そのため、かかる場合、燃焼システムからの排ガスを、前記排ガス熱交換部60を経由せずに別ルートで排出させるため、前記第一排ガス管61の途中の第一分岐部B1から分岐して前記第二排ガス管62の途中の第二分岐部B2で合流する第三排ガス管63を設けるとともに、第一排ガス管61における前記第一分岐部B1と前記排ガス熱交換部60との間にダンパD3、第二排ガス管62における前記第二分岐部B2と前記排ガス熱交換部60との間にダンパD4、及び、第三排ガス管63における前記第一分岐部B1と前記第二分岐部B2との間にダンパD5を設けていた。運転停止状態では、排ガス浄化装置へ排出可能となるようにダンパD3及びダンパD4を閉じ、ダンパD5を開くのである。
【0008】
【発明が解決しようとする課題】
上述のような排熱回収型吸収式冷凍機では、熱交換部での排ガス温度が約200℃に対して、高温再生器へ流入する冷媒溶液温度が約130℃、高温再生器内の冷媒溶液温度が約150℃のため、排熱回収熱量は前記排ガスとの温度差である50〜70℃程度に相当する熱量が限度であった。
また、図2〜3に示したように熱回収を行う熱交換部が大型化する。
一方、排ガス管内を流れる排ガスの温度は、約200〜500℃程度に達し、仮に高温の排ガスが漏洩した場合は非常に危険である。排ガスの漏洩は、排ガス管のダンパ部分から発生する可能性が高く、そのため、排ガス管のダンパ部分の設計には、高い気密性が要求されていた。
さらには、燃焼システムから排出される排ガスの性状は、燃焼システムで燃焼される物体の性状によって変動する場合があり、腐食性ガスが発生する場合も十分に考えられ、排ガス管のダンパ部分の腐食による劣化を防止する必要性があった。排ガス管のダンパ部の気密性を担保するためには、定期的に点検を行う必要があり、ランニングコストの上昇につながっていた。また、高い気密性を有するダンパ部分を製造することは排熱回収型吸収式冷凍機の製造コストの上昇にもつながっていた。
【0009】
従って、本発明の目的は、燃焼システムから排出される排ガスを利用し、排ガスと冷媒溶液との熱交換を直接的に行って冷媒溶液の加熱を行う際の熱交換を効率よく行いながら、排ガスの漏洩を簡単な構造で防止できる排熱回収型吸収式冷凍機を提供することにある。
【0010】
【課題を解決するための手段】
〔構成1〕
この目的を達成するための本発明の特徴構成は請求項1に記載のように、
内部が真空空間となされた缶体の底部に冷媒溶液を貯留する貯留部を有するとともに、前記貯留部に貯留された冷媒溶液を加熱部により加熱して冷媒溶液と冷媒蒸気とを分離する高温再生器と、前記高温再生器から送られてきた冷媒溶液を前記高温再生器から送られてきた冷媒蒸気により加熱する低温再生器と、前記低温再生器を通過した冷媒蒸気を冷却して凝縮させる凝縮器と、前記凝縮器で得られた冷媒液体を蒸発させる蒸発器と、前記蒸発器で発生した冷媒蒸気を前記低温再生器から送られてきた冷媒溶液で吸収させる吸収器とを備えて構成された排熱回収型吸収式冷凍機であって、
前記高温再生器の缶体内には、排ガスが内部を流通する伝熱管と、その伝熱管に冷媒溶液を散布する散布部が設けられ、前記吸収器からの冷媒溶液を前記貯留部に流入する第一冷媒溶液供給径路と、前記吸収器からの冷媒溶液を前記散布部に流入する第二冷媒溶液供給径路が設けられ、冷凍機の運転を行う場合には、前記第二冷媒溶液供給径路に設けられた弁を開き前記第一冷媒溶液供給径路に設けられた弁を閉じて、前記吸収器からの冷媒溶液を前記第二冷媒溶液供給径路を経由して前記散布部に流入させ、冷凍機の運転を停止する場合には、前記第一冷媒溶液供給径路に設けられた弁を開き前記第二冷媒溶液供給径路に設けられた弁を閉じて、前記吸収器からの冷媒溶液を前記第一冷媒溶液供給径路を経由して前記貯留部に流入させることにある。
【0011】
〔作用効果1〕
つまり、前記高温再生器は、内部が真空空間となされた缶体の底部に、吸収剤と冷媒との冷媒溶液を貯留する貯留部を有するとともに、前記貯留部に貯留された冷媒溶液を加熱して冷媒蒸気を発生させる加熱部を有しているから、前記加熱部により低濃度の冷媒溶液を加熱して高温の中濃度冷媒溶液と冷媒蒸気とを分離し、前記低温再生器において、前記高温再生器から送られてきた中濃度冷媒溶液を、前記高温再生器から送られてきた冷媒蒸気により加熱して高濃度冷媒溶液を得、前記凝縮器において前記低温再生器を通過した冷媒蒸気を冷却して凝縮させ、前記蒸発器において前記凝縮器で得られた冷媒液体を蒸発させ、前記吸収器において前記蒸発器で発生した冷媒蒸気を前記低温再生器から送られてきた高濃度冷媒溶液で吸収させて稀釈して低濃度冷媒溶液を得る。
ここで、前記蒸発器において、前記凝縮器で得られた冷媒液体が蒸発する際に気化熱を奪うから冷水等を製造でき、製造された冷水が冷房などに供される。
【0012】
また、前記高温再生器の缶体内には、排ガスが内部を流通する伝熱管と、その伝熱管に冷媒溶液を散布する散布部が設けられ、前記吸収器からの冷媒溶液を前記貯留部に流入する第一冷媒溶液供給径路と、前記吸収器からの冷媒溶液を前記散布部に流入する第二冷媒溶液供給径路が設けられ、冷凍機の運転を行う場合には、前記第二冷媒溶液供給径路に設けられた弁を開き前記第一冷媒溶液供給径路に設けられた弁を閉じて、前記吸収器からの冷媒溶液を前記第二冷媒溶液供給径路を経由して前記散布部に流入させるので、吸収器からの冷媒溶液と伝熱管を流通する排ガスとの熱交換が可能になる。つまり、伝熱管を流通する排ガス温度が約200℃であり、吸収器から送られてきた冷媒溶液は約130℃であるので、排熱回収熱量は前記排ガスとの温度差である70℃程度に相当する熱量となり、回収熱量が多くなる。つまり、従来の排熱回収型吸収式冷凍機に比べて効率よく熱交換でき、熱交換の結果、冷媒溶液は昇温されるから、加熱部の熱エネルギーが節約できる。
また、冷媒溶液と排ガスとの間で熱交換が行われた結果、排ガスの熱エネルギーが冷媒溶液を昇温させる熱エネルギーとして奪われるため、大気中に放出される排ガスの温度は、伝熱管を経由しないで排出される排ガスの温度より低くなっている。
また、高温の排ガスの熱エネルギーを回収する技術としては、燃焼用空気予熱として熱回収する技術がある。この場合、空気予熱器が大型化するため、実使用において排熱回収型吸収式冷凍機と共に設置するには、広い敷地が必要となるといった弊害がある。しかし、本発明のように、高温の排ガスの熱エネルギーを冷媒溶液と熱交換させれば、熱交換のために大掛かりな装置を必要とせず、さらに燃焼用空気予熱として熱回収するより効率よく熱エネルギーを回収できる。
【0013】
本発明の排熱回収型吸収式冷凍機を停止させる場合は、前記第一冷媒溶液供給径路に設けられた弁を開き前記第二冷媒溶液供給径路に設けられた弁を閉じて、前記吸収器からの冷媒溶液を前記第一冷媒溶液供給径路を経由して前記貯留部に流入させるので、つまり、吸収器からの冷媒溶液を散布部に流入させないので、排ガスと冷媒溶液との熱交換停止さる。この時、排ガスが流通する径路の切替は行わないので、径路切換部分を設けることに伴うダンパ部からの排ガス漏洩はありえない。つまり、排ガス管において、高い気密性を有するダンパ部分を製造する必要がなく、また、ダンパ部分の腐食による劣化を防止のための対策や定期点検などの必要もないため、製造コストやランニングコストを抑えることができる小型で簡便な構造を有する排熱回収型吸収式冷凍機を供することができる。
【0017】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明するが、本発明はこれらによって限定されるものではない。
本発明の排熱回収型吸収式冷凍機を図1に示す。また、本発明の排熱回収型吸収式冷凍機は、冷媒である水と吸収剤である臭化リチウム(LiBr)とを利用したものであって、臭化リチウム水溶液は冷媒溶液に、水蒸気は冷媒蒸気に、水は冷媒液体に相当する。
【0018】
高温再生器1で流入した低濃度臭化リチウム水溶液(57〜58%)を加熱部8により加熱して高温(150〜160℃)の中濃度臭化リチウム水溶液(60〜61%)と水蒸気とを分離する。分離された中濃度臭化リチウム水溶液は、高温熱交換器7を経由して低温再生器2へ送られ、前記高温再生器1から送られてきた水蒸気により加熱され約90℃の高濃度臭化リチウム水溶液(62〜64%)となる。この高濃度臭化リチウム水溶液は排ガス熱交換器28へ流出し、排ガスと熱交換を行い、気液二相流となって気液相分離装置29であるフラッシュタンクへ送られる。前記フラッシュタンクで気相である水蒸気と液相である高濃度臭化リチウム水溶液を分離する。前記フラッシュタンクで分離された水蒸気と前記高温再生器1で発生し前記低温再生器2を通過した水蒸気と前記低温再生器で発生した水蒸気は、凝縮器3で冷却され凝縮し約40℃の水(飽和水)となる。前記凝縮器3で得られた水は蒸発器4へ送られ、蒸発されられる。前記蒸発器4で発生した水蒸気は吸収器5へ送られ、前記フラッシュタンクから送られてきた高濃度臭化リチウム水溶液で吸収させて稀釈し低濃度臭化リチウム水溶液となる。
前記低濃度臭化リチウム水溶液は、低温熱交換器6でフラッシュタンクから送られてきた高濃度臭化リチウム水溶液と熱交換し、高温熱交換器7で前記高温再生器1から送られてきた中濃度臭化リチウム水溶液と再度熱交換する間に約130℃に昇温され、前記高温再生器1へ送られる。
尚、前記高温再生器1と排ガス熱交換器28は共に液管構造又は煙管構造などを用いる。
【0019】
排ガス熱交換器28に流入した高濃度臭化リチウム水溶液はこの時約90℃であり、前記排ガス熱交換器28に流入した排ガス温度は約200℃である。この高濃度臭化リチウム水溶液と排ガスとの温度差約110℃に相当する熱量が熱交換される。その結果、高濃度臭化リチウム水溶液は昇温する。
排ガス熱交換器28を流出した高濃度臭化リチウム水溶液はこの時、気液二相流状態となっており、フラッシュタンク内に流入し、水蒸気と高濃度臭化リチウム水溶液に分離される。高濃度臭化リチウム水溶液は、排ガス熱交換器28における熱交換による昇温に伴う水蒸気の発生により濃縮され濃度が増大するため、吸収能力が増大した状態でフラッシュタンクを経由して前記吸収器5へ送られる。一方、水蒸気は前記低温再生器2へ送られる。
また、フラッシュタンクを排熱回収型吸収式冷凍機に付加する構成により、成績係数(COP)は5〜10%の効率改善となる。
【0020】
前記高温再生器1は、内部が真空空間となされた缶体14の底部に、臭化リチウム水溶液を貯留する貯留部15を有するとともに、前記貯留部15に貯留された臭化リチウム水溶液を加熱して水蒸気を発生させる加熱部8を有する。前記加熱部8は、加熱装置としてのバーナー9と燃焼室10とからなり、前記バーナー9の燃焼排ガスを排出するための燃焼排ガス排出口11が前記燃焼室10に設けられている。前記燃焼排ガス排出口11は、焼却装置などの燃焼システムから排出された排ガスと合流させることも可能であり、合流した排ガスは、伝熱管12へ送られる。
【0021】
前記高温再生器1の真空空間には、排ガスが内部を流通する伝熱管12が設けられており、前記伝熱管12の上方には低濃度臭化リチウム水溶液を前記伝熱管12に散布する散布部13が設けられている。前記散布部13の冷媒溶液が散布される散布口と前記伝熱管12とを収納する遮蔽ケース23が前記缶体14内部の真空空間に設けられている。前記遮蔽ケース23の形状は直方体形状であるが特にこの形状に限定されるものではない。ここで、前記貯留部に貯留された冷媒溶液を加熱部で暖めて発生する冷媒蒸気の温度は、前記伝熱管内を流通する排ガスの温度に比較して低いものの、前記散布部から散布される冷媒溶液の温度に比較して高い。つまり、前記散布部と前記伝熱管を収納する遮蔽ケースを前記缶体内部に設けることで、前記散布部から供給される冷媒溶液が、前記伝熱管内を流通する排ガスと熱交換を行う前に、冷媒蒸気と熱交換をすることを防止することができ、臭化リチウム水溶液と排ガスとの熱交換効率を向上させることができる。
つまり、前記吸収器5より送られてきた約130℃の低濃度臭化リチウム水溶液を前記散布部13より前記伝熱管12に散布することで、前記伝熱管12内を流通している約200℃の排ガスと熱交換を行うことができる。この時の排熱回収量は低濃度臭化リチウム水溶液と排ガスとの温度差である約70℃に相当する熱量である。
【0022】
前記遮蔽ケース23の上方面には、前記散布部13から散布される低濃度臭化リチウム水溶液と前記伝熱管12とが接触することで発生する水蒸気を排出することができる開口部としての冷媒蒸気排出口24が設けられている。また、前記遮蔽ケース23の下方面には、前記伝熱管12中の排ガスと熱交換し昇温された臭化リチウム水溶液を排出することができる開口部としての冷媒溶液排出口25が設けられている。これにより、昇温された臭化リチウム水溶液が前記冷媒溶液排出口25から排出され重力で落下し前記貯留部15に貯留された中濃度臭化リチウム水溶液と混ざり、前記バーナー9の加熱エネルギーが節約できるのである。
【0023】
前記低温再生器2と前記凝縮器3とは1つの胴体に仕切を介してまとめて設けられている。前記低温再生器2は胴体内に加熱器17を備えており、前記加熱器17の一端に前記高温再生器1で得られた水蒸気が送り込まれ、前記加熱器17内を通過した水蒸気が前記凝縮器3内に送られるようになっている。前記凝縮器3は胴体内に第一冷却水流通管18を備えており、前記第一冷却水流通管18内を流通する冷却水により、前記低温再生器2で発生した水蒸気および前記加熱器17から送られてきた水蒸気を冷却し、凝縮液化させるようになっている。
【0024】
前記蒸発器4と前記吸収器5とは1つの胴体内に仕切を介して1つにまとめて設けられている。前記蒸発器4は、胴体内に第一散水装置19と第二冷却水流通管20を備えている。そして、前記凝縮器3から送られてきた水を前記第一散水装置19により前記第二冷却水流通管20に散布する。散布された水は、前記第二冷却水流通管20内を流れる水から気化熱を奪って蒸発して水を冷却し、冷水が製造されるようになっている。製造された冷水が冷房などに供される。また、前記蒸発器4において蒸発せずに流下して下部に溜まった水は、前記蒸発器4の下端部から冷媒循環ポンプ21により、再度前記第一散水装置19に送られるようになっている。
【0025】
前記吸収器5は、胴体内に第二散水装置27と第三冷却水流通管22を備えている。そして、フラッシュタンクと低温熱交換器6を経由してきた高濃度臭化リチウム水溶液を前記第二散水装置27により前記第三冷却水流通管22に散布してその表面に液膜を形成し、この液膜を前記第三冷却水流通管22内を流れる冷却水で冷却し、また液膜で水蒸気を吸収することにより、低濃度臭化リチウム水溶液を得るようになっている。こうして得られた低濃度臭化リチウム水溶液は、前記吸収器5から前記低温熱交換器6および前記高温熱交換器7を経て前記高温再生器1に送られる。尚、前記第三冷却水流通管22を通過した冷却水は、前記凝縮器3の前記第一冷却水流通管18に送られる。
【0026】
前記高温熱交換器7から前記貯留部15に至る前記第一配管P1の途中には分岐部Bがあり、前記分岐部Bから前記散布部13まで第二配管P2が設けられている。前記吸収器5から排出される低濃度臭化リチウム水溶液は、第一配管P1で前記低温熱交換器6を経由し次に前記高温熱交換器7を経由し分岐部Bを経由して第二配管P2を経由し前記散布部13に導入される。前記第二配管P2における前記分岐部Bと前記散布部13との間には第一弁V1が設けられており、また、前記第一配管P1における前記分岐部Bと前記貯留部15との間には第二弁V2が設けられており、前記第一弁V1と前記第二弁V2との開閉を制御する図示されていない供給径路切換制御部が設けられている。前記第一配管P1における前記吸収器5と前記低温熱交換器6との間には低濃度臭化リチウム水溶液の流れを形成する溶液循環ポンプ16が設けられている。
【0027】
ここで、第一冷媒溶液供給径路は、低濃度臭化リチウム水溶液が前記吸収器5から前記第一配管P1を経由して前記貯留部15に流入する径路である。また、第二冷媒溶液供給径路は、前記吸収器5から低濃度臭化リチウム水溶液が前記第一配管P1を経由し前記分岐部Bを通過し前記第二配管P2を経由して前記散布部13に流入する径路である。
【0028】
前記第二冷媒溶液供給径路と前記第一冷媒溶液供給径路との切換を制御する図示されていない供給径路切換制御部は、排熱回収型吸収式冷凍機の運転状態によってその制御を行う。
即ち、排熱回収型吸収式冷凍機の運転を行う場合には、前記供給径路切換制御部で前記第二冷媒溶液供給径路を選択するべく、前記第一弁V1を開き前記第二弁V2を閉じる制御を行う。これにより、前記吸収器5から排出された低濃度臭化リチウム水溶液は、前記第一配管P1を経由し前記分岐部Bを通過し前記第二配管P2を経由し前記散布部13へ流入し前記散布部13から低濃度臭化リチウム水溶液が散布される。
【0029】
一方、排熱回収型吸収式冷凍機の運転を停止する場合には、前記加熱部8の前記バーナー9の点火を停止するとともに、前記供給径路切換制御部で前記第一冷媒溶液供給径路を選択するべく、前記第一弁V1を閉じて前記第二弁V2を開く制御を行う。これにより、前記吸収器5から排出された低濃度臭化リチウム水溶液は、前記第一配管P1を経由し前記貯留部15へ流入する。この時、前記散布部13から低濃度臭化リチウム水溶液が散布されないから排ガスと低濃度臭化リチウム水溶液との熱交換はない。また、前記伝熱管12は、前記缶体14の真空空間中に設けられており、前記伝熱管12と前記貯留部15との間には真空空間が存在するから、前記伝熱管中の排ガスの熱が前記貯留部15に貯留された中濃度臭化リチウム水溶液に伝熱することはほとんど無い。前記伝熱管12中の排ガスと低濃度臭化リチウム水溶液との熱交換を行わない場合であっても、前記伝熱管12の管路切換は行わず、前記伝熱管12には管路切換に伴うダンパ部は設けられていないから前記伝熱管12から高温の排ガスが外部へ漏洩することは無い。尚ここで真空とは減圧状態をいう。
【0030】
尚、排熱回収型吸収式冷凍機の運転を停止する場合であっても一定時間は前記溶液循環ポンプ16及び前記冷媒循環ポンプ21を運転する必要がある。即ち、排熱回収型吸収式冷凍機の運転を停止する場合、前記高温再生器1のバーナー9は停止させるが、前記溶液循環ポンプ16及び前記冷媒循環ポンプ21は引き続き作動させ、前記吸収器5において高濃度臭化リチウム水溶液に水蒸気を吸収させるのである。そして、所定の設定時間経過後、前記溶液循環ポンプ16及び前記冷媒循環ポンプ21を停止するのである。配管中の高濃度臭化リチウム水溶液の流れが停止した状態を放置すると、配管中において高濃度臭化リチウム水溶液が固化するおそれがあり、前記バーナー9停止後も一定時間は引き続き稀釈運転を行う必要があるからである。
【図面の簡単な説明】
【図1】本発明の高効率排熱回収型吸収式冷凍機を説明する図。
【図2】従来の間接排熱回収型吸収式冷凍機を説明する図。
【図3】従来の直接排熱回収型吸収式冷凍機を説明する図。
【符号の説明】
1 高温再生器
2 低温再生器
3 凝縮器
4 蒸発器
5 吸収器
6 低温熱交換器
7 高温熱交換器
8 加熱部
9 バーナー
10 燃焼室
11 燃焼排ガス排出口
12 伝熱管
13 散布部
14 缶体
15 貯留部
16 溶液循環ポンプ
17 加熱器
18 第一冷却水流通管
19 第一散水装置
20 第二冷却水流通管
21 冷媒循環ポンプ
22 第三冷却水流通管
23 遮蔽ケース
24 冷媒蒸気排出口
25 冷媒溶液排出口
26 加熱部排ガス管
27 第二散水装置
28 排ガス熱交換器
29 気液相分離装置(フラッシュタンク)
50 排ガス管
51 第一温水熱交換部
52 第二温水熱交換部
53 第一温水管
54 第二温水管
55 温水ポンプ
60 排ガス熱交換部
61 第一排ガス管
62 第二排ガス管
63 第三排ガス管
B 分岐部
B1 第一分岐部
B2 第二分岐部
D3〜5 ダンパ
P1 第一配管
P2 第二配管
V1 第一弁
V2 第二弁
[0001]
BACKGROUND OF THE INVENTION
The present invention has a storage section for storing the refrigerant solution at the bottom of the can body whose inside is a vacuum space, and the refrigerant solution stored in the storage section is heated by the heating section to generate the refrigerant solution and the refrigerant vapor. A high-temperature regenerator to be separated; a low-temperature regenerator that heats the refrigerant solution sent from the high-temperature regenerator by the refrigerant vapor sent from the high-temperature regenerator; and the refrigerant vapor that has passed through the low-temperature regenerator is cooled. A condenser for condensing, an evaporator for evaporating the refrigerant liquid obtained in the condenser, and an absorber for absorbing the refrigerant vapor generated in the evaporator with the refrigerant solution sent from the low-temperature regenerator. The present invention relates to an exhaust heat recovery type absorption refrigerator that is provided.
[0002]
[Prior art]
The absorption refrigerator uses a refrigerant solution of an absorbent and a refrigerant. As shown in FIG. 2, the low-concentration refrigerant solution is heated by a heating unit 8 and a high-temperature medium-concentration refrigerant solution and refrigerant vapor are used. A low-temperature regenerator 2 that heats the medium-concentration refrigerant solution sent from the high-temperature regenerator 1 with the refrigerant vapor sent from the high-temperature regenerator 1 to obtain a high-concentration refrigerant solution, The condenser 3 that cools and condenses the refrigerant vapor that has passed through the low-temperature regenerator 2, the evaporator 4 that evaporates the refrigerant liquid obtained by the condenser 3, and the refrigerant vapor generated in the evaporator 4 is sent from the low-temperature regenerator 2. Absorber 5 that is absorbed with the high-concentration refrigerant solution that has been diluted to obtain a low-concentration refrigerant solution, low-concentration refrigerant solution that is sent from absorber 5 to high-temperature regenerator 1, and low-temperature regenerator 2 that is sent to absorber 5 Low-temperature heat exchanger 6 that exchanges heat with the high-concentration refrigerant solution produced, low A low concentration refrigerant solution having passed through the heat exchanger 6, high temperature heat exchanger 7 for heat exchange and concentration refrigerant solution in sent from the high temperature regenerator 1 to the low-temperature regenerator 2, and includes a city.
[0003]
Inside the evaporator 4, there are provided a first watering device 19 that can spray the refrigerant liquid sent from the condenser 3, and a water circulation pipe through which water circulates. The resulting refrigerant liquid takes the heat of vaporization from the water flowing in the water flow pipe and evaporates to cool the water, so that cold water is produced, and the produced cold water is used for cooling and the like. .
[0004]
When a combustion system such as an incinerator is installed in the vicinity of the absorption refrigerator described above, the heat energy of the high-temperature exhaust gas discharged from the combustion system is used to save the heating energy of the refrigerant solution. There is.
[0005]
For example, as shown in FIG. 2, a low concentration that is heated using hot water that can indirectly perform heat exchange between the low-concentration refrigerant solution discharged from the absorber 5 and flowing into the high-temperature regenerator 1 and the exhaust gas. By flowing the refrigerant solution into the high temperature regenerator 1, heating energy may be saved when the refrigerant solution stored in the high temperature regenerator 1 is heated.
That is, the first hot water heat exchange section 51 that enables heat exchange between the exhaust gas discharged from the combustion system and the hot water is provided in the middle of the exhaust gas pipe 50 through which the exhaust gas flows, and is discharged from the absorber 5 and the high temperature regenerator 1. A second hot water heat exchanging section 52 that enables heat exchange between the low-concentration refrigerant solution flowing into the hot water and the hot water is provided. And while providing the 1st warm water pipe 53 into which warm water flows into the said 2nd warm water heat exchange part 52 from the said 1st warm water heat exchange part 51, the said 1st warm water heat exchange part 51 is said 1st warm water heat exchange part 51. A second hot water pipe 54 through which hot water flows is provided, and a hot water pump 55 is provided in the middle of the second hot water pipe 54 for forming a flow in the hot water pipe.
However, since the above-mentioned exhaust heat recovery type absorption refrigerator employs an indirect heat exchange method, it is difficult to avoid heat energy loss, and heat exchange between exhaust gas and refrigerant solution must be performed efficiently. I couldn't. Furthermore, since the warm water temperature in the first warm water pipe 53 and the second warm water pipe 54 is 100 ° C. or less, the temperature rise of the refrigerant solution was relatively low.
[0006]
Therefore, by directly exchanging heat between the low concentration refrigerant solution discharged from the absorber 5 and flowing into the high temperature regenerator 1 and the exhaust gas, the heated low concentration refrigerant solution is allowed to flow into the high temperature regenerator 1, An exhaust heat recovery type absorption refrigerator that conserves heating energy for heating the refrigerant solution stored in the high-temperature regenerator 1 has been considered. That is, as shown in FIG. 3, an exhaust gas heat exchange section 60 that enables heat exchange between the exhaust gas discharged from the combustion system and the low-concentration refrigerant solution discharged from the absorber 5 is provided from the absorber 5 to the high-temperature regenerator. 1 is provided in the middle of the pipe through which the refrigerant solution flows, and the first exhaust gas pipe 61 through which the exhaust gas flows into the exhaust gas heat exchange unit 60, and the exhaust gas from the exhaust gas heat exchange unit 60 to an exhaust gas purification device (not shown) And a second exhaust pipe 62 that can discharge the gas.
[0007]
Here, when the operation of the exhaust heat recovery type absorption refrigerator is stopped, not only the heating of the heating unit 8 is stopped, but also the exhaust gas is stopped from exchanging heat with the refrigerant solution. Therefore, in such a case, the exhaust gas from the combustion system is discharged from the first branch portion B1 in the middle of the first exhaust gas pipe 61 in order to exhaust the exhaust gas from the combustion system through another route without passing through the exhaust gas heat exchanging portion 60. A third exhaust pipe 63 that merges at the second branch B2 in the middle of the two exhaust pipes 62 is provided, and a damper D3 is provided between the first branch B1 and the exhaust heat exchanger 60 in the first exhaust pipe 61, Between the second branch part B2 and the exhaust gas heat exchange part 60 in the second exhaust gas pipe 62, between the damper D4 and the first branch part B1 and the second branch part B2 in the third exhaust gas pipe 63. Damper D5 was provided. In the operation stop state, the damper D3 and the damper D4 are closed and the damper D5 is opened so that the exhaust gas purifier can be discharged.
[0008]
[Problems to be solved by the invention]
In the exhaust heat recovery type absorption refrigerator as described above, the exhaust gas temperature in the heat exchange section is about 200 ° C., the refrigerant solution temperature flowing into the high temperature regenerator is about 130 ° C., and the refrigerant solution in the high temperature regenerator Since the temperature is about 150 ° C., the exhaust heat recovery heat amount is limited to a heat amount corresponding to about 50 to 70 ° C. which is a temperature difference from the exhaust gas.
Moreover, as shown in FIGS. 2-3, the heat exchange part which performs heat recovery becomes large.
On the other hand, the temperature of the exhaust gas flowing in the exhaust gas pipe reaches about 200 to 500 ° C., and it is extremely dangerous if high-temperature exhaust gas leaks. Exhaust gas leakage is highly likely to occur from the damper portion of the exhaust gas pipe, and therefore, design of the damper portion of the exhaust gas pipe requires high airtightness.
Furthermore, the properties of the exhaust gas discharged from the combustion system may vary depending on the properties of the object combusted in the combustion system, and corrosive gas may be generated. There was a need to prevent degradation due to. In order to ensure the airtightness of the damper part of the exhaust gas pipe, it is necessary to periodically inspect, leading to an increase in running cost. Moreover, manufacturing a damper portion having high airtightness has led to an increase in the manufacturing cost of the exhaust heat recovery type absorption refrigerator.
[0009]
Accordingly, an object of the present invention is to utilize exhaust gas discharged from a combustion system, and to efficiently perform heat exchange when heating the refrigerant solution by directly exchanging heat between the exhaust gas and the refrigerant solution. It is an object of the present invention to provide an exhaust heat recovery type absorption chiller that can prevent leakage of air with a simple structure.
[0010]
[Means for Solving the Problems]
[Configuration 1]
Characterizing feature of the present invention for achieving this objective, as described in claim 1,
A high-temperature regeneration that has a storage part for storing the refrigerant solution at the bottom part of the can whose inside is a vacuum space, and separates the refrigerant solution and the refrigerant vapor by heating the refrigerant solution stored in the storage part by the heating part , A low-temperature regenerator that heats the refrigerant solution sent from the high-temperature regenerator with the refrigerant vapor sent from the high-temperature regenerator, and a condensation that cools and condenses the refrigerant vapor that has passed through the low-temperature regenerator And an evaporator for evaporating the refrigerant liquid obtained in the condenser, and an absorber for absorbing the refrigerant vapor generated in the evaporator with the refrigerant solution sent from the low temperature regenerator. Exhaust heat recovery type absorption refrigerator,
In the can of the high-temperature regenerator, there are provided a heat transfer tube through which exhaust gas circulates and a spraying portion for spraying a refrigerant solution to the heat transfer tube, and the refrigerant solution from the absorber flows into the storage portion. One refrigerant solution supply path and a second refrigerant solution supply path through which the refrigerant solution from the absorber flows into the spraying unit are provided. When the refrigerator is operated, the second refrigerant solution supply path is provided in the second refrigerant solution supply path. And the valve provided in the first refrigerant solution supply path is closed, and the refrigerant solution from the absorber is caused to flow into the spraying section via the second refrigerant solution supply path, When stopping the operation, the valve provided in the first refrigerant solution supply path is opened, the valve provided in the second refrigerant solution supply path is closed, and the refrigerant solution from the absorber is supplied to the first refrigerant solution. this to be introduced into the reservoir via the solution supply path Located in.
[0011]
[Operation effect 1]
In other words, the high-temperature regenerator has a storage unit that stores a refrigerant solution of the absorbent and the refrigerant at the bottom of the can body whose inside is a vacuum space, and heats the refrigerant solution stored in the storage unit. A heating unit that generates the refrigerant vapor, the low-concentration refrigerant solution is heated by the heating unit to separate the high-temperature medium-concentration refrigerant solution and the refrigerant vapor, and in the low-temperature regenerator, The medium concentration refrigerant solution sent from the regenerator is heated by the refrigerant vapor sent from the high temperature regenerator to obtain a high concentration refrigerant solution, and the refrigerant vapor that has passed through the low temperature regenerator in the condenser is cooled. Then, the refrigerant liquid obtained by the condenser is evaporated in the evaporator, and the refrigerant vapor generated in the evaporator is absorbed by the high-concentration refrigerant solution sent from the low-temperature regenerator in the absorber. Let me Obtain a low density refrigerant solution is interpreted.
Here, in the evaporator, when the refrigerant liquid obtained in the condenser evaporates, it takes heat of vaporization, so that cold water or the like can be produced, and the produced cold water is used for cooling or the like.
[0012]
The can of the high-temperature regenerator is provided with a heat transfer pipe through which exhaust gas circulates and a spraying section for spraying a refrigerant solution to the heat transfer pipe, and the refrigerant solution from the absorber flows into the storage section. A first refrigerant solution supply path, and a second refrigerant solution supply path through which the refrigerant solution from the absorber flows into the spraying section, and the second refrigerant solution supply path when the refrigerator is operated. Open the valve provided in the first refrigerant solution supply path and close the valve provided in the first refrigerant solution supply path, the refrigerant solution from the absorber flows into the spraying section via the second refrigerant solution supply path, Heat exchange between the refrigerant solution from the absorber and the exhaust gas flowing through the heat transfer tube is possible. That is, the exhaust gas temperature flowing through the heat transfer tube is about 200 ° C., and the refrigerant solution sent from the absorber is about 130 ° C., so the exhaust heat recovery heat quantity is about 70 ° C., which is the temperature difference from the exhaust gas. Corresponding heat amount, and the recovered heat amount increases. In other words, it can be efficiently heat exchange as compared with traditional heat recovery type absorption refrigerator, a result of the heat exchange, because the refrigerant solution is heated, can save the thermal energy of the heating unit.
As a result of the heat exchange is performed between the refrigerant solution and the exhaust gas, the thermal energy of the exhaust gas is deprived of the heat energy to raise the temperature of the coolant solution, the temperature of the exhaust gas that is released into the atmosphere, the heat transfer tube It is lower than the temperature of the exhaust gas discharged without going through.
Further, as a technique for recovering thermal energy of high-temperature exhaust gas, there is a technique for recovering heat as combustion air preheating. In this case, since the air preheater is increased in size, there is a problem that a large site is required for installation together with the exhaust heat recovery type absorption refrigerator in actual use. However, as in the present invention, lever is heat energy refrigerant solution and heat exchange of hot exhaust gas, without requiring a large-scale apparatus for heat exchange, efficient than more heat recovery as combustion air preheat Thermal energy can be recovered.
[0013]
When stopping the exhaust heat recovery type absorption refrigerator of the present invention, the valve provided in the first refrigerant solution supply path is opened, the valve provided in the second refrigerant solution supply path is closed, and the absorber Since the refrigerant solution from the refrigerant flows into the storage part via the first refrigerant solution supply path, that is, the refrigerant solution from the absorber does not flow into the spraying part, the heat exchange between the exhaust gas and the refrigerant solution is stopped. Ru is. At this time, since the path through which the exhaust gas flows is not switched, there is no possibility of exhaust gas leakage from the damper portion due to the provision of the path switching portion. In other words, it is not necessary to manufacture a highly airtight damper part in the exhaust gas pipe, and there is no need for measures to prevent deterioration due to corrosion of the damper part or periodic inspections. An exhaust heat recovery type absorption refrigerator having a small and simple structure that can be suppressed can be provided.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.
The exhaust heat recovery type absorption refrigerator of the present invention is shown in FIG. In addition, the exhaust heat recovery type absorption refrigerator of the present invention uses water as a refrigerant and lithium bromide (LiBr) as an absorbent. In the refrigerant vapor, water corresponds to the refrigerant liquid.
[0018]
The low-concentration lithium bromide aqueous solution (57 to 58%) that has flowed in the high-temperature regenerator 1 is heated by the heating unit 8, and the medium-concentration lithium bromide aqueous solution (60 to 61%) at high temperature (150 to 160 ° C), water vapor, Isolate. The separated medium-concentration lithium bromide aqueous solution is sent to the low-temperature regenerator 2 via the high-temperature heat exchanger 7 and heated by the water vapor sent from the high-temperature regenerator 1 to be high-concentration bromide at about 90 ° C. It becomes a lithium aqueous solution (62 to 64%). This high-concentration lithium bromide aqueous solution flows out to the exhaust gas heat exchanger 28, exchanges heat with the exhaust gas, becomes a gas-liquid two-phase flow, and is sent to a flash tank which is a gas-liquid phase separation device 29. In the flash tank, water vapor as a gas phase and a high concentration lithium bromide aqueous solution as a liquid phase are separated. The water vapor separated in the flash tank, the water vapor generated in the high-temperature regenerator 1 and passed through the low-temperature regenerator 2 and the water vapor generated in the low-temperature regenerator are cooled and condensed in the condenser 3 to be about 40 ° C. water. (Saturated water). The water obtained in the condenser 3 is sent to the evaporator 4 where it is evaporated. The water vapor generated in the evaporator 4 is sent to an absorber 5 where it is absorbed and diluted with a high concentration lithium bromide aqueous solution sent from the flash tank to form a low concentration lithium bromide aqueous solution.
The low-concentration lithium bromide aqueous solution exchanges heat with the high-concentration lithium bromide aqueous solution sent from the flash tank by the low-temperature heat exchanger 6, and is sent from the high-temperature regenerator 1 by the high-temperature heat exchanger 7. During the heat exchange with the concentrated lithium bromide aqueous solution again, the temperature is raised to about 130 ° C. and sent to the high temperature regenerator 1.
The high temperature regenerator 1 and the exhaust gas heat exchanger 28 both use a liquid pipe structure or a smoke pipe structure.
[0019]
The high-concentration lithium bromide aqueous solution flowing into the exhaust gas heat exchanger 28 is about 90 ° C. at this time, and the exhaust gas temperature flowing into the exhaust gas heat exchanger 28 is about 200 ° C. The amount of heat corresponding to a temperature difference of about 110 ° C. between the high concentration lithium bromide aqueous solution and the exhaust gas is heat exchanged. As a result, the high concentration lithium bromide aqueous solution is heated.
At this time, the high-concentration lithium bromide aqueous solution flowing out of the exhaust gas heat exchanger 28 is in a gas-liquid two-phase flow state, flows into the flash tank, and is separated into water vapor and the high-concentration lithium bromide aqueous solution. The high-concentration lithium bromide aqueous solution is concentrated and increases in concentration due to the generation of water vapor accompanying the temperature rise due to heat exchange in the exhaust gas heat exchanger 28. Therefore, the absorber 5 passes through the flash tank with the absorption capacity increased. Sent to. On the other hand, water vapor is sent to the low temperature regenerator 2.
Further, by adding the flash tank to the exhaust heat recovery type absorption refrigerator, the coefficient of performance (COP) is improved by 5 to 10%.
[0020]
The high-temperature regenerator 1 has a storage unit 15 for storing a lithium bromide aqueous solution at the bottom of a can body 14 whose inside is a vacuum space, and heats the lithium bromide aqueous solution stored in the storage unit 15. And a heating unit 8 for generating water vapor. The heating unit 8 includes a burner 9 as a heating device and a combustion chamber 10, and a combustion exhaust gas outlet 11 for discharging the combustion exhaust gas of the burner 9 is provided in the combustion chamber 10. The combustion exhaust gas discharge port 11 can be combined with exhaust gas discharged from a combustion system such as an incinerator, and the combined exhaust gas is sent to the heat transfer tube 12.
[0021]
In the vacuum space of the high-temperature regenerator 1, a heat transfer tube 12 through which exhaust gas flows is provided, and a spraying unit for spraying a low concentration lithium bromide aqueous solution to the heat transfer tube 12 above the heat transfer tube 12. 13 is provided. A shielding case 23 for housing the spray port for spraying the refrigerant solution of the spray unit 13 and the heat transfer tube 12 is provided in the vacuum space inside the can body 14. The shape of the shielding case 23 is a rectangular parallelepiped shape, but is not particularly limited to this shape. Here, the temperature of the refrigerant vapor generated by warming the refrigerant solution stored in the storage unit in the heating unit is lower than the temperature of the exhaust gas flowing through the heat transfer tube, but is sprayed from the spray unit. Higher than the temperature of the refrigerant solution. In other words, by providing a shielding case for housing the spraying section and the heat transfer tube inside the can body, the refrigerant solution supplied from the spraying section performs heat exchange with the exhaust gas flowing through the heat transfer pipe. Heat exchange with the refrigerant vapor can be prevented, and the heat exchange efficiency between the lithium bromide aqueous solution and the exhaust gas can be improved.
That is, by spraying the low-concentration lithium bromide aqueous solution of about 130 ° C. sent from the absorber 5 onto the heat transfer tube 12 from the spray portion 13, the temperature of about 200 ° C. circulating in the heat transfer tube 12 is increased. Heat exchange with the exhaust gas. The amount of exhaust heat recovered at this time is an amount of heat corresponding to about 70 ° C., which is the temperature difference between the low concentration lithium bromide aqueous solution and the exhaust gas.
[0022]
The upper surface of the shielding case 23 is a refrigerant vapor as an opening through which water vapor generated by the contact of the low-concentration lithium bromide aqueous solution sprayed from the spraying portion 13 with the heat transfer tube 12 can be discharged. A discharge port 24 is provided. In addition, a refrigerant solution discharge port 25 is provided on the lower surface of the shielding case 23 as an opening through which the lithium bromide aqueous solution heated by exchanging heat with the exhaust gas in the heat transfer tube 12 can be discharged. Yes. As a result, the heated lithium bromide aqueous solution is discharged from the refrigerant solution outlet 25 and dropped by gravity and mixed with the intermediate concentration lithium bromide aqueous solution stored in the storage unit 15, thereby saving the heating energy of the burner 9. It can be done.
[0023]
The low-temperature regenerator 2 and the condenser 3 are provided together on one body via a partition. The low-temperature regenerator 2 includes a heater 17 in the body, and the water vapor obtained by the high-temperature regenerator 1 is fed into one end of the heater 17 so that the water vapor that has passed through the heater 17 is condensed. It is to be sent into the vessel 3. The condenser 3 includes a first cooling water circulation pipe 18 in the fuselage, and the steam generated in the low temperature regenerator 2 and the heater 17 by the cooling water flowing through the first cooling water circulation pipe 18. The water vapor sent from is cooled and condensed.
[0024]
The evaporator 4 and the absorber 5 are provided together in one body via a partition. The evaporator 4 includes a first watering device 19 and a second cooling water circulation pipe 20 in the body. Then, the water sent from the condenser 3 is sprayed to the second cooling water circulation pipe 20 by the first water sprinkler 19. The sprayed water takes the heat of vaporization from the water flowing in the second cooling water flow pipe 20 and evaporates to cool the water, thereby producing cold water. The produced cold water is used for cooling and the like. Further, the water collected in the lower part flows down to not evaporate in the evaporator 4, the refrigerant circulation pump 21 from the lower end of the evaporator 4, so as to sent to again the first sprinkler 19 Yes.
[0025]
The absorber 5 includes a second water sprinkler 27 and a third cooling water circulation pipe 22 in the body. Then, a high concentration lithium bromide aqueous solution that has passed through the flash tank and the low-temperature heat exchanger 6 is sprayed on the third cooling water circulation pipe 22 by the second sprinkler 27 to form a liquid film on the surface thereof. The liquid film is cooled with cooling water flowing through the third cooling water flow pipe 22, and water vapor is absorbed by the liquid film to obtain a low-concentration lithium bromide aqueous solution. The low-concentration lithium bromide aqueous solution thus obtained is sent from the absorber 5 to the high-temperature regenerator 1 through the low-temperature heat exchanger 6 and the high-temperature heat exchanger 7. The cooling water that has passed through the third cooling water circulation pipe 22 is sent to the first cooling water circulation pipe 18 of the condenser 3.
[0026]
In the middle of the first pipe P1 from the high temperature heat exchanger 7 to the storage part 15, there is a branch part B, and a second pipe P2 is provided from the branch part B to the spraying part 13. The low-concentration lithium bromide aqueous solution discharged from the absorber 5 passes through the low-temperature heat exchanger 6 in the first pipe P1, and then passes through the high-temperature heat exchanger 7 and the branch portion B to the second. It is introduced into the spraying part 13 via the pipe P2. A first valve V1 is provided between the branch part B and the spraying part 13 in the second pipe P2, and between the branch part B and the storage part 15 in the first pipe P1. Is provided with a second valve V2, and a supply path switching control unit (not shown) for controlling opening and closing of the first valve V1 and the second valve V2 is provided. Between the absorber 5 and the low-temperature heat exchanger 6 in the first pipe P1, a solution circulation pump 16 that forms a flow of a low-concentration lithium bromide aqueous solution is provided.
[0027]
Here, the first refrigerant solution supply path is a path through which the low-concentration lithium bromide aqueous solution flows into the storage unit 15 from the absorber 5 via the first pipe P1. The second refrigerant solution supply path is such that the low-concentration lithium bromide aqueous solution passes from the absorber 5 through the first pipe P1 through the branch part B and through the second pipe P2. It is the path which flows into the.
[0028]
A supply path switching control unit (not shown) that controls switching between the second refrigerant solution supply path and the first refrigerant solution supply path performs the control according to the operating state of the exhaust heat recovery type absorption refrigerator.
That is, when operating the exhaust heat recovery type absorption refrigerator, the first valve V1 is opened and the second valve V2 is opened in order to select the second refrigerant solution supply path by the supply path switching control unit. Close control is performed. Thereby, the low-concentration lithium bromide aqueous solution discharged from the absorber 5 passes through the branch part B via the first pipe P1 and flows into the spraying part 13 via the second pipe P2. A low-concentration lithium bromide aqueous solution is sprayed from the spraying unit 13.
[0029]
On the other hand, when the operation of the exhaust heat recovery type absorption refrigerator is stopped, the ignition of the burner 9 of the heating unit 8 is stopped and the first refrigerant solution supply path is selected by the supply path switching control unit. Therefore, the first valve V1 is closed and the second valve V2 is opened. Thereby, the low concentration lithium bromide aqueous solution discharged from the absorber 5 flows into the storage part 15 via the first pipe P1. At this time, there is no heat exchange between the exhaust gas and the low concentration lithium bromide aqueous solution because the low concentration lithium bromide aqueous solution is not sprayed from the spraying portion 13. In addition, the heat transfer tube 12 is provided in the vacuum space of the can body 14, and a vacuum space exists between the heat transfer tube 12 and the storage unit 15, so that the exhaust gas in the heat transfer tube Heat hardly transfers to the intermediate concentration lithium bromide aqueous solution stored in the storage unit 15. Even when heat exchange between the exhaust gas in the heat transfer tube 12 and the low-concentration lithium bromide aqueous solution is not performed, the heat transfer tube 12 is not switched, and the heat transfer tube 12 is accompanied by the switching of the tube. Since the damper portion is not provided, high-temperature exhaust gas does not leak from the heat transfer tube 12 to the outside. Here, the vacuum means a reduced pressure state.
[0030]
Even when the operation of the exhaust heat recovery type absorption refrigerator is stopped, it is necessary to operate the solution circulation pump 16 and the refrigerant circulation pump 21 for a certain period of time. That is, when stopping the operation of the exhaust heat recovery type absorption refrigerator, the burner 9 of the high-temperature regenerator 1 is stopped, but the solution circulation pump 16 and the refrigerant circulation pump 21 are continuously operated, and the absorber 5 In this case, water vapor is absorbed by the high concentration lithium bromide aqueous solution. Then, after a predetermined set time has elapsed, the solution circulation pump 16 and the refrigerant circulation pump 21 are stopped. If the state in which the flow of the high concentration lithium bromide aqueous solution in the pipe is stopped is left as it is, the high concentration lithium bromide aqueous solution may solidify in the pipe, and it is necessary to continue the dilution operation for a certain time after the burner 9 stops. Because there is.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a high-efficiency exhaust heat recovery type absorption refrigerator according to the present invention.
FIG. 2 is a diagram for explaining a conventional indirect exhaust heat recovery type absorption refrigerator.
FIG. 3 is a view for explaining a conventional direct exhaust heat recovery type absorption refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Low temperature heat exchanger 7 High temperature heat exchanger 8 Heating part 9 Burner 10 Combustion chamber 11 Combustion exhaust gas discharge port 12 Heat exchanger tube 13 Spreading part 14 Can body 15 Reservoir 16 Solution circulation pump 17 Heater 18 First cooling water flow pipe 19 First water sprinkler 20 Second cooling water flow pipe 21 Refrigerant circulation pump 22 Third cooling water flow pipe 23 Shielding case 24 Refrigerant vapor outlet 25 Refrigerant solution Discharge port 26 Heating part exhaust gas pipe 27 Second watering device 28 Exhaust gas heat exchanger 29 Gas-liquid phase separation device (flash tank)
50 exhaust gas pipe 51 first hot water heat exchange part 52 second hot water heat exchange part 53 first hot water pipe 54 second hot water pipe 55 hot water pump 60 exhaust gas heat exchange part 61 first exhaust gas pipe 62 second exhaust gas pipe 63 third exhaust gas pipe B branch part B1 first branch part B2 second branch part D3-5 damper P1 first pipe P2 second pipe V1 first valve V2 second valve

Claims (1)

内部が真空空間となされた缶体の底部に冷媒溶液を貯留する貯留部を有するとともに、前記貯留部に貯留された冷媒溶液を加熱部により加熱して冷媒溶液と冷媒蒸気とを分離する高温再生器と、前記高温再生器から送られてきた冷媒溶液を前記高温再生器から送られてきた冷媒蒸気により加熱する低温再生器と、前記低温再生器を通過した冷媒蒸気を冷却して凝縮させる凝縮器と、前記凝縮器で得られた冷媒液体を蒸発させる蒸発器と、前記蒸発器で発生した冷媒蒸気を前記低温再生器から送られてきた冷媒溶液で吸収させる吸収器とを備えて構成された排熱回収型吸収式冷凍機であって、
前記高温再生器の缶体内には、排ガスが内部を流通する伝熱管と、その伝熱管に冷媒溶液を散布する散布部が設けられ、前記吸収器からの冷媒溶液を前記貯留部に流入する第一冷媒溶液供給径路と、前記吸収器からの冷媒溶液を前記散布部に流入する第二冷媒溶液供給径路が設けられ、冷凍機の運転を行う場合には、前記第二冷媒溶液供給径路に設けられた弁を開き前記第一冷媒溶液供給径路に設けられた弁を閉じて、前記吸収器からの冷媒溶液を前記第二冷媒溶液供給径路を経由して前記散布部に流入させ、冷凍機の運転を停止する場合には、前記第一冷媒溶液供給径路に設けられた弁を開き前記第二冷媒溶液供給径路に設けられた弁を閉じて、前記吸収器からの冷媒溶液を前記第一冷媒溶液供給径路を経由して前記貯留部に流入させる排熱回収型吸収式冷凍機。
A high-temperature regeneration that has a storage part for storing the refrigerant solution at the bottom part of the can whose inside is a vacuum space, and separates the refrigerant solution and the refrigerant vapor by heating the refrigerant solution stored in the storage part by the heating part , A low-temperature regenerator that heats the refrigerant solution sent from the high-temperature regenerator with the refrigerant vapor sent from the high-temperature regenerator, and a condensation that cools and condenses the refrigerant vapor that has passed through the low-temperature regenerator And an evaporator for evaporating the refrigerant liquid obtained in the condenser, and an absorber for absorbing the refrigerant vapor generated in the evaporator with the refrigerant solution sent from the low temperature regenerator. Exhaust heat recovery type absorption refrigerator,
In the can of the high-temperature regenerator, there are provided a heat transfer tube through which exhaust gas circulates and a spraying portion for spraying a refrigerant solution to the heat transfer tube, and the refrigerant solution from the absorber flows into the storage portion. One refrigerant solution supply path and a second refrigerant solution supply path through which the refrigerant solution from the absorber flows into the spraying unit are provided. When the refrigerator is operated, the second refrigerant solution supply path is provided in the second refrigerant solution supply path. And the valve provided in the first refrigerant solution supply path is closed, and the refrigerant solution from the absorber is caused to flow into the spraying section via the second refrigerant solution supply path, When stopping the operation, the valve provided in the first refrigerant solution supply path is opened, the valve provided in the second refrigerant solution supply path is closed, and the refrigerant solution from the absorber is supplied to the first refrigerant solution. discharge to flow into the reservoir via the solution supply path Recovery type absorption chiller.
JP2002120870A 2002-04-23 2002-04-23 Waste heat recovery type absorption refrigerator Expired - Fee Related JP3851837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120870A JP3851837B2 (en) 2002-04-23 2002-04-23 Waste heat recovery type absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120870A JP3851837B2 (en) 2002-04-23 2002-04-23 Waste heat recovery type absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2003314922A JP2003314922A (en) 2003-11-06
JP3851837B2 true JP3851837B2 (en) 2006-11-29

Family

ID=29536970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120870A Expired - Fee Related JP3851837B2 (en) 2002-04-23 2002-04-23 Waste heat recovery type absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3851837B2 (en)

Also Published As

Publication number Publication date
JP2003314922A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2011075180A (en) Absorption type refrigerating machine
JP2002147885A (en) Absorption refrigerating machine
JP4885467B2 (en) Absorption heat pump
JP5384072B2 (en) Absorption type water heater
KR101210968B1 (en) Hybrid absorption type air conditioning system
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP3851837B2 (en) Waste heat recovery type absorption refrigerator
KR101699905B1 (en) Absorption chiller system having fuel cell
JP4315855B2 (en) Absorption refrigerator
JP4553523B2 (en) Absorption refrigerator
JP2001174100A (en) Waste heat recovery absorption hot and chilled water generator
JP2003343939A (en) Absorption refrigerating machine
JP3935611B2 (en) Evaporator and absorber and absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JP3851204B2 (en) Absorption refrigerator
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP2010276252A (en) Absorption type refrigerating machine
KR20030078703A (en) Absorption type refrigerator
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP4086505B2 (en) Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine
JP3904726B2 (en) Absorption refrigeration system
JP4334319B2 (en) Operation method of absorption refrigerator
JP2583579B2 (en) Absorption chiller with refrigerant circulation system for cooling and heating
JP3988016B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Ref document number: 3851837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees