JP3904726B2 - Absorption refrigeration system - Google Patents

Absorption refrigeration system Download PDF

Info

Publication number
JP3904726B2
JP3904726B2 JP15507898A JP15507898A JP3904726B2 JP 3904726 B2 JP3904726 B2 JP 3904726B2 JP 15507898 A JP15507898 A JP 15507898A JP 15507898 A JP15507898 A JP 15507898A JP 3904726 B2 JP3904726 B2 JP 3904726B2
Authority
JP
Japan
Prior art keywords
heat
temperature regenerator
concentration
low
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15507898A
Other languages
Japanese (ja)
Other versions
JPH11344269A (en
Inventor
尚優 杉本
尚哉 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP15507898A priority Critical patent/JP3904726B2/en
Publication of JPH11344269A publication Critical patent/JPH11344269A/en
Application granted granted Critical
Publication of JP3904726B2 publication Critical patent/JP3904726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
本発明は、臭化リチウムなどの水溶液を吸収液として吸収サイクルを形成した吸収式冷凍装置に関し、特に、加熱手段によって加熱される再生器が、高温再生器と、その蒸気の潜熱を利用した低温再生器とからなる二重効用型の再生器を構成した吸収式冷凍装置に係る。
【0002】
【従来の技術】
従来、例えば、図4に示す吸収式空調装置100を用いた吸収式空調装置では、高温再生器1を加熱し吸収液ポンプP1 を作動させた吸収サイクルにおいて、蒸発器4内の冷温水配管(蒸発コイル41)で冷却された水を冷却源とし、室内機200の室内熱交換器(空調用熱交換器44)へ供給して、室内熱交換器(空調用熱交換器44)に備えられた対流ファン(ブロワ45)を作動させて室内を冷房する。また、蒸発器4を暖房用吸収液流路L4 によって高温再生器1と連通させた状態で吸収液ポンプ1を作動させて、高温再生器1で加熱された高温の吸収液を蒸発器4へ供給することによって、蒸発器4内の冷温水配管(蒸発コイル41)で水を加熱して加熱源とし、同様に室内熱交換器(空調用熱交換器44)へ供給して暖房運転を行う。
【0003】
このように構成された吸収式空調装置100では、高温再生器1を加熱するガスバーナB等の加熱手段が発生した熱を効率良く再生器に吸収させるために、図3に示すように、高温再生器1の被加熱部である加熱タンク11を、ガスバーナBの燃焼炎を覆うように形成した略逆碗形状に形成し、高温再生器1で発生した冷媒蒸気を回収するための冷媒回収タンク10の外側に低温再生器2を形成し、高温再生器1で冷媒蒸気が分離された中濃度吸収液を、高温再生器1内の冷媒蒸気の潜熱を利用して再び加熱して更に冷媒蒸気を分離させる二重効用型の再生器が用いられている。
ここで、高温を発生するガスバーナ等の加熱手段の熱を、効率良く吸収させるために、高温再生器の被加熱部に吸熱フィンを設けられている。
【0004】
【発明が解決しようとする課題】
上記のとおり構成された従来の吸収式冷凍装置においては、高温を発生するガスバーナ等の加熱手段の熱を、高温再生器のみで吸熱させているため、熱吸収の効率に限界があった。
【0005】
本発明は、再生器における吸熱の向上を図ることを目的とする。
【0006】
【課題を解決するための手段】
この発明請求項1では、加熱手段により加熱される再生器において低濃度吸収液を高濃度吸収液と冷媒とに分離し、蒸発器において、内部を空調用熱媒体としての冷温水が流れる蒸発コイルに冷媒液を散布して蒸発させるとともに前記冷温水を冷却し、吸収器において、冷却塔に連結されるとともに、内部排熱用の冷却水冷却コイルに前記高濃度吸収液を散布して前記蒸発した冷媒を吸収させ、前記冷媒を吸収して低濃度化した低濃度吸収液を低濃度吸収液流路に設けた吸収液ポンプにより前記再生器に戻す吸収冷凍装置において、前記再生器を、前記加熱手段により加熱された被加熱気体の熱によって低濃度吸収液を加熱して中濃度吸収液と冷媒蒸気とに分離する高温再生器と、該高温再生器で熱交換して吸熱された後の前記被加熱気体を排出するための被加熱気体排出通路が内部に挿通され、該被加熱気体排出通路を通過する前記被加熱気体の熱によって前記高温再生器で分離された中濃度吸収液を加熱して、高濃度吸収液と冷媒蒸気とに分離する低温再生器とから構成し、
前記加熱手段を、前記被加熱気体を取り囲むようにして、内壁、外壁および底壁とにより中空に形成された包囲壁状容器部と、前記内壁および前記外壁の上縁から中心に向かって中空状に延設されて、その中心に前記被加熱気体を通過させる排出口を形成した天井容器部と、前記天井容器部から上方に向かって延設された筒状加熱部とにより略逆漏斗状に構成し、前記被加熱気体排出通路を、前記筒状加熱部内の中心部で、前記筒状加熱部に取り囲まれて前記天井容器部の前記排出口と連通した排気筒として構成したことを特徴とする。
【0007】
請求項2では、請求項1において、前記低温再生器は、前記高温再生器で生じる冷媒蒸気を回収する冷媒回収タンクの外側に設けられ、前記高温再生器で生じた冷媒蒸気の潜熱と前記被加熱気体の顕熱をともに加熱源とすることを特徴とする。
請求項3では、請求項1、2において、前記加熱手段は、ガスを燃料として燃焼するガスバーナであり、前記被加熱気体は、該ガスバーナの燃焼ガスであることを特徴とする。
【0008】
【発明の作用・効果】
この吸収式冷凍装置では、高温再生器が加熱手段からの被加熱気体によって加熱されると、高温再生器内の低濃度吸収液から冷媒蒸気が分離して、低濃度吸収液は濃縮されて中濃度吸収液となり、中濃度吸収液は、低温再生器へ供給される。
低温再生器内には、高温再生器で熱交換して吸熱された後の被加熱気体を排出するための被加熱気体排出通路が挿通しており、この被加熱気体排出通路を被加熱気体が通過すると、被加熱気体の熱によって被加熱気体排出通路の壁面を介して低温再生器に供給された中濃度吸収液が加熱され、中濃度吸収液から冷媒蒸気が分離されて、高濃度吸収液となる。
【0009】
高温再生器および低温再生器でそれぞれ分離された冷媒蒸気は、凝縮器へ供給され、また、低温再生器で濃縮された高濃度吸収液は、吸収器へ供給される。凝縮器では、冷媒蒸気が冷却されて液化し、蒸発器へ供給され、蒸発時に熱を奪い、冷却源となる。蒸発器と吸収器とは連通しており、吸収器では、高濃度吸収液が供給されると、蒸発器で蒸発した冷媒蒸気を吸収して、低濃度吸収液となり、吸収液ポンプによって高温再生器へ戻され、以下、この循環を繰り返す。
【0010】
本発明では、加熱手段からの被加熱気体は高温再生器を加熱するのみでなく、高温再生器で熱交換により吸熱された後の被加熱気体を排出する排出筒被加熱気体排出通路として内部に挿通させた低温再生器でも、被加熱気体の熱が再利用されるため、高温再生器および低温再生器により総合的な熱利用が可能となり吸熱効率がよくなる
この際、高温再生器は筒状加熱部からも吸熱を行うため、全体としての熱交換面積が広くなり、包囲壁状容器部における熱吸収による負担が軽減されて熱疲労および高温腐食に対する耐久性を向上させることができる。
【0011】
請求項2では、低温再生器は、加熱手段によって加熱され高温再生器で熱交換して吸熱された後の被加熱気体の顕熱のみでなく、高温再生器の冷媒回収タンク内の冷媒蒸気の潜熱も利用して複数の加熱源としているため、低温再生器における吸熱能力に余裕があり、吸熱構造の設計の自由度が増し、安価な装置とすることができる。
【0012】
請求項3では、ガスバーナを加熱手段とする。ガスバーナでは、燃焼に伴って高温の燃焼ガスが発生するが、この燃焼ガスが高温再生器で熱交換を行って吸熱された後に低温再生器内に挿通された被加熱気体排出通路を通過する際に、燃焼ガスの熱が再び吸熱されるため、ガスバーナの発生した熱を、効率良く吸熱させることができる。
【0013】
【発明の実施の形態】
図1は空調機を示し、冷凍機本体101および冷却塔(クーリングタワー)CTからなる吸収式冷凍装置100を室外機として備えるとともに、室内機200が付設されている。この空調機は、制御装置300により制御される。
【0014】
冷凍機本体101は、高温再生器1および低温再生器2からなる二重効用型の再生器を備え、高温再生器1の下方には、加熱手段としてのガスバーナBが配置されている。低温再生器2の外周には吸収器3および蒸発器4が設けられ、蒸発器4の上方には凝縮器5が設置されている。
【0015】
高温再生器1において、ガスバーナBの燃焼ガスによって加熱され、内部の低濃度吸収液を沸騰させる加熱タンク11は、図2にも示すように、ガスバーナBの燃焼炎を取り囲むように内壁110aと外壁110bと底壁110cにより中空に形成された包囲壁状容器部110と、内壁110a及び外壁110bの上縁から中心に向かって延設して中空に形成され、その中心にガスバーナBで発生した燃焼ガスを被加熱気体として通過させるための燃焼ガス排出口111が形成された天井容器部112と、天井容器部112から上方に向かって延設された筒状加熱部113とからなる略逆漏斗形状を呈しており、筒状加熱部113の中心部には、燃焼ガス排出口111と連通した排気筒114が上方に向けて配されている。
【0016】
筒状加熱部113の外側には、加熱された低濃度吸収液を外側へ溢れさせる際に、冷媒蒸気(水蒸気)が分離した中濃度吸収液を受ける吸収液室115を形成するための中濃度吸収液分離筒12が設けられている。さらに、中濃度吸収液分離筒12の外周には、冷媒蒸気を回収する縦型円筒形の気密性の冷媒回収タンク10が設けられている。
【0017】
加熱タンク11の包囲壁状容器部110の上部には、後述する吸収器3と連結された低濃度吸収液流路L3 が貫通して設けられており、低濃度吸収液流路L3 の先端は、包囲壁状容器部110内の下部で開口している。
【0018】
従って、吸収液ポンプP1 が装着された低濃度吸収液流路L3 を介して吸収器3から供給される低濃度吸収液は、包囲壁状容器部110の下部で加熱タンク内11内へ流出し、包囲壁状容器部110の下部から上部へ移動する際にガスバーナBの燃焼ガスと熱交換して加熱され、さらに、天井容器部112及び筒状加熱部113を上昇しながら、排気筒114内を通過する燃焼ガスによって加熱されることになる。
【0019】
低温再生器2は、冷媒回収タンク10の上方及び外周に偏心して設置され、上記排気筒114が貫通した縦型円筒形の低温再生器ケース20を有する。低温再生器ケース20は、天井に冷媒蒸気出口5Aが設けられるとともに、頂部の排気筒114の外側を囲んで設けられた中濃度吸収液供給室201内に、中濃度吸収液分離筒12の底の吸収液室115と連結された中濃度吸収液流路L1 が開口し、中濃度吸収液流路L1 から供給される中濃度吸収液を中濃度吸収液供給室201の下端に設けた中濃度吸収液出口21を介して冷媒回収タンク10の外側に滴下させている。
従って、中濃度吸収液供給室201内へ供給された中濃度吸収液は、排気筒114を介して伝熱される燃焼ガスの顕熱および冷媒回収タンク10の外壁を介して伝熱される冷媒蒸気の潜熱をともに加熱源として、再加熱される。
【0020】
低温再生器ケース20内には、高温再生器1の中濃度吸収液分離筒12内との圧力差により熱交換器Hを介して中濃度吸収液が供給され、低温再生器2は、上述の如く冷媒回収タンク10および排気筒114の各外壁を介して中濃度吸収液を加熱して、再沸騰させ、冷媒蒸気を分離させて高濃度吸収液とする。
【0021】
低温再生器ケース20の外周には、縦型円筒形で気密性の蒸発・吸収ケース30が同心的に配され、蒸発・吸収ケース30は上方に延設されて上部は凝縮器ケース50となっている。
【0022】
冷媒回収タンク10、低温再生器ケース20、蒸発・吸収ケース30は、底板13に一体に溶接されて冷凍機本体101を形成している。低温再生器ケース20の上部は、気液分離部22となっており、冷媒蒸気出口5Aを介して凝縮器ケース50内と連通している。
【0023】
吸収器3は、蒸発・吸収ケース30内の内側部分内に縦型円筒状に巻設した冷却コイル31を配置し、その上方に該冷却コイル31に高濃度吸収液を散布するための高濃度吸収液散布具32を装着してなる。吸収器3は、冷房運転時に使用され、冷却コイル31内には、冷却塔CTで冷却された排熱用冷却水が循環している。
【0024】
低温再生器2の高濃度吸収液受け部23は、熱交換器Hを介して高濃度吸収液流路L2 により、高濃度吸収液散布具32へ連結している。高濃度吸収液散布具32は、高濃度吸収液が流入し、流入した高濃度吸収液は、冷却コイル31の上端に散布され、冷却コイル31の表面に付着して膜状になり、重力の作用で下方に流下して行く。吸収器3の底部33と加熱タンク11の包囲壁状容器部110との間は、熱交換器Hおよび吸収液ポンプP1 が装着された低濃度吸収液流路L3 で連結されている。
【0025】
蒸発器4は、蒸発・吸収ケース30内の冷却コイル31の外周に、縦型円筒形で連通口付き仕切壁40を設け、該仕切壁40の外周に、内部を冷暖房用の冷温水が流れる縦型円筒形の蒸発コイル41を配設し、その上方に冷媒液散布具42を取り付けてなる。蒸発器4の底部43は、暖房用電磁弁V1 を有する暖房用吸収液流路L4 により高温再生器1の筒状加熱部113と連通している。
【0026】
冷媒液散布具42は、冷房運転時に使用され、冷媒液を蒸発コイル41の上に滴下させる。滴下された冷媒は、表面張力で蒸発コイル41の表面を濡らして膜状となり重力の作用で下方に降下しながら、低圧となっている蒸発・吸収ケース30内で蒸発コイル41から気化熱を奪って蒸発し、蒸発コイル41内を流れる冷暖房用の冷温水を冷却する。
【0027】
凝縮器5は、冷房運転時に使用され、凝縮器ケース50の内部に、内部を冷却塔CTで冷却された排熱用冷却水が循環している冷却コイル51を配設してなる。凝縮器ケース50は、冷媒流路L5 により冷媒回収タンク10の底部14と連通するとともに、冷媒蒸気出口5Aを介して低温再生器2と連通しており、いずれも圧力差により冷媒が供給される。
【0028】
凝縮器ケース50に供給された冷媒は、冷却コイル51により冷却されて液化する。凝縮器5の下部と蒸発器4の蒸発コイル41の上方に設置された冷媒液散布具42とは、冷媒液供給路L6 で連通している。液化した冷媒液は、冷媒液供給路L6 に設けられた冷媒冷却器52を経て冷媒液散布具42に供給される。
【0029】
この実施例では、冷却コイル31は冷却コイル51に接続し、さらに冷却塔CTと冷却水流路34で接続してある。冷却水流路34には、冷却水ポンプP2 が装着され、冷却コイル31および冷却コイル51で吸熱して高温となった冷却水が、冷却塔CTに供給されて大気中に放熱して低温度になる排熱サイクルを形成している。
【0030】
冷房運転時には、冷却水ポンプP2 により冷却水が、冷却塔CT→冷却コイル31→冷却コイル51→冷却塔CTの順に循環している。なお、吸収液は、高温再生器1→低温再生器2→吸収器3→吸収液ポンプP1 →高温再生器1の順に循環する。
【0031】
室内機200は、空調熱交換器44、およびブロワ45を有する。蒸発コイル41の両端は、ゴムホース等で形成された冷温水流路46で空調熱交換器44に連結されている。冷温水流路46には、冷温水ポンプP3 が設けられており、空調熱交換器44に冷温水を循環させる。
【0032】
暖房運転時は、暖房用電磁弁V1 を開弁し、吸収液ポンプP1 を作動させる。高温度の中濃度吸収液は蒸発器4に底43から流入する。蒸発コイル41内の冷温水は、加熱されて冷温水ポンプP3 により冷温水流路46で室内機200内の空調熱交換器44に供給され、暖房の熱源となる。蒸発器4内の中濃度吸収液は、仕切壁40の連通口から吸収器3側に入り、低濃度吸収液流路L3 を経て、吸収液ポンプP1 により加熱タンク11へ戻される。
【0033】
使用者が空調を停止するため、室内機200のオン・オフスイッチにより作動停止操作をすると、吸収式冷凍装置100は、室内機200の作動停止後も一定時間の間、吸収液の晶析防止のための希釈運転が必要であり、そのためガスバーナBの燃焼を停止したのち吸収液ポンプP1 および冷却水ポンプP2 は前記希釈運転の終了後に停止する。
【0034】
以上の構成からなる吸収式冷凍装置100において、ガスバーナBが燃焼すると、その燃焼ガスにより加熱タンク11の包囲壁状容器部110内の吸収液が加熱され、吸収液サーミスタ(図示なし)によって検知される吸収液温度が100℃に達すると、吸収液ポンプP1 の駆動が開始され、吸収器3から加熱タンク11内へ低濃度吸収液が供給される。
【0035】
加熱タンク11内では、低濃度吸収液は、包囲壁状容器部110のみでなく、天井容器部112及び筒状加熱部113を移動する間、筒状加熱部113の内壁及び吸熱フィン113aを介してガスバーナBの燃焼ガスと熱交換が行われて加熱され、加熱された吸収液から冷媒蒸気が分離される。他方、冷媒蒸気が分離されて濃化した中濃度吸収液は、筒状加熱部113の外壁上端を乗り越えて、中濃度吸収液分離筒12の内側の吸収液室115に移動し、中濃度吸収液流路L1 を通って熱交換器Hを介して低温再生器2へ供給される。
低濃度吸収液から分離された冷媒蒸気は、冷媒回収タンク10内で、冷媒回収タンク10の外壁に潜熱を奪われて凝縮し中濃度吸収液分離筒12の外側の底部14を経て、冷媒流路L5 を通って凝縮器5へ供給される。
【0036】
低温再生器2へ供給された中濃度吸収液は、中濃度吸収液供給室201内で、高温再生器1で熱交換して吸熱された後に排気筒114を通過するガスバーナBの燃焼ガスの顕熱と、冷媒回収タンク10内の潜熱とによって排気筒114及び冷媒回収タンク10の外壁を介して再加熱されて、冷媒蒸気を分離する。分離された冷媒蒸気は、冷媒蒸気出口5Aを通って、凝縮器5へ供給される。
低温再生器2内で冷媒蒸気が分離されて濃化した高濃度吸収液は、高濃度吸収液受け部23に貯留され、高濃度吸収液流路L2 を通って吸収器3の高濃度吸収液散布具32へ供給される。
【0037】
凝縮器5では、冷媒蒸気が冷却されて液化し、蒸発器4へ供給される。蒸発器4では冷媒液の蒸発時に蒸発コイル41の冷温水から熱を奪い、温度低下した冷温水は冷却源となる。蒸発器4と吸収器3とは連通しており、吸収器3では、高濃度吸収液が供給されると、蒸発器4で蒸発した冷媒蒸気を吸収して、低濃度吸収液となり、吸収液ポンプP1 によって高温再生器1へ戻され、以下、この循環を繰り返す。
【0038】
このように、本実施例では、ガスバーナBの燃焼ガスは、高温再生器1の加熱タンク11内の低濃度吸収液を加熱するばかりでなく、排気筒114を通過する際に、低温再生器2内の中濃度吸収液を加熱する加熱源として作用する。従って、ガスバーナBの燃焼ガスの熱は、高温再生器1を加熱するのみでなく、高温再生器1を加熱した後の燃焼ガスが排出される排気筒114を内側に挿通させた低温再生器2でも燃焼ガスの熱が再利用されるため、高温再生器1および低温再生器2による総合的な吸熱の効率がよい。
【0039】
また、高温再生器1は筒状加熱部113でも吸熱するため、熱交換面積が広くなり、包囲壁状容器部110における熱吸収による負担が軽減され、熱疲労、高温腐食に対する耐久性が向上する。
この結果、包囲壁状容器部110の耐久性向上のための負担を増加させることなく、熱吸収の効率を向上させることができる。
【0040】
また、低温再生器2は、排気筒114を通過するガスバーナBの燃焼ガスの顕熱と、高温再生器1の冷媒回収タンク10内の冷媒蒸気の潜熱も利用して複数の加熱源としているため、低温再生器2における吸熱に余裕があり、吸熱構造の設計の自由度が増し、安価な装置とすることができる。
尚、低温再生器2の中濃度吸収液供給室201内を挿通する排気筒114内にも、吸熱フィンを設けると、燃焼ガスの顕熱吸収量が増えて、更に、効率が向上する。
【0041】
図3に本発明の変形例を示す。この変形例では、排気筒114を高温再生器1に貫通させておらず、高温再生器1に対して加熱を行って、高温再生器1の外側に回り出た後の燃焼ガスを、低温再生器2内に挿通させた排気筒114を利用し排出させている。従って、この変形例では、高温再生器1における熱疲労に対する耐久性は向上しないが、熱交換の効率は、上記実施例と同様に向上する。
【0042】
上記実施例では、なお、加熱源としては、ガスバーナBの代わりに石油バーナや電熱ヒータなど他の熱源が使用できる。
【図面の簡単な説明】
【図1】吸収式冷凍装置を用いた冷暖房装置の概念図である。
【図2】吸収式冷凍装置のガスバーナおよび加熱タンクを示す部分断面図である。
【図3】吸収式冷凍装置のガスバーナおよび加熱タンクの変形例を示す部分断面図である。
【図4】従来の吸収式冷凍装置を用いた冷暖房装置の概念図である。
【符号の説明】
100 吸収式冷凍装置
B ガスバーナ(加熱手段)
1 高温再生器(再生器)
10 冷媒回収タンク
11 加熱タンク(加熱手段)
110 包囲壁状容器部
110a 内壁
110b 外壁
110c 底壁
111 燃焼ガス排出口(排出口)
112 天井容器部
113 筒状加熱部
114 排気筒(被加熱気体排出通路)
2 低温再生器(再生器)
3 吸収器
4 蒸発器
P1 吸収液ポンプ
L3 低濃度吸収液流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigeration apparatus in which an absorption cycle is formed using an aqueous solution such as lithium bromide as an absorption liquid, and in particular, a regenerator heated by a heating means includes a high-temperature regenerator and a low temperature utilizing the latent heat of the vapor. The present invention relates to an absorption refrigeration apparatus constituting a double effect type regenerator composed of a regenerator.
[0002]
[Prior art]
Conventionally, for example, in an absorption type air conditioner using the absorption type air conditioner 100 shown in FIG. 4, in an absorption cycle in which the high temperature regenerator 1 is heated and the absorption liquid pump P1 is operated, cold / hot water piping ( The water cooled by the evaporation coil 41) is used as a cooling source and supplied to the indoor heat exchanger (air conditioning heat exchanger 44) of the indoor unit 200 and provided in the indoor heat exchanger (air conditioning heat exchanger 44). The convection fan (blower 45) is operated to cool the room. Further, the absorbent pump 1 is operated in a state where the evaporator 4 is communicated with the high-temperature regenerator 1 by the heating absorbent flow path L4, and the high-temperature absorbent liquid heated by the high-temperature regenerator 1 is supplied to the evaporator 4. By supplying water, water is heated by a cold / hot water pipe (evaporation coil 41) in the evaporator 4 to be used as a heating source, and is similarly supplied to an indoor heat exchanger (air conditioner heat exchanger 44) to perform a heating operation. .
[0003]
In the absorption type air conditioner 100 configured as described above, in order to efficiently absorb the heat generated by the heating means such as the gas burner B for heating the high temperature regenerator 1, as shown in FIG. A heating tank 11 which is a heated portion of the regenerator 1 is formed in a substantially inverted shape formed so as to cover the combustion flame of the gas burner B, and a refrigerant recovery tank 10 for recovering the refrigerant vapor generated in the high temperature regenerator 1 A low-temperature regenerator 2 is formed outside the medium, and the medium concentration absorption liquid from which the refrigerant vapor has been separated by the high-temperature regenerator 1 is heated again using the latent heat of the refrigerant vapor in the high-temperature regenerator 1 to further generate the refrigerant vapor. A double-effect regenerator that is separated is used.
Here, in order to efficiently absorb the heat of the heating means such as a gas burner that generates a high temperature, a heat absorbing fin is provided in the heated portion of the high temperature regenerator.
[0004]
[Problems to be solved by the invention]
In the conventional absorption refrigeration system configured as described above, the heat absorption efficiency is limited because the heat of the heating means such as a gas burner that generates a high temperature is absorbed only by the high temperature regenerator.
[0005]
An object of the present invention is to improve heat absorption in a regenerator.
[0006]
[Means for Solving the Problems]
According to claim 1 of the present invention, in the regenerator is heated by the heating means to separate the low concentration absorption solution in the high concentration absorbent solution and the refrigerant, in the evaporator, the cold water as the air-conditioning heat-transfer medium inside flows evaporation the cold water with evaporated by spraying the refrigerant liquid is cooled in the coil, in the absorber, while being connected to the cooling tower, the high concentration absorption solution to be cooled coil flow of cooling water for heat removal inside sprayed by absorbing the evaporated refrigerant in the absorption refrigerating apparatus to return the low concentration absorption solution which has absorbed to a low concentration of the refrigerant in the regenerator by absorbing liquid pump provided in a low concentration absorption solution flow path, The regenerator is a high-temperature regenerator that heats the low-concentration absorbing liquid by the heat of the heated gas heated by the heating means and separates it into a medium-concentrated absorbing liquid and refrigerant vapor, and heat exchange is performed in the high-temperature regenerator. After the heat absorption Heated air discharge passage for discharging the heated gas is inserted therein, to heat the concentration absorption solution in which has been separated in the high temperature generator by the of the heated gas heat passing the heated gas discharge passage And a low-temperature regenerator that separates into a high-concentration absorbing liquid and refrigerant vapor ,
The heating means surrounds the gas to be heated and is surrounded by an inner wall, an outer wall, and a bottom wall, and is formed in a hollow shape from the upper edge of the inner wall and the outer wall toward the center. In a substantially reverse funnel shape by a ceiling container portion formed at the center thereof and forming a discharge port through which the heated gas passes, and a cylindrical heating portion extending upward from the ceiling container portion. The heated gas discharge passage is configured as an exhaust pipe that is surrounded by the cylindrical heating section and communicates with the discharge port of the ceiling container section at a central portion in the cylindrical heating section. To do.
[0007]
In Claim 2, in Claim 1, the low temperature regenerator is provided outside a refrigerant recovery tank for recovering refrigerant vapor generated in the high temperature regenerator, and the latent heat of the refrigerant vapor generated in the high temperature regenerator It is characterized by using both sensible heat of the heated gas as a heating source.
A third aspect of the present invention is characterized in that, in the first and second aspects, the heating means is a gas burner that burns gas as fuel, and the heated gas is a combustion gas of the gas burner.
[0008]
[Operation and effect of the invention]
In this absorption refrigeration system, when the high-temperature regenerator is heated by the heated gas from the heating means, the refrigerant vapor is separated from the low-concentration absorbent in the high-temperature regenerator, and the low-concentration absorbent is concentrated. It becomes a concentration absorbing solution, and the medium concentration absorbing solution is supplied to the low temperature regenerator.
In the low temperature regenerator, there is inserted a heated gas discharge passage for discharging the heated gas after heat is absorbed by heat exchange in the high temperature regenerator, and the heated gas is passed through the heated gas discharge passage. When passing, the medium concentration absorbing liquid supplied to the low-temperature regenerator through the wall of the heated gas discharge passage is heated by the heat of the heated gas, and the refrigerant vapor is separated from the medium concentration absorbing liquid. It becomes.
[0009]
The refrigerant vapor separated by the high-temperature regenerator and the low-temperature regenerator is supplied to the condenser, and the high-concentration absorbing liquid concentrated by the low-temperature regenerator is supplied to the absorber. In the condenser, the refrigerant vapor is cooled and liquefied, supplied to the evaporator, takes heat during evaporation, and becomes a cooling source. The evaporator and the absorber communicate with each other. When the high-concentration absorbing liquid is supplied to the absorber, the refrigerant vapor that has evaporated in the evaporator is absorbed and becomes a low-concentration absorbing liquid. Return to the vessel and repeat this cycle.
[0010]
In the present invention, the heated gas from the heating means, not only to heat the high temperature regenerator, as the heated gas discharge passage discharge tube for discharging the heated gas after being heat absorption by heat exchange with the high temperature regenerator even at a low temperature regenerator is inserted therein, since the heated gas heat is reused, the better the heat absorption efficiency becomes possible overall heat utilization by the high-temperature regenerator and the low temperature generator.
At this time, the high-temperature regenerator also absorbs heat from the cylindrical heating part, so the overall heat exchange area is widened, the burden due to heat absorption in the surrounding wall-like container part is reduced, and durability against thermal fatigue and hot corrosion Can be improved.
[0011]
In claim 2, the low-temperature regenerator is not only sensible heat of the heated gas after being heated by the heating means and heat-exchanged and absorbed by the high-temperature regenerator, but also the refrigerant vapor in the refrigerant recovery tank of the high-temperature regenerator. Since a plurality of heating sources are also used by using latent heat, there is a sufficient heat absorption capability in the low-temperature regenerator, the degree of freedom in designing the heat absorption structure is increased, and an inexpensive apparatus can be obtained.
[0012]
In claim 3, the gas burner is used as the heating means. In a gas burner, high-temperature combustion gas is generated with combustion, and when this combustion gas passes through a heated gas discharge passage inserted into the low-temperature regenerator after heat is exchanged by the high-temperature regenerator. In addition, since the heat of the combustion gas is absorbed again, the heat generated by the gas burner can be absorbed efficiently.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an air conditioner, which includes an absorption refrigeration apparatus 100 including a refrigerator main body 101 and a cooling tower (cooling tower) CT as an outdoor unit, and an indoor unit 200 attached thereto. This air conditioner is controlled by the control device 300.
[0014]
The refrigerator main body 101 includes a double effect type regenerator composed of a high temperature regenerator 1 and a low temperature regenerator 2, and a gas burner B as a heating means is disposed below the high temperature regenerator 1. An absorber 3 and an evaporator 4 are provided on the outer periphery of the low-temperature regenerator 2, and a condenser 5 is installed above the evaporator 4.
[0015]
In the high-temperature regenerator 1, the heating tank 11 heated by the combustion gas of the gas burner B to boil the low-concentration absorbing liquid therein has an inner wall 110 a and an outer wall so as to surround the combustion flame of the gas burner B as shown in FIG. and 110b and the bottom wall 110c and surrounding wall shaped container 110 which is hollow formed by formed to be hollow and extending toward the center from the upper edge of the inner wall 110a and outer wall 110b, generated by the gas burner B to the center A substantially reverse funnel comprising a ceiling vessel portion 112 in which a combustion gas discharge port 111 for allowing the combustion gas to pass as a heated gas is formed, and a cylindrical heating portion 113 extending upward from the ceiling vessel portion 112. An exhaust cylinder 114 that communicates with the combustion gas discharge port 111 is disposed upward in the center of the cylindrical heating unit 113.
[0016]
A medium concentration for forming an absorbing liquid chamber 115 for receiving the medium concentration absorbing liquid from which refrigerant vapor (water vapor) is separated when the heated low concentration absorbing liquid overflows to the outside on the outside of the cylindrical heating unit 113. An absorbing liquid separation cylinder 12 is provided. Further, a vertical cylindrical airtight refrigerant recovery tank 10 for recovering refrigerant vapor is provided on the outer periphery of the intermediate concentration absorbing liquid separation cylinder 12.
[0017]
In the upper part of the surrounding wall-like container part 110 of the heating tank 11, a low-concentration absorption liquid flow path L3 connected to the absorber 3 described later is provided so as to penetrate the tip of the low-concentration absorption liquid flow path L3. An opening is formed in the lower part of the surrounding wall-shaped container part 110.
[0018]
Accordingly, the low concentration absorbent supplied from the absorber 3 through the low concentration absorbent flow path L3 to which the absorbent pump P1 is attached flows out into the heating tank 11 at the lower part of the surrounding wall-like container 110. When moving from the lower part to the upper part of the surrounding wall-like container part 110, heat is exchanged with the combustion gas of the gas burner B, and while the ceiling container part 112 and the cylindrical heating part 113 are raised, It will be heated by the combustion gas passing through.
[0019]
The low-temperature regenerator 2 has a vertical cylindrical low-temperature regenerator case 20 that is eccentrically installed above and around the refrigerant recovery tank 10 and through which the exhaust pipe 114 passes. The low-temperature regenerator case 20 is provided with a refrigerant vapor outlet 5A on the ceiling and in the middle-concentrated absorbent supply chamber 201 provided to surround the outside of the top exhaust cylinder 114, and the bottom of the medium-concentrated absorbent separation cylinder 12 The intermediate concentration absorbing liquid flow path L1 connected to the absorption liquid chamber 115 of the medium concentration opening is opened, and the intermediate concentration absorbing liquid supplied from the intermediate concentration absorbing liquid flow path L1 is provided at the lower end of the intermediate concentration absorbing liquid supply chamber 201. The refrigerant is dropped to the outside of the refrigerant recovery tank 10 through the absorption liquid outlet 21.
Therefore, the medium concentration absorbent supplied into the medium concentration absorbent supply chamber 201 is the sensible heat of the combustion gas transferred through the exhaust tube 114 and the refrigerant vapor transferred through the outer wall of the refrigerant recovery tank 10. It is reheated using both latent heat as a heating source.
[0020]
In the low-temperature regenerator case 20, the medium-concentration absorbing liquid is supplied via the heat exchanger H due to a pressure difference from the medium-concentrating absorbent separating cylinder 12 in the high-temperature regenerator 1, and the low-temperature regenerator 2 As described above, the medium-concentration absorbing liquid is heated through the outer walls of the refrigerant recovery tank 10 and the exhaust pipe 114 to be boiled again to separate the refrigerant vapor to obtain a high-concentration absorbing liquid.
[0021]
On the outer periphery of the low temperature regenerator case 20, a vertical cylindrical airtight evaporation / absorption case 30 is concentrically arranged. The evaporation / absorption case 30 extends upward, and the upper part is a condenser case 50. ing.
[0022]
The refrigerant recovery tank 10, the low temperature regenerator case 20, and the evaporation / absorption case 30 are integrally welded to the bottom plate 13 to form a refrigerator main body 101. The upper part of the low-temperature regenerator case 20 serves as a gas-liquid separator 22 and communicates with the inside of the condenser case 50 via the refrigerant vapor outlet 5A.
[0023]
In the absorber 3, a cooling coil 31 wound in a vertical cylindrical shape is disposed in an inner portion of the evaporation / absorption case 30, and a high concentration for spraying a high concentration absorbent onto the cooling coil 31 is disposed above the cooling coil 31. The absorbent dispersion tool 32 is attached. The absorber 3 is used during the cooling operation, and the cooling water for exhaust heat cooled by the cooling tower CT is circulated in the cooling coil 31.
[0024]
The high-concentration absorbent receiving part 23 of the low-temperature regenerator 2 is connected to the high-concentration absorbent spreader 32 through the heat exchanger H through the high-concentration absorbent flow path L2. The high-concentration absorbing liquid spreader 32 flows in the high-concentration absorbing liquid. The inflowing high-concentration absorbing liquid is sprayed on the upper end of the cooling coil 31 and adheres to the surface of the cooling coil 31 to form a film. It flows down by the action. The bottom 33 of the absorber 3 and the surrounding wall container 110 of the heating tank 11 are connected by a low-concentration absorbing liquid flow path L3 in which a heat exchanger H and an absorbing liquid pump P1 are mounted.
[0025]
In the evaporator 4, a vertical partition wall 40 with a communication port is provided on the outer periphery of the cooling coil 31 in the evaporation / absorption case 30, and cold / warm water for cooling / heating flows through the outer periphery of the partition wall 40. A vertical cylindrical evaporation coil 41 is disposed, and a refrigerant liquid spreader 42 is attached above the evaporation coil 41. The bottom 43 of the evaporator 4 communicates with the cylindrical heating section 113 of the high-temperature regenerator 1 through a heating absorbent flow path L4 having a heating electromagnetic valve V1.
[0026]
The refrigerant liquid spreader 42 is used during the cooling operation, and drops the refrigerant liquid onto the evaporation coil 41. The dropped refrigerant wets the surface of the evaporation coil 41 with the surface tension, becomes a film, and descends downward due to the action of gravity, while taking the heat of vaporization from the evaporation coil 41 in the evaporation / absorption case 30 having a low pressure. The hot and cold water for cooling and heating flowing through the evaporation coil 41 is cooled.
[0027]
The condenser 5 is used during the cooling operation, and includes a cooling coil 51 in which the exhaust heat cooling water cooled by the cooling tower CT is circulated inside the condenser case 50. The condenser case 50 communicates with the bottom portion 14 of the refrigerant recovery tank 10 through the refrigerant flow path L5, and also communicates with the low temperature regenerator 2 through the refrigerant vapor outlet 5A. .
[0028]
The refrigerant supplied to the condenser case 50 is cooled and liquefied by the cooling coil 51. The lower part of the condenser 5 and the refrigerant liquid spreader 42 installed above the evaporation coil 41 of the evaporator 4 communicate with each other through a refrigerant liquid supply path L6. The liquefied refrigerant liquid is supplied to the refrigerant liquid spreader 42 through the refrigerant cooler 52 provided in the refrigerant liquid supply path L6.
[0029]
In this embodiment, the cooling coil 31 is connected to the cooling coil 51, and further connected to the cooling tower CT via the cooling water flow path 34. A cooling water pump P2 is installed in the cooling water flow path 34, and the cooling water that has absorbed heat by the cooling coil 31 and the cooling coil 51 is supplied to the cooling tower CT and dissipates heat to the atmosphere to lower the temperature. An exhaust heat cycle is formed.
[0030]
During the cooling operation, the cooling water is circulated by the cooling water pump P2 in the order of the cooling tower CT → the cooling coil 31 → the cooling coil 51 → the cooling tower CT. The absorption liquid circulates in the order of the high temperature regenerator 1 → the low temperature regenerator 2 → the absorber 3 → the absorption liquid pump P 1 → the high temperature regenerator 1.
[0031]
The indoor unit 200 includes an air conditioning heat exchanger 44 and a blower 45. Both ends of the evaporation coil 41 are connected to the air conditioning heat exchanger 44 by a cold / hot water flow path 46 formed by a rubber hose or the like. The cold / hot water flow path 46 is provided with a cold / hot water pump P 3 for circulating cold / hot water through the air conditioning heat exchanger 44.
[0032]
During the heating operation, the heating solenoid valve V1 is opened and the absorbing liquid pump P1 is operated. The high-temperature medium-concentration absorbing liquid flows into the evaporator 4 from the bottom 43. The cold / hot water in the evaporation coil 41 is heated and supplied to the air-conditioning heat exchanger 44 in the indoor unit 200 through the cold / hot water flow path 46 by the cold / hot water pump P3 and becomes a heat source for heating. The medium concentration absorbing liquid in the evaporator 4 enters the absorber 3 through the communication port of the partition wall 40, returns to the heating tank 11 by the absorbing liquid pump P1 through the low concentration absorbing liquid flow path L3.
[0033]
If the user stops the air conditioning by operating the on / off switch of the indoor unit 200, the absorption refrigeration apparatus 100 prevents the absorption liquid from crystallizing for a certain period of time after the indoor unit 200 stops operating. Therefore, after the combustion of the gas burner B is stopped, the absorption liquid pump P1 and the cooling water pump P2 are stopped after the end of the dilution operation.
[0034]
In the absorption refrigeration apparatus 100 having the above-described configuration, when the gas burner B burns, the absorption liquid in the surrounding wall-shaped container portion 110 of the heating tank 11 is heated by the combustion gas and is detected by an absorption liquid thermistor (not shown). When the absorbing liquid temperature reaches 100 ° C., the driving of the absorbing liquid pump P 1 is started, and the low concentration absorbing liquid is supplied from the absorber 3 into the heating tank 11.
[0035]
In the heating tank 11, the low-concentration absorbing liquid moves not only through the surrounding wall-shaped container part 110 but also through the inner wall of the cylindrical heating part 113 and the heat absorption fins 113 a while moving the ceiling container part 112 and the cylindrical heating part 113. Then, heat is exchanged with the combustion gas of the gas burner B and heated, and the refrigerant vapor is separated from the heated absorbent. On the other hand, the medium-concentration absorbing liquid concentrated after the refrigerant vapor is separated moves over the upper end of the outer wall of the cylindrical heating unit 113 and moves to the absorbing liquid chamber 115 inside the medium-concentration absorbing liquid separating cylinder 12 to absorb the medium concentration. The liquid is supplied to the low-temperature regenerator 2 through the liquid flow path L1 and the heat exchanger H.
The refrigerant vapor separated from the low-concentration absorbent is condensed in the refrigerant recovery tank 10 due to its latent heat being taken away by the outer wall of the refrigerant recovery tank 10 and passing through the bottom 14 on the outer side of the medium-concentration absorbent separation cylinder 12. It is supplied to the condenser 5 through the path L5.
[0036]
The medium concentration absorbent supplied to the low temperature regenerator 2 is exposed to the combustion gas of the gas burner B that passes through the exhaust pipe 114 after being heat-exchanged in the medium concentration absorbent supply chamber 201 by heat exchange in the high temperature regenerator 1. Heat and latent heat in the refrigerant recovery tank 10 are reheated through the exhaust tube 114 and the outer wall of the refrigerant recovery tank 10 to separate the refrigerant vapor. The separated refrigerant vapor is supplied to the condenser 5 through the refrigerant vapor outlet 5A.
The high-concentration absorbing liquid that is concentrated by separating the refrigerant vapor in the low-temperature regenerator 2 is stored in the high-concentration absorbing liquid receiving portion 23, and passes through the high-concentration absorbing liquid flow path L2 to the high-concentration absorbing liquid in the absorber 3. Supplied to the spreader 32.
[0037]
In the condenser 5, the refrigerant vapor is cooled and liquefied and supplied to the evaporator 4. The evaporator 4 takes heat from the cold / hot water of the evaporation coil 41 when the refrigerant liquid evaporates, and the cold / hot water whose temperature has decreased serves as a cooling source. The evaporator 4 and the absorber 3 communicate with each other. When the high-concentration absorbing liquid is supplied to the absorber 3, the refrigerant vapor evaporated by the evaporator 4 is absorbed to become a low-concentration absorbing liquid. It is returned to the high temperature regenerator 1 by the pump P1, and this circulation is repeated thereafter.
[0038]
Thus, in this embodiment, the combustion gas of the gas burner B not only heats the low-concentration absorbent in the heating tank 11 of the high-temperature regenerator 1 but also passes through the exhaust pipe 114, so that the low-temperature regenerator 2 It acts as a heating source for heating the medium concentration absorbing solution. Therefore, the heat of the combustion gas of the gas burner B not only heats the high-temperature regenerator 1 but also the low-temperature regenerator 2 in which the exhaust pipe 114 through which the combustion gas after heating the high-temperature regenerator 1 is discharged is inserted inside. However, since the heat of the combustion gas is reused, the overall heat absorption efficiency by the high temperature regenerator 1 and the low temperature regenerator 2 is good.
[0039]
Further, since the high-temperature regenerator 1 absorbs heat also in the cylindrical heating unit 113, the heat exchange area is widened, the burden due to heat absorption in the surrounding wall-shaped container unit 110 is reduced, and durability against thermal fatigue and high-temperature corrosion is improved. .
As a result, the efficiency of heat absorption can be improved without increasing the burden for improving the durability of the surrounding wall-shaped container part 110.
[0040]
Further, the low temperature regenerator 2 uses a sensible heat of the combustion gas of the gas burner B passing through the exhaust pipe 114 and a latent heat of the refrigerant vapor in the refrigerant recovery tank 10 of the high temperature regenerator 1 as a plurality of heating sources. The heat absorption in the low-temperature regenerator 2 has a margin, the degree of freedom in designing the heat absorption structure is increased, and an inexpensive device can be obtained.
In addition, if an endothermic fin is also provided in the exhaust pipe 114 that passes through the medium-concentration absorbent supply chamber 201 in the low-temperature regenerator 2, the amount of sensible heat absorption of the combustion gas increases, and the efficiency is further improved.
[0041]
FIG. 3 shows a modification of the present invention. In this modification, the exhaust pipe 114 is not passed through the high-temperature regenerator 1, and the high-temperature regenerator 1 is heated, and the combustion gas that has flowed out of the high-temperature regenerator 1 is regenerated at a low temperature. The exhaust tube 114 inserted into the vessel 2 is used for discharge. Therefore, in this modification, the durability against thermal fatigue in the high-temperature regenerator 1 is not improved, but the efficiency of heat exchange is improved in the same manner as in the above embodiment.
[0042]
In the above embodiment, as the heating source, other heat sources such as an oil burner and an electric heater can be used instead of the gas burner B.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an air conditioning apparatus using an absorption refrigeration apparatus.
FIG. 2 is a partial cross-sectional view showing a gas burner and a heating tank of an absorption refrigeration apparatus.
FIG. 3 is a partial cross-sectional view showing a modification of the gas burner and the heating tank of the absorption refrigeration apparatus.
FIG. 4 is a conceptual diagram of a cooling / heating apparatus using a conventional absorption refrigeration apparatus.
[Explanation of symbols]
100 Absorption refrigeration equipment B Gas burner (heating means)
1 High temperature regenerator (regenerator)
10 Refrigerant recovery tank 11 Heating tank (heating means)
110 Surrounding wall container
110a inner wall
110b outer wall
110c bottom wall
111 Combustion gas discharge port (discharge port)
112 Ceiling container
113 Cylindrical heating section 114 Exhaust cylinder (heated gas discharge passage)
2 Low temperature regenerator (regenerator)
3 Absorber 4 Evaporator P1 Absorption liquid pump L3 Low concentration absorption liquid flow path

Claims (3)

加熱手段により加熱される再生器において低濃度吸収液を高濃度吸収液と冷媒とに分離し、蒸発器において、内部を空調用熱媒体としての冷温水が流れる蒸発コイルに冷媒液を散布して蒸発させるとともに前記冷温水を冷却し、吸収器において、冷却塔に連結されるとともに、内部排熱用の冷却水冷却コイルに前記高濃度吸収液を散布して前記蒸発した冷媒を吸収させ、前記冷媒を吸収して低濃度化した低濃度吸収液を低濃度吸収液流路に設けた吸収液ポンプにより前記再生器に戻す吸収冷凍装置において、
前記再生器を、
前記加熱手段により加熱された被加熱気体の熱によって低濃度吸収液を加熱して中濃度吸収液と冷媒蒸気とに分離する高温再生器と、
該高温再生器で熱交換して吸熱された後の前記被加熱気体を排出するための被加熱気体排出通路が内部に挿通され、該被加熱気体排出通路を通過する前記被加熱気体の熱によって前記高温再生器で分離された中濃度吸収液を加熱して、高濃度吸収液と冷媒蒸気とに分離する低温再生器とから構成し、
前記加熱手段を、
前記被加熱気体を取り囲むようにして、内壁、外壁および底壁とにより中空に形成された包囲壁状容器部と、
前記内壁および前記外壁の上縁から中心に向かって中空状に延設されて、その中心に前記被加熱気体を通過させる排出口を形成した天井容器部と、
前記天井容器部から上方に向かって延設された筒状加熱部とにより略逆漏斗状に構成し、
前記被加熱気体排出通路を、前記筒状加熱部内の中心部で、前記筒状加熱部に取り囲まれて前記天井容器部の前記排出口と連通した排気筒として構成したことを特徴とする吸収式冷凍装置。
In the regenerator heated by the heating means, the low-concentration absorbing liquid is separated into the high-concentration absorbing liquid and the refrigerant, and in the evaporator, the refrigerant liquid is sprayed on the evaporation coil through which the cold / warm water as the heat medium for air conditioning flows. the cold water, and cooled and evaporated, in the absorber, while being connected to the cooling tower, the refrigerant that has the evaporating by spraying the high concentration absorption solution to be cooled coil flow of cooling water for heat removal inside is absorbed, the absorption type refrigerating apparatus to return the low concentration absorption solution which has absorbed to a low concentration of the refrigerant in the regenerator by absorbing liquid pump provided in a low concentration absorption solution flow path,
The regenerator,
A high-temperature regenerator that heats the low-concentration absorbent by the heat of the heated gas heated by the heating means and separates it into a medium-concentration absorbent and refrigerant vapor;
Heated air discharge passage for discharging the heated gas after being heat absorption by heat exchange with the high temperature generator is inserted therein, the said heated gas heat passing the heated gas discharge passage wherein heating the concentration absorption solution in separated by the high temperature regenerator, and composed of a low-temperature regenerator for separating the high concentration absorption solution and refrigerant vapor,
The heating means,
An encircling wall-shaped container part formed so as to be hollow by an inner wall, an outer wall and a bottom wall so as to surround the heated gas;
A ceiling container portion that extends in a hollow shape from the upper edge of the inner wall and the outer wall toward the center, and has a discharge port through which the heated gas passes at the center,
It is configured in a substantially reverse funnel shape with a cylindrical heating part extending upward from the ceiling container part,
The absorption type characterized in that the heated gas discharge passage is configured as an exhaust pipe that is surrounded by the cylindrical heating section and communicates with the discharge port of the ceiling container section at the center in the cylindrical heating section. Refrigeration equipment.
前記低温再生器は、
前記高温再生器で生じる冷媒蒸気を回収する冷媒回収タンクの外側に設けられ、前記高温再生器で生じた冷媒蒸気の潜熱と前記被加熱気体の顕熱をともに加熱源とすることを特徴とする請求項1記載の吸収式冷凍装置。
The low temperature regenerator is
It is provided outside the refrigerant recovery tank that recovers the refrigerant vapor generated in the high temperature regenerator, and uses both the latent heat of the refrigerant vapor generated in the high temperature regenerator and the sensible heat of the heated gas as a heating source. absorption refrigerating apparatus according to claim 1.
前記加熱手段は、ガスを燃料として燃焼するガスバーナであり、前記被加熱気体は、該ガスバーナの燃焼ガスであることを特徴とする請求項1または2のいずれかに記載の吸収式冷凍装置。Said heating means is a gas burner for burning gas as fuel, the heated gas, the absorption refrigerating apparatus according to any one of claims 1 or 2, characterized in that the combustion gases of the gas burner.
JP15507898A 1998-06-03 1998-06-03 Absorption refrigeration system Expired - Fee Related JP3904726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15507898A JP3904726B2 (en) 1998-06-03 1998-06-03 Absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15507898A JP3904726B2 (en) 1998-06-03 1998-06-03 Absorption refrigeration system

Publications (2)

Publication Number Publication Date
JPH11344269A JPH11344269A (en) 1999-12-14
JP3904726B2 true JP3904726B2 (en) 2007-04-11

Family

ID=15598183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15507898A Expired - Fee Related JP3904726B2 (en) 1998-06-03 1998-06-03 Absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP3904726B2 (en)

Also Published As

Publication number Publication date
JPH11344269A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
JP2723454B2 (en) Absorption air conditioner
JP3904726B2 (en) Absorption refrigeration system
KR100679982B1 (en) Low-temperature regenerator for absorption-type water heating/cooling unit
JPH05256536A (en) Absorption refrigerating machine
JP2650654B2 (en) Absorption refrigeration cycle device
JP3790360B2 (en) Absorption refrigeration system
KR100321582B1 (en) Absorption air conditioner
JP2846583B2 (en) Absorption air conditioner
JP3113195B2 (en) Bleeding device for absorption refrigeration system
JP2618193B2 (en) Absorption refrigeration cycle device
JP3226460B2 (en) Regenerator for absorption refrigeration system
JP3988016B2 (en) Absorption refrigerator
JP3117631B2 (en) Absorption air conditioner
JP2994253B2 (en) Absorption air conditioner
JP3184072B2 (en) Air conditioner using absorption refrigeration system
JP2583579B2 (en) Absorption chiller with refrigerant circulation system for cooling and heating
JP3851837B2 (en) Waste heat recovery type absorption refrigerator
JP3660493B2 (en) Absorption refrigeration system controller
JP2746323B2 (en) Absorption air conditioner
JP4282225B2 (en) Absorption refrigerator
JP3886641B2 (en) Double-effect absorption refrigeration system
JPS60599Y2 (en) low temperature generator
JPH109707A (en) Absorption type refrigerating device
JP2898202B2 (en) Absorption cooling system
JP2994236B2 (en) Absorption air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees