JP4086505B2 - Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine - Google Patents

Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine Download PDF

Info

Publication number
JP4086505B2
JP4086505B2 JP2002008238A JP2002008238A JP4086505B2 JP 4086505 B2 JP4086505 B2 JP 4086505B2 JP 2002008238 A JP2002008238 A JP 2002008238A JP 2002008238 A JP2002008238 A JP 2002008238A JP 4086505 B2 JP4086505 B2 JP 4086505B2
Authority
JP
Japan
Prior art keywords
heat exchanger
hot water
absorber
low
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002008238A
Other languages
Japanese (ja)
Other versions
JP2003207222A (en
Inventor
邦彦 中島
雅之 古山
益臣 大田
敏央 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP2002008238A priority Critical patent/JP4086505B2/en
Publication of JP2003207222A publication Critical patent/JP2003207222A/en
Application granted granted Critical
Publication of JP4086505B2 publication Critical patent/JP4086505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多重効用吸収冷凍機・冷温水機における暖房運転法およびそのための装置に係り、詳しくは、系外に存在する低温排熱から熱エネルギを効率よく回収することによって、暖房時の温水生成能力の向上および高温再生器におけるガス燃焼量の低減を可能にした排熱等の利用に基づく暖房運転方法やその装置構造に関するものである。
【0002】
【従来の技術】
吸収冷凍機や吸収冷温水機などは、機内を循環する吸収液の濃度変化により冷水や温水を取り出すことができるようになっている。例えば二重効用形の吸収冷凍機では、その構成を図14に示すように、真空容器からなる蒸発器5と吸収器1、それらよりは圧力の高い容器の低温再生器2や凝縮器4、バーナ3Aによって例えば都市ガスを燃焼させ熱エネルギを得る高温再生器3からなっている。
【0003】
蒸発器5では、高真空下で蒸発器管5pの外面に流下された冷媒液5wによって蒸発潜熱を奪われ、蒸発器管を流れる冷水20が冷却される。吸収器1では、蒸発器5で発生した冷媒蒸気5sを吸収器管1pを流れる冷却水9wで冷却することにより、吸収液1bに吸収させると共に容器内を高い真空に保持する。低温再生器2では、高温再生器3で分離蒸発した冷媒蒸気3sを低温再生器管2pに流してその潜熱で吸収液2mを加熱濃縮し、冷媒2sを分離蒸発させる。高温再生器3では、吸収液3mを真空中で加熱濃縮して冷媒蒸気3sを発生させる。凝縮器4では、低温再生器2で蒸発した冷媒蒸気2sが凝縮器管4pを流れる冷却水9wで冷却され、凝縮液化する。なお、冷却水ポンプ9aで圧送され吸収器管1pを経て凝縮器管4pを流通した冷却水9wは、図示しない冷却塔で冷却した後に循環される。
【0004】
このような吸収冷凍機・冷温水機の運転では、冷房運転のみならず、図15に示すように、冷暖切換弁213 ,212 を開いて高温再生器3で蒸発した冷媒蒸気3sを蒸発器5へ送り、低温再生器2でも冷媒蒸気2sが発生していればそれも併せて送り、蒸発器管5pを流れる温水20を加熱すれば、暖房運転を行うこともできる。冷房・暖房のいずれの場合も、冷水または温水20の温度制御にあたって、一般に冷温水出口温度tを基にして高温再生器3における加熱量が図示しない燃料制御弁で調整される。
【0005】
ところで、上記した暖房運転では、凝縮器4において高温再生器3で発生した冷媒蒸気3sや低温再生器2で発生した冷媒蒸気2sを凝縮させる必要はなく、吸収器1においても冷媒蒸気5s(図14を参照)を吸収させる必要がない。前者については、図15中に示したショートパス管路3cが設けられることからも容易に理解できる。
【0006】
このように暖房時には、冷媒蒸気の凝縮や冷媒蒸気の吸収が必要でないのは、冷媒蒸気3s,2sをそのまま温水20の加熱に供しているからである。それゆえ、蒸発器5では冷媒蒸気が温水と熱交換して凝縮した結果生じる冷媒液5wは増える一方であり、これが冷媒溜め5rから溢れて吸収器1へ自ずと移動する。従って、吸収器の散布管1cが低温熱交換器6からの吸収液を吸収器1へ戻すために使用されはするものの、その散布は蒸発器で発生した冷媒蒸気を吸収液に吸収させようとするものでない。
【0007】
このようなことから、吸収器管1pと凝縮器管4pとに通じる冷却水配管系9に冷却水を流す必要はなく、従って暖房運転時に冷却水ポンプ9aが運転されることはない。また、図14のように蒸発器5の冷媒溜め5rから冷媒液5wを汲み上げて散布する必要もなく、冷媒ポンプ5hも運転されることがない。しかしながら、吸収液は、系内で発生した冷媒蒸気によって温水が生成される間に、冷房時と同じ濃度変化をとり同じ経路をたどって循環することに変わりがない。
【0008】
このような吸収冷凍機等においては二重効用の原理に基づき省エネ化が進められているが、その系内での熱交換効率の向上を図るため、図14に示すように、低温熱交換器6や高温熱交換器7が設置される。高温熱交換器7は高温再生器3に向かう吸収液3aを予熱するもので、その熱源として高温再生器3から導出された高温の吸収液3bが導入される。低温熱交換器6は低温再生器2に向かう吸収液1aを予熱するもので、図示の例では低温再生器2から導出された吸収液2bおよび高温熱交換器7を出た吸収液3b7 が吸収器1へ戻される途中で熱源として利用されている。
【0009】
【発明が解決しようとする課題】
ところで、最近ではビルや工場において、都市ガスを焚くことによって自家発電すると共に冷暖房することができるコージェネレーションシステムが導入されることが多くなってきている。発電設備としては都市ガスの燃焼でエンジンを駆動して発電機を回すというものであり、冷暖房設備としては上記した吸収冷凍機・冷温水機が使用される。
【0010】
両設備は都市ガスを燃料とする点で共通するのでコージェネレーションシステムとして一つに纏められるが、発電系統と冷暖房系統とは異質であるにもかかわらず一体設備とする意義は、トータルでの都市ガス消費量を低減しようとすることにある。即ち、発電設備では排熱の発生が避けられないが、これを冷房運転のみならず暖房運転においても利用できれば、冷暖房設備でのガス消費量が節減できるという考えに基づいている。
【0011】
因みに、ガスエンジンではケーシングを冷却した後の冷却水が大凡80ないし90℃となる。この程度の排熱はその量が多くても保有熱エネルギはさしたるものでなく、結局は、小規模の暖房や給湯といったものに供し得るにとどまる。ところが、吸収冷凍機・冷温水機においては吸収液の濃縮・稀釈をサイクルとする関係上、上記した低温排熱といえども吸収液の加熱や蒸発のために或る程度は寄与させることができるという点に着目されている。
【0012】
このような発電用ガスエンジンと吸収冷凍機・冷温水機とをひと纏めにしたコージェネレーションシステムにおける吸収冷凍機・冷温水機の一例が、特開平11−237136号公報に提案されている。ここで利用される排熱は、吸収冷凍機・冷温水機からみれば、その系外となる発電系統の温熱源から排出されるもので、温度の低い吸収液と接触させれば顕熱・潜熱熱交換が可能となり、排熱からの熱回収が図られることによって吸収冷凍機・冷温水機に必要となる加熱量を減らすことができるというものである。
【0013】
このように外部に存在する排熱を取り込み、これを熱源として有効利用できるようにすることは省エネの観点から望ましいことは言うまでもない。最近では、排熱の回収効率を一層高め、吸収冷凍機・冷温水機における燃料消費量を可及的に減らしてガス削減率を大きくする努力が払われており、その期待はますます高まってきている。
【0014】
ところで、上記した排熱温水を利用して省エネを図れば、同じ負荷に対しては高温再生器におけるガス消費量を低減できることになるが、系内で発生した冷媒蒸気を使用して暖房用温水を得ようとする場合、その温水温度は高々55℃であって60℃をも得るのは不可能に近い。と言うのは、排熱を利用すると言っても高温再生器3で生成される冷媒蒸気3sの保有熱エネルギが大幅に増大するわけではないし、蒸発器5へ導入される冷媒蒸気と蒸発器管5p内の温水20との熱交換の効率が上がるわけでもない。
【0015】
図16は前記公報記載の装置と少し構造を異にするところがあるが、排熱温水熱交換器8を図15の吸収冷凍機・冷温水機に導入した例である。図それ自体は図15と同じく暖房運転を表しており、排熱温水熱交換器8で発生した冷媒蒸気8sも蒸発器5に導入されている。この例においても、冷却水ポンプ9aは運転されることがない。また蒸発器5の冷媒溜め5rから冷媒液5wを汲み上げて散布する必要もなく、従って冷媒ポンプ5hも運転されない。冷媒液5wが溢れて吸収器1へ移動することも図15と同じである。
【0016】
この図16においては、排熱温水熱交換器8に供給される吸収液1aは低温熱交換器6によって予め昇温されている。この場合に、暖房能力を高めるなどの目的で温水20の取り出し温度を60℃に上げようとすると、排熱温水熱交換器8の入口における吸収液温度は90℃にも達してしまう。排熱温水熱交換器8に導入される排熱温水の温度が80ないし90℃であるから、このような場合には最早顕熱回収は不可能に近い状態となるか、甚だしい場合には逆加熱に陥ってしまう。
【0017】
冷房運転においては、排熱温水熱交換器8と連通している凝縮器4での冷却水による冷却によって飽和圧力を下げるなどして、排熱温水熱交換器8で潜熱回収することができるとしても、暖房運転では冷却水配管系9に冷却水が流れることはないから潜熱回収の条件も整わず、結局は排熱温水熱交換器による暖房運転時の省エネ効果は捗々しいものでなくなる。
【0018】
本発明は上記の事情に鑑みなされたもので、その目的は、吸収冷凍機・冷温水機の系外に存在する温熱とりわけ低温の排熱であってもこれを利用して暖房運転時でも冷媒蒸気を生成でき、低温再生器での蒸気発生負担を軽減して高温再生器におけるガス消費量を大幅に減らすことができるようにすること、加えて、蒸発器での熱交換量を増大させることができるようにして温水の取り出し温度を上昇させ、暖房能力の向上が図られるようにすることを実現した多重効用吸収冷凍機・冷温水機における暖房運転法およびそのための装置を提供することである。
【0019】
【課題を解決するための手段】
本発明は、吸収器、低温再生器、高温再生器、凝縮器、蒸発器、吸収器へ戻される吸収液が熱源として導入され吸収器から導出された吸収液を予熱する低温熱交換器、高温再生器から導出された吸収液が熱源として導入され高温再生器に向かう吸収液を予熱する高温熱交換器、系外より導入された外部生成温水と吸収器から低温熱交換器を経て導出された吸収液の全部または一部とを熱交換させる温水熱交換器が備えられた吸収冷凍機・冷温水機における暖房時の運転法に適用される。その特徴とするところは、図1を参照して、冷房時に吸収器1から導出され低温熱交換器6を経て温水熱交換器8に向かう吸収液1aを、暖房時にはその全部もしくは一部を吸収器1から直接温水熱交換器8に向かわせる。冷房時に低温熱交換器6を介して吸収器1へ戻される吸収液1bを、暖房時にはその全部もしくは一部を低温熱交換器6から蒸発器5へ供給する。この蒸発器5内の蒸発器管5pを流通する温水20を系内発生冷媒蒸気3s,8sで加熱すると共に、蒸発器5へ供給された吸収液1bを蒸発器管5pに散布して加熱する。そして、蒸発器5に吸収液1bを供給したことによって吸収器1における吸収液濃度を低下させ、これによって吸収液飽和温度を低くして温水熱交換器8における潜熱回収作用を増強させたことである。
【0020】
また、別の方法として、図3に示すように、冷房時に吸収器1から導出され低温熱交換器6を経て温水熱交換器8に向かう吸収液1aを、暖房時にはその全部もしくは一部を吸収器1から直接温水熱交換器8に向かわせる。冷房時に低温熱交換器6を通過した後吸収器1へ戻される吸収液1bを、暖房時にはその全部もしくは一部を低温熱交換器6を通過させることなく蒸発器5へ供給する。この蒸発器5内の蒸発器管5pを流通する温水20を系内発生冷媒蒸気3s,8sで加熱すると共に、蒸発器5へ供給された吸収液1bを蒸発器管5pに散布して加熱する。そして、蒸発器5に吸収液1bを供給したことによって吸収器1における吸収液濃度を低下させ、これによって吸収液飽和温度を低くして温水熱交換器8における潜熱回収作用を増強させるようにしてもよい。
【0021】
さらに、別の方法として、図4を参照して、冷房時に吸収器1から導出され低温熱交換器6を経て温水熱交換器8に向かう吸収液1aを、暖房時にも同じ経路をたどって温水熱交換器8に向かわせる。冷房時に低温熱交換器6を通過した後吸収器1へ戻される吸収液1bを、暖房時にはその全部もしくは一部を低温熱交換器6を通過させることなく蒸発器5へ供給する。この蒸発器5内の蒸発器管5pを流通する温水20を系内発生冷媒蒸気3s,8sで加熱すると共に、蒸発器5へ供給された吸収液1bを蒸発器管5pに散布して加熱する。そして、蒸発器5に吸収液1bを供給したことによって吸収器1における吸収液濃度を低下させ、これによって吸収液飽和温度を低くして温水熱交換器8における潜熱回収作用を増強させることもできる。
【0022】
外部生成温水12aは、系外に設置された都市ガスを燃料とするガスエンジン12(図3を参照)の冷却水であり、高温再生器3の加熱源も都市ガスとしておく。なお、外部生成温水はガスエンジンの排ガスで加熱された熱交換水としておいてもよいし、そのガスエンジンの排ガスが導入される排ガス熱交換器15により昇温されたガスエンジンの冷却水としておいてもよい。いずれの場合も、外部生成温水12aは83ないし95℃となっていると都合がよい。
【0023】
多重効用吸収冷凍機・冷温水機の発明は、図1のごとく、吸収器1から導出された吸収液1aを低温熱交換器6を経て温水熱交換器8に向かわせる管路に、低温熱交換器6を迂回するバイパス管路31が設けられ、低温熱交換器6を介して吸収液1bを吸収器1へ戻す管路に、蒸発器5へ向かうイクステンション管路33が接続される。
【0024】
別の装置の発明では、図3に示すように、吸収器1から導出された吸収液1aを低温熱交換器6を経て温水熱交換器8に向かわせる管路に、低温熱交換器6を迂回するバイパス管路31が設けられ、吸収器1に向かう吸収液1bを通過させる低温熱交換器6が介在されている管路に、この低温熱交換器6を通ることなく蒸発器5へ向かうブランチ管路34が設けられる。
【0025】
【発明の実施の形態】
以下に、本発明に係る多重効用吸収冷凍機・冷温水機における暖房運転法およびそのための装置を、図面を参照しつつ詳細に説明する。図2は、吸収器1,低温再生器2,高温再生器3,凝縮器4,蒸発器5,低温再生器2に向かう吸収液1aを予熱する低温熱交換器6,高温再生器3に向かう吸収液3aを予熱する高温熱交換器7を備えた二重効用吸収冷凍機・冷温水機10の構成を示す。なお、低温再生器2はプール沸騰式熱交換装置が採用され、高温再生器3で発生させた冷媒蒸気3sを加熱源として再生器管2pで受入れ、吸収液2mに埋没する再生器管の上方に冷媒蒸気2sを一時的に貯留しかつ凝縮器4へ導き出すための蒸気用空間2aが確保されている。
【0026】
その機能や作用は「従来の技術」の項で説明したとおりであり、図14と同一の符号を付してその説明を省く。なお、高温再生器3では加熱源として都市ガスをバーナ3Aによって燃焼させた熱ガスが使用され、高温再生器3で発生した冷媒蒸気3sが低温再生器2に加熱源として導入される。高温熱交換器7には高温再生器3から導出された吸収液(濃吸収液)3bが熱源として導入され、低温熱交換器6には吸収器1へ戻される吸収液1bが熱源として導入される。また、吸収器1の吸収器管1pと凝縮器4の凝縮器管4pとが連なる冷却水配管系9が設けられている点についても同じである。
【0027】
本例において、このような吸収冷凍機・冷温水機10は、その系外に83ないし95℃の排熱が存在する環境に置かれる。即ち、高温再生器3と同じく都市ガスを燃焼させて動力を得るガスエンジン(図3に小さく示されている)12が設置され、吸収冷凍機・冷温水機10の設備がそのガスエンジン12によって発電機13を駆動する発電設備と併設される場合には、そのガスエンジンを冷却した後の排熱温水が保有する熱エネルギを積極的に活用できるようにしようとするものである。なお、ガスエンジン12のところに表されている14は放熱用冷却塔であり、15は排ガス熱交換器である。
【0028】
図2に戻って、吸収冷凍機・冷温水機系には、ガスエンジン冷却水である排熱温水12aと吸収器1から低温熱交換器6を経て導出された吸収液1aとを熱交換させる排熱温水熱交換器8が、低温再生器2より高位置に設置される。本例ではこの排熱温水熱交換器8に低温再生器2と同じくプール沸騰式熱交換装置が採用され、排熱温水管8pと接触する吸収液8mから発生した冷媒蒸気8sを一時的に貯留すると共に、低温再生器2の蒸気用空間2aを介して凝縮器4へ導出することができる蒸気溜め8aが確保されている。加えて、この排熱温水熱交換器8内の吸収液8mを低温再生器2へ導出する通路8bも備えられる。因みに、本例においては、この通路8bが冷媒蒸気8sの低温再生器2への移送経路としても機能する。
【0029】
ところで、排熱温水熱交換器8の排熱温水管8pに導入される排熱温水12aは83ないし95℃であることが好ましい。例えば、ガスエンジン冷却水だけではそのような温度が得られない場合には、その冷却水をガスエンジンの300ないし600℃といった排ガスで加熱できるように排ガス熱交換器15(図3を参照)を設けておき、温度の高い排熱を熱交換水として供給できるようにしておけばよい。もちろん、エンジン冷却水にこだわることなく、排ガスと熱交換させただけの温水でもよい。要するに、吸収冷凍機・冷温水機の系外に上記した程度の温度を持った熱が温水のかたちで存在すれば、それを外部生成温水として利用することができる。
【0030】
以上述べたことまでは、先に示した図16の場合と同じである。しかし、図2の吸収冷凍機・冷温水機10には、次に述べる構成が付加されている。それは、吸収器1から導出された吸収液1aを低温熱交換器6を経て排熱温水熱交換器8に向かわせる管路に、低温熱交換器6を迂回するバイパス管路31が設けられていることである。さらに、低温熱交換器6を介して戻される吸収液1bを吸収器1に向かわせる管路32に、蒸発器5へ向かうイクステンション管路33が接続されているのである。なお、いずれの管路31,33においても冷暖切換弁として機能する切換弁31v,33vが介在される。
【0031】
このように構成しておき、図1のように冷暖切換弁31v,33vを開くと、冷房時に吸収器1から導出され低温熱交換器6を経て排熱温水熱交換器8に向かう吸収液1aを、暖房時にはその大部分を吸収器1からバイパス管路31を経て直接排熱温水熱交換器8に向かわせることができる。一方、冷房時に低温熱交換器6を介して吸収器1へ戻される吸収液1bを、暖房時にはその大部分をイクステンション管路33を介して低温熱交換器6から蒸発器5へ供給することができる。
【0032】
このようにしておけば、蒸発器5内の蒸発器管5pを流通する温水20が後述する系内発生冷媒蒸気3s,8sで加熱されることに加えて、冷媒ポンプ5hを駆動して蒸発器冷媒溜め5rの吸収液5aを蒸発器管5pに散布することにより液滴が蒸発器管の外面を流下して、その内部を流通する温水20の加熱度が冷媒蒸気を蒸発器5内に漂わすだけの場合に比べて飛躍的に向上し、例えば60℃もの温水を得て、暖房能力の増強を図ることができるようになる。
【0033】
加えて、蒸発器5に吸収液1bを供給したことによって吸収器1における吸収液濃度が低下することになり、これによって吸収液飽和温度を低くして排熱温水熱交換器8における潜熱回収作用を助長させることも可能となり、吸収冷凍機・冷温水機の暖房運転における省エネがおおいに図られる。以下に、その省エネ作用について詳しく述べる。
【0034】
暖房運転が開始されると、吸収器1から出た吸収液1aの大部分は、バイパス管路31を経て排熱温水熱交換器8に供給される。この吸収液の濃度は後述するが35ないし50%であって、図16の場合の45ないし55%よりもかなり低い。そして、この吸収液温度は低温熱交換器6を通過しないので65ないし75℃となっている。これが83ないし95℃の排熱温水を導入しているプール沸騰式熱交換型の排熱温水熱交換器8に導入されると、排熱温水からの顕熱回収がなされる。
【0035】
これと同時に、吸収液濃度が低くなっていることによって排熱温水熱交換器8における飽和温度が低下することで吸収液からの冷媒の気化が促され、冷媒蒸気8sの生成というかたちで潜熱回収がなされる。なお、低温熱交換器6へ吸収液が幾らか進入することはあっても、排熱温水熱交換器8の入口の手前で合流した吸収液温度が80℃程度までに保持できるのであれば、特に差し支えが生じることはない。
【0036】
排熱温水熱交換器8で顕熱回収した吸収液8mは71ないし87℃となり、これが通路8bを経て低温再生器2へ移行する。このとき、冷媒蒸気8sも排熱温水熱交換器8から導出され、通路8cを経て蒸発器5に供給される。熱交換された吸収液は低温再生器2で高温再生器3からの冷媒蒸気3sによって加熱され、幾らかの冷媒蒸気2sを発生させる。加熱された吸収液2mは、その一部2bが低温熱交換器6へ、残部3aが高温熱交換器7に供給される。前者は高温熱交換器7を出た次に述べる濃吸収液3b7 と共に管路32からイクステンション管路33を経て、その大部分が蒸発器5の冷媒溜め5rに、残部が散布管1cから吸収器1の吸収液溜め1rに戻される。後者は高温熱交換器7を経て高温再生器3に供給される。
【0037】
高温再生器3で加熱された吸収液からは冷媒蒸気3sが発生し、気水分離器で分離された濃吸収液3bは高温熱交換器7に送られる。この吸収液は低温再生器2からの吸収液2bと合流して吸収液1bとなり、低温熱交換器6に入る。この低温熱交換器6の出口の吸収液は100ないし110℃であり、上記したようにその大部分が蒸発器5へ送られる。
【0038】
蒸発器5においては、その蒸発器管5pの存在する空間に冷暖切換弁213 ,218 を介して冷媒蒸気3s,8sが供給され、冷暖切換弁212 を介して冷媒蒸気2sが供給される。この冷媒蒸気は例えば70℃であり、蒸発器管5p内の温水20を加熱する。一方、イクステンション管路33を通過する吸収液が冷媒溜め5rに供給されると、吸収液5aは60ないし65℃にもなる。冷媒ポンプ5hによって汲み上げられた吸収液を散布管5cから散布して、これによっても温水20が加熱され、60℃の温水を実現する。このような運転によれば、冷媒蒸気のみによる加熱の場合よりも暖房能力は増すことになる。
【0039】
蒸発器5で冷媒蒸気2s,3s,8sが温水20と熱交換して凝縮すると、それが冷媒溜め5rに溜まる。この冷媒溜めには上記したように吸収液が供給されるため、図16の場合には冷媒液5wしか存在しなかった冷媒溜め5rに、図1では吸収液が混在することになる。機内に存在する吸収液量は不変であるから、冷媒溜め5rに吸収液の一部が常時貯えられることになれば、蒸発器を除く部分に存在する吸収液の平均濃度が、蒸発器に吸収液を混在させることのない図16の場合の平均濃度の45ないし55%よりも低い、例えば35ないし50%となる。この吸収液濃度の低下によって、排熱温水熱交換器8においては、暖房時においても顕熱回収のみならず上記したごとく潜熱回収が可能となるのである。
【0040】
排熱温水熱交換器8において冷媒蒸気8sを得ることができれば、排熱温水熱交換器で熱交換された吸収液8mを低温再生器2に導くにしても、そこでの冷媒蒸気発生負担を軽減することができる。と言うことは、再生器管2pに導入される冷媒蒸気3sの供給量を減らすことができる。これは、とりもなおさず高温再生器3における冷媒蒸気3sの生成負担を低減できることを意味し、バーナ3Aによるガス燃焼量の節減が実現される。
【0041】
これをまとめると、吸収液濃度が低くなるので排熱温水を利用して潜熱回収の活性化が図られ、排熱温水の利用により高温再生器でのガス消費量を節減でき、吸収液を蒸発器に供給することによって排熱温水熱交換器を使用した場合では不可能であった暖房用の高温温水の取り出しが可能となり、一部の吸収液を蒸発器に取り残すことによって機内を循環する吸収液の濃度を全般的に低下させることができるようになるのである。このように、個々の現象が相互に牽連して相乗効果を生み出す結果となっていることが分かる。
【0042】
因みに、上の説明では蒸発器5に供給する吸収液を冷媒溜め5rに投入している。しかし、図示しないが、別途ポンプを設けるなどして低温熱交換器6からの吸収液を直接散布管5cに送り出し、これから蒸発器管5pに散布するようにしてもよい。勿論、上記した冷媒ポンプ5hによる散布を併用することも差し支えない。
【0043】
ところで、このように構成した吸収冷凍機・冷温水機において、冷暖切換弁を切り換えれば、図2のようになって、吸収器1から導出された吸収液1aの全部を低温熱交換器6から温水熱交換器8に向かわせ、低温熱交換器6を介して吸収液1bの全部を吸収器1へ戻せば冷房運転することができる。この場合、冷却水配管系9で吸収器管1pから凝縮器管4pへの流れとなるように冷却水を供給しつつ排熱温水熱交換器8での顕熱・潜熱回収を図れば、高温再生器3での加熱量を抑制することができる。
【0044】
また、その冷却水配管系9での冷却水の流れ方向を図2中に記入したごとく逆にすれば、排熱温水熱交換器8における潜熱回収の効果をより一層高めることができ、ますますガス燃焼量の低減を引き出すことができる。しかし、これは本発明の直接の目的とするところでなく、その作用効果については特願2001−374311号で詳しく述べられているので、ここではこれ以上の説明を省く。
【0045】
なお、吸収液が分岐する部分での分流比率は、それ以後の管路や弁体における管摩擦等によって決まるので、冷暖切換弁はオン・オフ弁としてもよいが、流量調整弁を採用するなどして分流量を適宜変更できるようにしておいてもよい。例えば、暖房運転中にバイパス管路31を通過する吸収液の温度が予定温度範囲から低く外れたりすると、高温再生器3の排ガス温度が低下して煙道で結露する事態が生じる。これによる炭酸腐食や硫酸腐食を避けるために、冷暖切換弁31vの開度を絞ってバイパス管路31を流通する吸収液量を減らすということもできるようになる。
【0046】
ところで、図2においては、排熱温水熱交換器8が吸収液8mに浸漬する排熱温水管8pの上方に蒸気溜め8aが確保されたプール沸騰式であると説明した。しかし、それに限らず、排熱温水熱交換器は、蒸発器5や吸収器1と同様に、流下液膜式の構造となっていてもよい。即ち、吸収液が散布される排熱温水管と蒸気溜めとがほぼ同一空間を占めるものでも、その機能はプール沸騰式と何ら異なるものでない。
【0047】
上記した排熱温水熱交換器8は、低温再生器2より是非上方に位置しなければならないというものでもない。例えば図3に示すように、ポンプ16を設けるならば、排熱温水熱交換器8を低温再生器2よりも下方に設置させることも差し支えない。ポンプ16の介在される通路8dには吸収液8mだけが流れることになるので、生成された冷媒蒸気8sを低温再生器2へ送るための蒸気通路8eが新たに必要となる。なお、通路8dと通路8eの二つが低温再生器2に向けて設けられるとしてもよいが、通路8b(図1を参照)のように通路8dと通路8eとの共通化が図れないことを考慮すれば、通路8eに代えて直接凝縮器4へ移行させるための通路8fを設けるようにしてもよい。
【0048】
因みに、図3は図1と表記法が異なっているが、排熱温水熱交換器8の位置と次に説明する事項を除いて図1と何ら変わるものでなく、その図と同様にリバースフロータイプの吸収冷凍機・冷温水機である。この図3には、吸収器1に向かう吸収液を通過させる低温熱交換器6が介在されている管路に、その低温熱交換器を通ることなく蒸発器5へ向かうブランチ管路34が設けられている。即ち、一点鎖線で示したように、図1では低温熱交換器6を通過した吸収液をイクステンション管路33を介して蒸発器5に送っているのであるが、図3ではそれに代わるブランチ管路34が備えられ、これを通して吸収液1bを冷媒溜め5rもしくは図示しないが直接散布管5cに送るようにしている。
【0049】
このようにしておけば、冷房時に吸収器1から導出され低温熱交換器6を経て排熱温水熱交換器8に向かう吸収液を、暖房時にはその全部もしくは一部を吸収器1から直接排熱温水熱交換器8に向かわせ、その一方で、冷房時に低温熱交換器6を通過した後吸収器1へ戻される吸収液を、暖房時にはその全部もしくは一部を低温熱交換器6を通過させることなく蒸発器5へ供給することができる。そして、蒸発器内の蒸発器管5pを流通する温水20を主として系内発生冷媒蒸気3s,8sで加熱すると共に、蒸発器5へ供給された吸収液を蒸発器管5pに散布して加熱し、蒸発器に吸収液を供給したことによって吸収器1における吸収液濃度を低下させ、これによって吸収液飽和温度を低くして排熱温水熱交換器8における潜熱回収作用を増強させることができるようになる。
【0050】
図4は、上記したバイパス管路を設けない例である。この場合、本発明の思想である吸収器1を出た吸収液1aをそのままの温度で排熱温水熱交換器8に供給することを実現しようとすれば、低温熱交換器6を通過する吸収液1aに熱を与えないように、冷房時に低温熱交換器6を通過した後吸収器1へ戻される吸収液1bを、暖房時にはその全部もしくは一部を低温熱交換器6を通過させることなく蒸発器5へ供給するようにすればよい。即ち、図3中に示した管路34と同じブランチ管路34Aを設けておけばよい。
【0051】
吸収器1へ戻される吸収液1bの大部分が、低温熱交換器6を通ることなく蒸発器5へ向かうことになり、暖房時も吸収器1から導出された吸収液を低温熱交換器6を経て排熱温水熱交換器8へ向かわせるにもかかわらず、蒸発器内の蒸発器管5pを流通する温水20を系内発生冷媒蒸気3s,8sで加熱すると共に、蒸発器5へ供給された吸収液を蒸発器管5pに散布して、高い温度の暖房用温水を得ることができる。勿論、蒸発器5に吸収液を供給したことによって吸収器1における吸収液濃度が低下し、これによって吸収液飽和温度が低くなって排熱温水熱交換器8における潜熱回収作用を増強させることができる。図5は図4の構造の場合の冷房運転を、参考までに記したものである。
【0052】
図6は、本発明をパラレルフロータイプの吸収冷凍機・冷温水機に適用した例である。図において、排熱温水熱交換器8を低温再生器2より下方に置いた例のみを示し、図1のように排熱温水熱交換器8を高い位置に設置した例は表されていない。これにはバイパス管路31と共にイクステンション管路33が設けられており、この部分について言えば図1に相当する構成を持つパラレルフロータイプの吸収冷凍機・冷温水機となっている。
【0053】
このパラレルフロータイプにおいては、暖房時に低温熱交換器6を迂回した吸収液1aが、その一部を排熱温水熱交換器8を介して低温再生器2へ、残部を高温熱交換器7を介して高温再生器3へと、両方の再生器に並行して流されるようになっている。勿論のことであるが、排熱温水熱交換器8は低温再生器2での冷媒蒸気生成を軽減することを目的としているので、低温再生器2に向かう経路に設置されているのである。その点についても図1や図3と異なるものでないが、ここでは図3に対応する管路構成(ブランチ管路34)を示すことは割愛する。図7は図6と異なり排熱温水熱交換器8や高温熱交換器7に向かう吸収液1aを低温熱交換器6に通すようにしたもので、これに図4の思想を適用にして、ブランチ管路34Aが設けられた例となっている。
【0054】
図8は低温熱交換器6を迂回した吸収液1aが排熱温水熱交換器8に送られ、排熱温水熱交換器8から出た吸収液8mが低温再生器2と高温熱交換器7へ移行させるようにした例であるが、趣旨は図6と同じでバイパス管路31と共にイクステンション管路33が設けられている。図9は図8と同じ構成のパラレルフロータイプであるがバイパス管路は設けられず、ブランチ管路34Aのみが設けられた図4の思想が適用されている。
【0055】
図10は低温熱交換器6を迂回した吸収液1aが排熱温水熱交換器8と高温熱交換器7に送られ、排熱温水熱交換器8から出た吸収液8mが低温再生器2と高温熱交換器7へ移行させるようにした例である。趣旨は図6と同じでバイパス管路31と共にイクステンション管路33が設けられる。図11は図10と同じ構成のパラレルフロータイプであるがバイパス管路は設けられず、ブランチ管路34Aのみが設けられた図4の思想が適用されている。
【0056】
図12は排熱温水熱交換器8から低温再生器2へ吸収液を送らず、低温再生器2へは高温再生器3から高温熱交換器7を通過した吸収液3bのみが供給されるようになっているシリーズフロータイプの吸収冷凍機・冷温水機の例である。この場合でも排熱温水熱交換器8で冷媒蒸気8sを生成し、それによって低温再生器2での冷媒蒸気生成量を軽減している。趣旨は図6と同じでバイパス管路31と共にイクステンション管路33が設けられている。図13は図12と同じ構成のシリーズフロータイプであるがバイパス管路は設けられず、ブランチ管路34Aのみが設けられた図4の思想が適用されたものである。
【0057】
以上の種々な吸収冷凍機・冷温水機に適用した例を述べたが、それぞれの二重効用形に限らず、中間再生器といったものを備えた三重効用形に対しても適用することができるのは、その思想上明らかである。また、ジェネリンクを前提にした例を用いたが、ガスエンジンの排熱温水に限らず、上記した温度範囲にある利用されないような温水が存在すれば、それを使用することができる。その場合、排熱温水熱交換器は温水熱交換器と称するものであればよいことは述べるまでもない。
【0058】
ついでながら述べれば、冷房運転時には吸収液の平均濃度を、暖房時に意図的に低下させたそれより高くしておかなければならない。例えば冷房運転に入る季節当初に別途設けた弁を開いて冷媒溜めの吸収液を抜くといった作業をしてもよいが、その時期に冷房慣らし運転時間を確保するなら、その間に冷媒ポンプを止めておくことによって、徐々に冷媒溜めの吸収液を冷媒液に置き換えることができる。
【0059】
【発明の効果】
本発明によれば、吸収器に戻される吸収液の全部もしくは一部を蒸発器に供給するようにしたので、温水熱交換器を使用した場合では不可能であった暖房用の高温温水の取り出しが可能となる。それのみならず、吸収液の一部を蒸発器に滞留させることにより系内で循環する吸収液の濃度を全体的に低くでき、飽和温度の低下を導き外部生成温水を利用した潜熱回収が促進される。一方、温水熱交換器に向かう吸収液は低温再生器で予熱されていないかされても僅かであることから、温水熱交換器に低い温度の吸収液を導入することができて顕熱回収も図られる。外部生成温水の利用による顕熱・潜熱回収の効果が高まれば、高温再生器でのガス消費量は節減される。また、温水熱交換器での潜熱回収によって低温再生器での冷媒蒸気生成負担が軽減され、ひいては高温再生器での冷媒蒸気生成量の低減が図られ、ガス消費の抑制を一層促進することができる。
【0060】
温水は系外に設置された都市ガスを燃料とするガスエンジンの冷却水としておき、高温再生器の加熱源も都市ガスとしておけば、ガスエンジンから出る排熱温水の利用により、コージェネレーションシステムにおけるガス消費量の節減におおいに寄与させることができる。
【0061】
なお、温水は都市ガスを燃料とするガスエンジンの排ガスで加熱された熱交換水としておいてもよく、また、排ガスが導入される排ガス熱交換器により昇温されたガスエンジンの冷却水としておくこともできる。いずれにしても、温水熱交換器に供給される温水を83ないし95℃のものにしておけば、多重効用吸収冷凍機・冷温水機における省エネが促進される。
【図面の簡単な説明】
【図1】本発明に係る多重効用吸収冷凍機・冷温水機における暖房運転法が適用されているリバースフロータイプの吸収冷凍機・冷温水機の暖房運転時の全体系統を示し、吸収液の全部もしくは一部が低温熱交換器をバイパスして排熱温水熱交換器に向かい、吸収器に向かう吸収液を低温熱交換器の下流側で分岐させた後にその全部もしくは一部が蒸発器へ導入されるようにした場合のシステム図。
【図2】図1の吸収冷凍機・冷温水機の冷房運転時のシステム図。
【図3】コージェネレーションシステムとしていることを示すと共に、吸収液の全部もしくは一部が低温熱交換器をバイパスして排熱温水熱交換器に向かい、吸収器に向かう吸収液の全部もしくは一部が低温熱交換器を通過することなく蒸発器へ導入されるようにした場合のシステム図。
【図4】吸収液の全部が低温熱交換器を通過して排熱温水熱交換器に向かい、吸収器に向かう吸収液の全部もしくは一部が低温熱交換器を通過することなく蒸発器へ導入されるようにした場合のシステム図。
【図5】図4の吸収冷凍機・冷温水機の冷房運転時のシステム図。
【図6】パラレルフロータイプの吸収冷凍機・冷温水機に適用した場合であって、吸収液の全部もしくは一部が低温熱交換器をバイパスしてその一部が排熱温水熱交換器に向かい、吸収器に向かう吸収液を低温熱交換器の下流側で分岐させた後にその全部もしくは一部が蒸発器へ導入されるようにした場合のシステム図。
【図7】パラレルフロータイプの吸収冷凍機・冷温水機に適用した場合であって、吸収液の全部が低温熱交換器を通過してその一部が排熱温水熱交換器に向かい、吸収器に向かう吸収液の全部もしくは一部が低温熱交換器を通過することなく蒸発器へ導入されるようにした場合のシステム図。
【図8】パラレルフロータイプの吸収冷凍機・冷温水機に適用した場合であって、吸収液の全部もしくは一部が低温熱交換器をバイパスして排熱温水熱交換器に向かい、吸収器に向かう吸収液の全部もしくは一部が低温熱交換器を通過することなく蒸発器へ導入されるようにした場合のシステム図。
【図9】パラレルフロータイプの吸収冷凍機・冷温水機に適用した場合であって、吸収液の全部が低温熱交換器を通過して排熱温水熱交換器に向かい、吸収器に向かう吸収液の全部もしくは一部が低温熱交換器を通過することなく蒸発器へ導入されるようにした場合のシステム図。
【図10】パラレルフロータイプの吸収冷凍機・冷温水機に適用した場合であって、吸収液の全部もしくは一部が低温熱交換器をバイパスして排熱温水熱交換器に向かい、吸収器に向かう吸収液を低温熱交換器の下流側で分岐させた後にその全部もしくは一部が蒸発器へ導入されるようにした場合のシステム図。
【図11】パラレルフロータイプの吸収冷凍機・冷温水機に適用した場合であって、吸収液が低温熱交換器を通過してその全部もしくは一部が排熱温水熱交換器に向かい、吸収器に向かう吸収液の全部もしくは一部が低温熱交換器を通過することなく蒸発器へ導入されるようにした場合のシステム図。
【図12】シリーズフロータイプの吸収冷凍機・冷温水機に適用した場合であって、吸収液の全部もしくは一部が低温熱交換器をバイパスしてその全部もしくは一部が排熱温水熱交換器に向かい、吸収器に向かう吸収液を低温熱交換器の下流側で分岐させた後にその全部もしくは一部が蒸発器へ導入されるようにした場合のシステム図。
【図13】シリーズフロータイプの吸収冷凍機・冷温水機に適用した場合であって、吸収液が低温熱交換器を通過してその全部もしくは一部が排熱温水熱交換器に向かい、吸収器に向かう吸収液の全部もしくは一部が低温熱交換器を通過することなく蒸発器へ導入されるようにした場合のシステム図。
【図14】従来技術としての既存のリバースフロータイプの吸収冷凍機・冷温水機の全体系統であって、冷房運転時のシステム図。
【図15】図14の吸収冷凍機・冷温水機の暖房運転時のシステム図。
【図16】従来技術としての既存のリバースフロータイプの吸収冷凍機・冷温水機の全体系統であって、排熱温水熱交換器を備えた場合の暖房運転時のシステム図。
【符号の説明】
1…吸収器、1a…吸収液、1b…吸収液、2…低温再生器、3…高温再生器、3b,3b7 …吸収液(濃吸収液)、3s…冷媒蒸気、4…凝縮器、5…蒸発器、5c…散布管、5p…蒸発器管、6…低温熱交換器、7…高温熱交換器、8…温水熱交換器(排熱温水熱交換器)、8s…冷媒蒸気、10…二重効用吸収冷凍機・冷温水機、12…ガスエンジン、12a…排熱温水(外部生成温水)、15…排ガス熱交換器、20…冷温水、212 ,213 ,218 …冷暖切換弁、31…バイパス管路、31v…切換弁(冷暖切換弁)、32…吸収器に向かう管路、33…イクステンション管路、33v…切換弁(冷暖切換弁)、34,34A…ブランチ管路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating operation method in a multi-effect absorption refrigerator / chiller / heater and an apparatus therefor, and more specifically, by efficiently recovering thermal energy from low-temperature exhaust heat existing outside the system, The present invention relates to a heating operation method based on the use of exhaust heat or the like, which can improve generation capacity and reduce the amount of gas combustion in a high-temperature regenerator, and an apparatus structure thereof.
[0002]
[Prior art]
Absorption refrigerators and absorption cold / hot water machines can take out cold water or hot water by changing the concentration of the absorption liquid circulating in the machine. For example, in the double-effect absorption refrigerator, as shown in FIG. 14, the evaporator 5 and the absorber 1 made of a vacuum vessel, the low-temperature regenerator 2 and the condenser 4 having a higher pressure than those, For example, the burner 3A includes a high-temperature regenerator 3 that obtains heat energy by burning city gas.
[0003]
In the evaporator 5, the latent heat of evaporation is taken away by the refrigerant liquid 5w flowing down to the outer surface of the evaporator pipe 5p under high vacuum, and the cold water 20 flowing through the evaporator pipe is cooled. In the absorber 1, the refrigerant vapor 5 s generated in the evaporator 5 is cooled by the cooling water 9 w flowing through the absorber pipe 1 p, so that the absorbing liquid 1 b absorbs and the inside of the container is kept at a high vacuum. In the low-temperature regenerator 2, the refrigerant vapor 3s separated and evaporated in the high-temperature regenerator 3 is flowed to the low-temperature regenerator pipe 2p, and the absorbing liquid 2m is heated and concentrated by the latent heat to separate and evaporate the refrigerant 2s. In the high temperature regenerator 3, the absorbing liquid 3m is heated and concentrated in a vacuum to generate the refrigerant vapor 3s. In the condenser 4, the refrigerant vapor 2s evaporated in the low temperature regenerator 2 is cooled by the cooling water 9w flowing through the condenser pipe 4p, and is condensed and liquefied. The cooling water 9w pumped by the cooling water pump 9a and circulated through the condenser pipe 4p through the absorber pipe 1p is circulated after being cooled by a cooling tower (not shown).
[0004]
In such operation of the absorption refrigerator / cooling / heating machine, not only cooling operation but also cooling / heating switching valve 21 as shown in FIG. Three , 21 2 The refrigerant vapor 3s evaporated in the high temperature regenerator 3 is sent to the evaporator 5, and if the refrigerant vapor 2s is also generated in the low temperature regenerator 2, it is also sent to heat the hot water 20 flowing through the evaporator pipe 5p. If it does, heating operation can also be performed. In both cases of cooling and heating, when controlling the temperature of the cold water or hot water 20, the amount of heating in the high-temperature regenerator 3 is generally adjusted by a fuel control valve (not shown) based on the cold / hot water outlet temperature t.
[0005]
In the heating operation described above, it is not necessary to condense the refrigerant vapor 3s generated in the high-temperature regenerator 3 in the condenser 4 or the refrigerant vapor 2s generated in the low-temperature regenerator 2, and the refrigerant vapor 5s (see FIG. 14) is not required to be absorbed. The former can be easily understood from the provision of the short path conduit 3c shown in FIG.
[0006]
The reason why the condensation of the refrigerant vapor and the absorption of the refrigerant vapor are not necessary at the time of heating is that the refrigerant vapors 3s and 2s are used for heating the hot water 20 as they are. Therefore, in the evaporator 5, the refrigerant liquid 5w generated as a result of the heat exchange of the refrigerant vapor with the hot water is increasing, and this overflows from the refrigerant reservoir 5r and naturally moves to the absorber 1. Therefore, although the spray pipe 1c of the absorber is used to return the absorbing liquid from the low-temperature heat exchanger 6 to the absorber 1, the spraying tries to absorb the refrigerant vapor generated in the evaporator by the absorbing liquid. It is not what you do.
[0007]
For this reason, it is not necessary for the cooling water to flow through the cooling water piping system 9 leading to the absorber pipe 1p and the condenser pipe 4p, and therefore the cooling water pump 9a is not operated during the heating operation. Further, as shown in FIG. 14, it is not necessary to pump and spray the refrigerant liquid 5w from the refrigerant reservoir 5r of the evaporator 5, and the refrigerant pump 5h is not operated. However, while the hot water is generated by the refrigerant vapor generated in the system, the absorption liquid continues to circulate along the same path with the same concentration change as that during cooling.
[0008]
In such absorption refrigerators and the like, energy saving has been promoted based on the principle of double effect, but in order to improve the heat exchange efficiency in the system, as shown in FIG. 6 and a high-temperature heat exchanger 7 are installed. The high temperature heat exchanger 7 preheats the absorbing liquid 3a toward the high temperature regenerator 3, and a high temperature absorbing liquid 3b derived from the high temperature regenerator 3 is introduced as the heat source. The low temperature heat exchanger 6 preheats the absorbing liquid 1a toward the low temperature regenerator 2, and in the illustrated example, the absorbing liquid 2b derived from the low temperature regenerator 2 and the absorbing liquid 3b exiting the high temperature heat exchanger 7 are used. 7 Is used as a heat source on the way to the absorber 1.
[0009]
[Problems to be solved by the invention]
By the way, recently, in buildings and factories, a cogeneration system capable of generating electricity by burning city gas and cooling / heating is increasingly introduced. As the power generation equipment, the engine is driven by the combustion of city gas and the generator is rotated. As the air conditioning equipment, the above-described absorption refrigerator / cooling / hot water machine is used.
[0010]
Since both facilities are common in that they use city gas as fuel, they can be combined into a single cogeneration system. The goal is to reduce gas consumption. In other words, the generation of exhaust heat is unavoidable in the power generation equipment, but if this can be used not only in the cooling operation but also in the heating operation, the gas consumption in the air conditioning equipment can be reduced.
[0011]
Incidentally, in the gas engine, the cooling water after cooling the casing is approximately 80 to 90 ° C. Even if this amount of exhaust heat is large, the stored heat energy is not much, and eventually it can be used only for small-scale heating and hot water supply. However, in the absorption refrigerator and the cold / hot water machine, the concentration and dilution of the absorption liquid are used as a cycle, and even the low-temperature exhaust heat described above can contribute to some extent for heating and evaporation of the absorption liquid. Attention is focused on this point.
[0012]
An example of an absorption refrigerator / cooling / heating machine in a cogeneration system in which such a power generation gas engine and an absorption refrigerator / cooling / heating machine are combined is proposed in Japanese Patent Laid-Open No. 11-237136. The exhaust heat used here is discharged from the heat source of the power generation system outside the system when viewed from the absorption chiller / cooling / heating machine. It is possible to reduce the amount of heating required for the absorption chiller / cooling / hot water machine by enabling latent heat exchange and recovering heat from the exhaust heat.
[0013]
It goes without saying that it is desirable from the viewpoint of energy saving to take in the exhaust heat existing outside and make it available as a heat source. In recent years, efforts have been made to further increase the efficiency of exhaust heat recovery and reduce the amount of fuel consumed in absorption refrigerators and chiller / heaters as much as possible to increase the gas reduction rate. ing.
[0014]
By the way, if the above-mentioned exhaust heat hot water is used to save energy, the gas consumption in the high temperature regenerator can be reduced for the same load, but the heating hot water using the refrigerant vapor generated in the system is used. The hot water temperature is at most 55 ° C, and it is almost impossible to obtain 60 ° C. This is because, even if exhaust heat is used, the retained heat energy of the refrigerant vapor 3s generated in the high-temperature regenerator 3 does not increase significantly, and the refrigerant vapor introduced into the evaporator 5 and the evaporator tube The efficiency of heat exchange with the hot water 20 in 5p does not increase.
[0015]
FIG. 16 shows an example in which the exhaust heat / hot water heat exchanger 8 is introduced into the absorption refrigerator / cooling / heating machine of FIG. The figure itself represents the heating operation as in FIG. 15, and the refrigerant vapor 8 s generated in the exhaust heat hot water heat exchanger 8 is also introduced into the evaporator 5. Also in this example, the cooling water pump 9a is not operated. Further, it is not necessary to pump and spray the refrigerant liquid 5w from the refrigerant reservoir 5r of the evaporator 5, and therefore the refrigerant pump 5h is not operated. The refrigerant liquid 5w overflows and moves to the absorber 1 as in FIG.
[0016]
In FIG. 16, the absorbing liquid 1 a supplied to the exhaust heat / hot water heat exchanger 8 is heated in advance by the low temperature heat exchanger 6. In this case, if the temperature for taking out the hot water 20 is increased to 60 ° C. for the purpose of increasing the heating capacity, the absorption liquid temperature at the inlet of the exhaust heat / hot water heat exchanger 8 reaches 90 ° C. Since the temperature of the waste heat hot water introduced into the waste heat hot water heat exchanger 8 is 80 to 90 ° C., in such a case, the sensible heat recovery is almost impossible, or the reverse if it is severe. It falls into heating.
[0017]
In the cooling operation, the exhaust heat / hot water heat exchanger 8 can recover latent heat by reducing the saturation pressure by cooling with cooling water in the condenser 4 communicating with the exhaust heat / hot water heat exchanger 8. However, since the cooling water does not flow through the cooling water piping system 9 in the heating operation, the conditions for recovering latent heat are not established, and eventually the energy saving effect during the heating operation by the exhaust heat hot water heat exchanger is not rapid.
[0018]
The present invention has been made in view of the above circumstances, and an object of the present invention is to use refrigerant that is present outside the system of the absorption chiller / cooling / heating machine, particularly in the case of heating operation using the low-temperature exhaust heat. The ability to generate steam and reduce the burden of steam generation in the low temperature regenerator so that the gas consumption in the high temperature regenerator can be greatly reduced. In addition, the amount of heat exchange in the evaporator is increased. It is to provide a heating operation method and an apparatus therefor in a multi-effect absorption chiller / cooling / heating machine that can increase the temperature for taking out hot water and improve the heating capacity. .
[0019]
[Means for Solving the Problems]
The present invention includes an absorber, a low-temperature regenerator, a high-temperature regenerator, a condenser, an evaporator, a low-temperature heat exchanger that preliminarily heats the absorption liquid introduced from the absorber, and the absorption liquid returned to the absorber is introduced as a heat source. Absorbed liquid derived from the regenerator was introduced as a heat source and preheated to the high-temperature regenerator, high-temperature heat exchanger, externally generated hot water introduced from outside the system and the absorber was derived via a low-temperature heat exchanger The present invention is applied to an operation method at the time of heating in an absorption refrigerator / cooling / heating machine provided with a hot water heat exchanger for exchanging heat with all or part of the absorption liquid. The characteristic feature is that, referring to FIG. 1, the absorbing liquid 1a that is led out from the absorber 1 during cooling and goes to the hot water heat exchanger 8 through the low-temperature heat exchanger 6 is absorbed in whole or in part during heating. Direct from the vessel 1 to the hot water heat exchanger 8. The absorbing liquid 1b returned to the absorber 1 via the low-temperature heat exchanger 6 during cooling is supplied to the evaporator 5 from the low-temperature heat exchanger 6 in whole or in part during heating. The hot water 20 flowing through the evaporator pipe 5p in the evaporator 5 is heated by the internally generated refrigerant vapors 3s and 8s, and the absorbing liquid 1b supplied to the evaporator 5 is sprayed on the evaporator pipe 5p and heated. . Then, by supplying the absorbing liquid 1b to the evaporator 5, the absorbing liquid concentration in the absorber 1 is lowered, thereby lowering the absorbing liquid saturation temperature and enhancing the latent heat recovery action in the hot water heat exchanger 8. is there.
[0020]
As another method, as shown in FIG. 3, the absorbing liquid 1a led out from the absorber 1 during cooling and directed to the hot water heat exchanger 8 through the low-temperature heat exchanger 6 is absorbed in whole or in part during heating. Direct from the vessel 1 to the hot water heat exchanger 8. Absorbing liquid 1b returned to the absorber 1 after passing through the low-temperature heat exchanger 6 during cooling is supplied to the evaporator 5 without passing through the low-temperature heat exchanger 6 in whole or in part during heating. The hot water 20 flowing through the evaporator pipe 5p in the evaporator 5 is heated by the internally generated refrigerant vapors 3s and 8s, and the absorbing liquid 1b supplied to the evaporator 5 is sprayed on the evaporator pipe 5p and heated. . Then, by supplying the absorbing liquid 1b to the evaporator 5, the absorbing liquid concentration in the absorber 1 is lowered, thereby lowering the absorbing liquid saturation temperature and enhancing the latent heat recovery action in the hot water heat exchanger 8. Also good.
[0021]
Furthermore, as another method, referring to FIG. 4, the absorbing liquid 1a that is led out from the absorber 1 during cooling and goes to the hot water heat exchanger 8 through the low-temperature heat exchanger 6 follows the same path during heating. Direct to heat exchanger 8. Absorbing liquid 1b returned to the absorber 1 after passing through the low-temperature heat exchanger 6 during cooling is supplied to the evaporator 5 without passing through the low-temperature heat exchanger 6 in whole or in part during heating. The hot water 20 flowing through the evaporator pipe 5p in the evaporator 5 is heated by the internally generated refrigerant vapors 3s and 8s, and the absorbing liquid 1b supplied to the evaporator 5 is sprayed on the evaporator pipe 5p and heated. . Then, by supplying the absorbent 1b to the evaporator 5, the concentration of the absorbent in the absorber 1 can be reduced, thereby lowering the saturation temperature of the absorbent and enhancing the latent heat recovery action in the hot water heat exchanger 8. .
[0022]
The externally generated hot water 12a is cooling water of the gas engine 12 (see FIG. 3) that uses city gas installed outside the system as a fuel, and the heating source of the high-temperature regenerator 3 is also set as city gas. The externally generated hot water may be heat exchange water heated with the exhaust gas of the gas engine, or may be cooling water of the gas engine heated by the exhaust gas heat exchanger 15 into which the exhaust gas of the gas engine is introduced. May be. In any case, it is convenient that the externally generated hot water 12a is 83 to 95 ° C.
[0023]
As shown in FIG. 1, the invention of the multi-effect absorption chiller / cooling / heating machine has a low-temperature heat in a pipe line that directs the absorbent 1 a derived from the absorber 1 to the warm-water heat exchanger 8 through the low-temperature heat exchanger 6. An extension pipe 33 that bypasses the exchanger 6 is provided, and an extension pipe 33 that goes to the evaporator 5 is connected to a pipe that returns the absorbent 1 b to the absorber 1 through the low-temperature heat exchanger 6.
[0024]
In the invention of another apparatus, as shown in FIG. 3, the low temperature heat exchanger 6 is provided in a pipe line that directs the absorbing liquid 1 a derived from the absorber 1 to the hot water heat exchanger 8 through the low temperature heat exchanger 6. A bypass bypass line 31 is provided to bypass the low-temperature heat exchanger 6 that passes through the low-temperature heat exchanger 6 that passes the absorbing liquid 1 b toward the absorber 1. A branch line 34 is provided.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a heating operation method and a device therefor in a multi-effect absorption refrigerator / chiller / heater according to the present invention will be described in detail with reference to the drawings. FIG. 2 shows an absorber 1, a low temperature regenerator 2, a high temperature regenerator 3, a condenser 4, an evaporator 5, a low temperature heat exchanger 6 for preheating the absorbent 1a toward the low temperature regenerator 2, and a high temperature regenerator 3. The structure of the double effect absorption refrigerating machine and the cold / hot water machine 10 provided with the high temperature heat exchanger 7 which preheats the absorption liquid 3a is shown. The low-temperature regenerator 2 employs a pool boiling heat exchanger, receives the refrigerant vapor 3s generated in the high-temperature regenerator 3 as a heating source in the regenerator pipe 2p, and is above the regenerator pipe buried in the absorbing liquid 2m. In addition, a vapor space 2 a for temporarily storing the refrigerant vapor 2 s and leading it to the condenser 4 is secured.
[0026]
The functions and operations are as described in the section “Prior Art”, and the same reference numerals as those in FIG. In the high temperature regenerator 3, hot gas obtained by burning the city gas with the burner 3 </ b> A is used as a heating source, and the refrigerant vapor 3 s generated in the high temperature regenerator 3 is introduced into the low temperature regenerator 2 as a heating source. Absorption liquid (concentrated absorption liquid) 3b derived from the high-temperature regenerator 3 is introduced into the high-temperature heat exchanger 7 as a heat source, and absorption liquid 1b returned to the absorber 1 is introduced into the low-temperature heat exchanger 6 as a heat source. The The same is true in that a cooling water piping system 9 in which the absorber pipe 1p of the absorber 1 and the condenser pipe 4p of the condenser 4 are connected is provided.
[0027]
In this example, such an absorption refrigerator / cooling / heating device 10 is placed in an environment in which exhaust heat of 83 to 95 ° C. exists outside the system. That is, a gas engine (shown small in FIG. 3) 12 is installed to obtain power by burning city gas as in the high temperature regenerator 3, and the equipment of the absorption refrigerator / cooling / heating machine 10 is installed by the gas engine 12. In the case where it is provided with a power generation facility that drives the generator 13, it is intended to actively utilize the thermal energy held in the exhaust heat hot water after cooling the gas engine. In addition, 14 shown in the place of the gas engine 12 is a cooling tower for heat radiation, and 15 is an exhaust gas heat exchanger.
[0028]
Returning to FIG. 2, the absorption chiller / cooling / heating machine system exchanges heat between the exhaust heat hot water 12 a which is the gas engine cooling water and the absorption liquid 1 a derived from the absorber 1 through the low-temperature heat exchanger 6. The exhaust heat hot water heat exchanger 8 is installed at a higher position than the low temperature regenerator 2. In this example, a pool boiling heat exchanger is used for the exhaust heat / hot water heat exchanger 8 in the same manner as the low temperature regenerator 2 to temporarily store the refrigerant vapor 8s generated from the absorbing liquid 8m in contact with the exhaust heat / hot water pipe 8p. In addition, a steam reservoir 8a that can be led to the condenser 4 through the steam space 2a of the low-temperature regenerator 2 is secured. In addition, a passage 8b for leading the absorbing liquid 8m in the exhaust heat hot water heat exchanger 8 to the low temperature regenerator 2 is also provided. Incidentally, in this example, this passage 8b also functions as a transfer path of the refrigerant vapor 8s to the low temperature regenerator 2.
[0029]
By the way, it is preferable that the waste heat hot water 12a introduced into the waste heat hot water pipe 8p of the waste heat hot water heat exchanger 8 is 83 to 95 ° C. For example, when such a temperature cannot be obtained only with the gas engine cooling water, the exhaust gas heat exchanger 15 (see FIG. 3) is used so that the cooling water can be heated with the exhaust gas of 300 to 600 ° C. of the gas engine. It may be provided so that exhaust heat having a high temperature can be supplied as heat exchange water. Of course, it is possible to use hot water that is just heat-exchanged with exhaust gas without being particular about engine cooling water. In short, if heat having the above-mentioned temperature exists in the form of hot water outside the system of the absorption refrigerator / cooling / hot water machine, it can be used as externally generated hot water.
[0030]
The process up to this point is the same as in the case of FIG. However, the structure described below is added to the absorption refrigerator / cooling / heating machine 10 of FIG. The bypass line 31 that bypasses the low-temperature heat exchanger 6 is provided in a pipe that directs the absorbent 1 a derived from the absorber 1 to the exhaust heat / hot water heat exchanger 8 through the low-temperature heat exchanger 6. It is that you are. Further, an extension line 33 toward the evaporator 5 is connected to a line 32 that directs the absorbent 1 b returned through the low-temperature heat exchanger 6 toward the absorber 1. In any of the pipelines 31 and 33, switching valves 31v and 33v that function as cooling / heating switching valves are interposed.
[0031]
When the cooling / heating switching valves 31v and 33v are opened as shown in FIG. 1, the absorption liquid 1a is led out from the absorber 1 during cooling and passes through the low-temperature heat exchanger 6 toward the exhaust heat hot water heat exchanger 8. Most of the water can be directed directly from the absorber 1 to the exhaust heat / hot water heat exchanger 8 via the bypass line 31 during heating. On the other hand, the absorption liquid 1b returned to the absorber 1 via the low-temperature heat exchanger 6 during cooling is supplied to the evaporator 5 from the low-temperature heat exchanger 6 via the extension line 33 for the most part during heating. Can do.
[0032]
In this way, in addition to the hot water 20 flowing through the evaporator pipe 5p in the evaporator 5 being heated by the in-system generated refrigerant vapors 3s and 8s described later, the refrigerant pump 5h is driven to drive the evaporator By spraying the absorption liquid 5a of the refrigerant reservoir 5r on the evaporator tube 5p, the droplets flow down the outer surface of the evaporator tube, and the heating degree of the hot water 20 flowing through the inside causes the refrigerant vapor to drift into the evaporator 5. As compared with the case of only this, it can be improved drastically, for example, hot water as high as 60 ° C. can be obtained and the heating capacity can be enhanced.
[0033]
In addition, the absorption liquid concentration in the absorber 1 is reduced by supplying the absorption liquid 1b to the evaporator 5, thereby reducing the absorption liquid saturation temperature and the latent heat recovery action in the exhaust heat hot water heat exchanger 8. It is also possible to promote the energy saving in the heating operation of the absorption refrigerator / cooling / heating machine. The energy saving action is described in detail below.
[0034]
When the heating operation is started, most of the absorbing liquid 1 a that has come out of the absorber 1 is supplied to the exhaust heat / hot water heat exchanger 8 via the bypass line 31. As will be described later, the concentration of this absorbing solution is 35 to 50%, which is considerably lower than 45 to 55% in the case of FIG. And since this absorption liquid temperature does not pass the low-temperature heat exchanger 6, it is 65 to 75 degreeC. When this is introduced into the pool boiling heat exchange type exhaust heat hot water heat exchanger 8 into which the exhaust heat hot water of 83 to 95 ° C. has been introduced, sensible heat recovery from the exhaust heat hot water is performed.
[0035]
At the same time, since the concentration of the absorbing liquid is low, the saturation temperature in the exhaust heat hot water heat exchanger 8 is lowered, so that vaporization of the refrigerant from the absorbing liquid is promoted, and latent heat recovery is performed in the form of refrigerant vapor 8s. Is made. In addition, even if some absorption liquid may enter the low-temperature heat exchanger 6, if the absorption liquid temperature joined before the entrance of the exhaust heat hot water heat exchanger 8 can be maintained up to about 80 ° C, There is no particular problem.
[0036]
The absorption liquid 8m recovered by sensible heat in the exhaust heat / hot water heat exchanger 8 becomes 71 to 87 ° C., and moves to the low temperature regenerator 2 through the passage 8b. At this time, the refrigerant vapor 8s is also led out from the exhaust heat hot water heat exchanger 8 and supplied to the evaporator 5 through the passage 8c. The heat exchanged absorbing liquid is heated by the refrigerant vapor 3s from the high temperature regenerator 3 in the low temperature regenerator 2 to generate some refrigerant vapor 2s. Part 2b of the heated absorbent 2m is supplied to the low-temperature heat exchanger 6 and the remaining part 3a is supplied to the high-temperature heat exchanger 7. The former exits the high temperature heat exchanger 7 and the concentrated absorbent 3b described next. 7 At the same time, the pipe 32 passes through the extension pipe 33, most of which is returned to the refrigerant reservoir 5r of the evaporator 5, and the remaining part is returned from the spray pipe 1c to the absorption liquid reservoir 1r of the absorber 1. The latter is supplied to the high temperature regenerator 3 via the high temperature heat exchanger 7.
[0037]
Refrigerant vapor 3s is generated from the absorbent heated by the high temperature regenerator 3, and the concentrated absorbent 3b separated by the steam separator is sent to the high temperature heat exchanger 7. This absorption liquid merges with the absorption liquid 2 b from the low-temperature regenerator 2 to become the absorption liquid 1 b and enters the low-temperature heat exchanger 6. The absorption liquid at the outlet of the low-temperature heat exchanger 6 is 100 to 110 ° C., and most of it is sent to the evaporator 5 as described above.
[0038]
In the evaporator 5, the cooling / heating switching valve 21 is placed in the space where the evaporator pipe 5p exists. Three , 21 8 The refrigerant vapors 3 s and 8 s are supplied via the cooling / heating switching valve 21. 2 The refrigerant vapor 2s is supplied via The refrigerant vapor is, for example, 70 ° C., and heats the hot water 20 in the evaporator pipe 5p. On the other hand, when the absorbing liquid passing through the extension pipe 33 is supplied to the refrigerant reservoir 5r, the absorbing liquid 5a reaches 60 to 65 ° C. The absorbing liquid pumped up by the refrigerant pump 5h is sprayed from the spray pipe 5c, and this also heats the hot water 20 and realizes 60 ° C. hot water. According to such operation, the heating capacity is increased as compared with the case of heating only with the refrigerant vapor.
[0039]
When the refrigerant vapors 2s, 3s, and 8s exchange heat with the hot water 20 and condense in the evaporator 5, they are accumulated in the refrigerant reservoir 5r. Since the absorption liquid is supplied to the refrigerant reservoir as described above, the absorption liquid in FIG. 1 is mixed with the refrigerant reservoir 5r in which only the refrigerant liquid 5w existed in the case of FIG. Since the amount of absorbing liquid present in the apparatus is unchanged, if a part of the absorbing liquid is always stored in the refrigerant reservoir 5r, the average concentration of the absorbing liquid existing in the portion excluding the evaporator is absorbed by the evaporator. It is lower than 45 to 55% of the average concentration in the case of FIG. 16 where no liquid is mixed, for example 35 to 50%. Due to the decrease in the concentration of the absorbing liquid, the exhaust heat hot water heat exchanger 8 can recover not only sensible heat but also latent heat as described above even during heating.
[0040]
If the refrigerant vapor 8s can be obtained in the exhaust heat / hot water heat exchanger 8, even if the absorption liquid 8m heat-exchanged by the exhaust heat / hot water heat exchanger is guided to the low temperature regenerator 2, the burden of generating the refrigerant vapor there is reduced. can do. That is, the supply amount of the refrigerant vapor 3s introduced into the regenerator pipe 2p can be reduced. This means that the generation burden of the refrigerant vapor 3s in the high-temperature regenerator 3 can be reduced, and a reduction in gas combustion amount by the burner 3A is realized.
[0041]
In summary, the concentration of the absorbing solution is reduced, so that exhaust heat warm water is used to activate latent heat recovery, and the use of exhaust heat hot water can reduce gas consumption in the high-temperature regenerator and evaporate the absorbing solution. It is possible to take out high-temperature hot water for heating, which was impossible when using a waste heat hot water heat exchanger by supplying it to the evaporator, and by absorbing some of the absorbed liquid in the evaporator, absorption that circulates in the machine The concentration of the liquid can be lowered generally. In this way, it can be seen that individual phenomena are linked to each other and produce a synergistic effect.
[0042]
Incidentally, in the above description, the absorption liquid supplied to the evaporator 5 is put into the refrigerant reservoir 5r. However, although not shown in the figure, the absorption liquid from the low-temperature heat exchanger 6 may be sent directly to the spraying pipe 5c by, for example, providing a separate pump and then sprayed to the evaporator pipe 5p. Of course, the above-described spraying by the refrigerant pump 5h may be used in combination.
[0043]
By the way, in the absorption chiller / cooling / heating machine configured as described above, if the cooling / heating switching valve is switched, the absorption liquid 1a derived from the absorber 1 is entirely transferred to the low-temperature heat exchanger 6 as shown in FIG. From the heat exchanger 8 to the hot water heat exchanger 8, and returning all of the absorbent 1 b to the absorber 1 through the low temperature heat exchanger 6, the cooling operation can be performed. In this case, if sensible heat / latent heat recovery is performed in the exhaust heat / hot water heat exchanger 8 while supplying cooling water so that the cooling water piping system 9 flows from the absorber pipe 1p to the condenser pipe 4p, The amount of heating in the regenerator 3 can be suppressed.
[0044]
Moreover, if the flow direction of the cooling water in the cooling water piping system 9 is reversed as shown in FIG. 2, the effect of the latent heat recovery in the exhaust heat hot water heat exchanger 8 can be further enhanced. Reduction of gas combustion amount can be brought out. However, this is not a direct object of the present invention, and its action and effect are described in detail in Japanese Patent Application No. 2001-374411, so that further explanation is omitted here.
[0045]
In addition, since the diversion ratio at the portion where the absorbing liquid branches is determined by the pipe friction in the pipe line and the valve body after that, the cooling / heating switching valve may be an on / off valve, but a flow regulating valve is adopted, etc. Thus, the partial flow rate may be appropriately changed. For example, if the temperature of the absorbing liquid that passes through the bypass line 31 falls outside the expected temperature range during the heating operation, the exhaust gas temperature of the high-temperature regenerator 3 is lowered and condensation occurs in the flue. In order to avoid carbonic acid corrosion and sulfuric acid corrosion due to this, it is possible to reduce the amount of absorbing liquid flowing through the bypass pipe line 31 by narrowing the opening degree of the cooling / heating switching valve 31v.
[0046]
By the way, in FIG. 2, it demonstrated that it was a pool boiling type with which the steam sump 8a was ensured above the waste heat hot water pipe 8p in which the waste heat warm water heat exchanger 8 is immersed in the absorption liquid 8m. However, the present invention is not limited to this, and the exhaust heat / hot water heat exchanger may have a falling liquid film type structure like the evaporator 5 and the absorber 1. That is, even if the exhaust heat hot water pipe to which the absorbing liquid is sprayed and the steam reservoir occupy almost the same space, the function is not different from the pool boiling type.
[0047]
The above-described exhaust heat / hot water heat exchanger 8 is not necessarily located above the low temperature regenerator 2. For example, as shown in FIG. 3, if the pump 16 is provided, the exhaust heat / hot water heat exchanger 8 may be installed below the low temperature regenerator 2. Since only the absorbing liquid 8m flows through the passage 8d in which the pump 16 is interposed, a steam passage 8e for sending the generated refrigerant vapor 8s to the low-temperature regenerator 2 is newly required. Two passages 8d and 8e may be provided toward the low-temperature regenerator 2, but it is considered that the passage 8d and the passage 8e cannot be shared like the passage 8b (see FIG. 1). In this case, a passage 8f for transferring directly to the condenser 4 may be provided instead of the passage 8e.
[0048]
Incidentally, although FIG. 3 is different from FIG. 1 in notation, it is not different from FIG. 1 except for the position of the exhaust heat / hot water heat exchanger 8 and the items to be described next, and reverse flow is the same as that figure. This is a type of absorption refrigerator / cooling / heating machine. In FIG. 3, a branch pipe 34 that goes to the evaporator 5 without passing through the low-temperature heat exchanger is provided in a pipe that interposes the low-temperature heat exchanger 6 that passes the absorption liquid that goes to the absorber 1. It has been. That is, as shown by the one-dot chain line, in FIG. 1, the absorbing liquid that has passed through the low-temperature heat exchanger 6 is sent to the evaporator 5 through the extension pipe 33, but in FIG. A passage 34 is provided, through which the absorbent 1b is sent to the refrigerant reservoir 5r or directly to the spray pipe 5c (not shown).
[0049]
If it does in this way, the absorption liquid derived | led-out from the absorber 1 at the time of air_conditioning | cooling and going to the waste heat hot water heat exchanger 8 through the low-temperature heat exchanger 6 will be exhausted directly from the absorber 1 in whole or in part at the time of heating. On the other hand, the absorption liquid returned to the absorber 1 after passing through the low-temperature heat exchanger 6 during cooling is passed through the low-temperature heat exchanger 6 in whole or in part during heating. Without being supplied to the evaporator 5. And while warm water 20 which distribute | circulates the evaporator pipe | tube 5p in an evaporator is mainly heated by system generated refrigerant | coolant vapor | steam 3s and 8s, the absorption liquid supplied to the evaporator 5 is sprayed and heated to the evaporator pipe | tube 5p. By supplying the absorption liquid to the evaporator, the concentration of the absorption liquid in the absorber 1 can be lowered, thereby lowering the saturation temperature of the absorption liquid and enhancing the latent heat recovery action in the exhaust heat hot water heat exchanger 8. become.
[0050]
FIG. 4 is an example in which the above-described bypass pipe is not provided. In this case, if it is going to realize supplying absorption liquid 1a which came out of absorber 1 which is the idea of the present invention to exhaust heat hot water heat exchanger 8 at the same temperature, absorption which passes low temperature heat exchanger 6 will be carried out. In order not to give heat to the liquid 1a, the absorption liquid 1b returned to the absorber 1 after passing through the low-temperature heat exchanger 6 at the time of cooling without passing all or part of it through the low-temperature heat exchanger 6 at the time of heating. What is necessary is just to make it supply to the evaporator 5. FIG. That is, the same branch pipe 34A as the pipe 34 shown in FIG. 3 may be provided.
[0051]
Most of the absorbent 1b returned to the absorber 1 goes to the evaporator 5 without passing through the low-temperature heat exchanger 6, and the low-temperature heat exchanger 6 converts the absorbent derived from the absorber 1 during heating. The hot water 20 flowing through the evaporator pipe 5p in the evaporator is heated by the system generated refrigerant vapors 3s and 8s and supplied to the evaporator 5 despite being directed to the exhaust heat hot water heat exchanger 8 via The absorbed water is sprayed on the evaporator pipe 5p, and hot water for heating at a high temperature can be obtained. Of course, the absorption liquid concentration in the absorber 1 is lowered by supplying the absorption liquid to the evaporator 5, thereby lowering the absorption liquid saturation temperature and enhancing the latent heat recovery action in the exhaust heat hot water heat exchanger 8. it can. FIG. 5 shows the cooling operation in the case of the structure of FIG. 4 for reference.
[0052]
FIG. 6 shows an example in which the present invention is applied to a parallel flow type absorption refrigerator / cooling / heating machine. In the figure, only an example in which the exhaust heat hot water heat exchanger 8 is placed below the low temperature regenerator 2 is shown, and an example in which the exhaust heat hot water heat exchanger 8 is installed at a high position as shown in FIG. 1 is not shown. This is provided with an extension pipe 33 together with a bypass pipe 31. In this part, a parallel flow type absorption refrigerator / cooling / heating machine having a configuration corresponding to FIG.
[0053]
In this parallel flow type, the absorption liquid 1a bypassing the low-temperature heat exchanger 6 during heating is partly transferred to the low-temperature regenerator 2 via the exhaust heat / hot water heat exchanger 8 and the rest is transferred to the high-temperature heat exchanger 7. To the high-temperature regenerator 3 through the two regenerators in parallel. Of course, the exhaust heat / hot water heat exchanger 8 is intended to reduce the generation of refrigerant vapor in the low temperature regenerator 2, and is therefore installed in the path toward the low temperature regenerator 2. Although this point is not different from FIG. 1 and FIG. 3, the description of the pipe line configuration (branch pipe 34) corresponding to FIG. 3 is omitted here. FIG. 7 differs from FIG. 6 in that the absorbing liquid 1a directed to the exhaust heat / hot water heat exchanger 8 and the high temperature heat exchanger 7 is passed through the low temperature heat exchanger 6, and the idea of FIG. In this example, a branch line 34A is provided.
[0054]
In FIG. 8, the absorption liquid 1a bypassing the low-temperature heat exchanger 6 is sent to the exhaust heat / hot water heat exchanger 8, and the absorption liquid 8m emitted from the exhaust heat / hot water heat exchanger 8 is transferred to the low temperature regenerator 2 and the high temperature heat exchanger 7. However, the purpose is the same as in FIG. 6, and an extension line 33 is provided together with the bypass line 31. FIG. 9 is a parallel flow type having the same configuration as that of FIG. 8, but the idea of FIG. 4 in which no bypass pipe is provided and only the branch pipe 34 </ b> A is provided is applied.
[0055]
In FIG. 10, the absorbing liquid 1a bypassing the low temperature heat exchanger 6 is sent to the exhaust heat / hot water heat exchanger 8 and the high temperature heat exchanger 7, and the absorption liquid 8m exiting from the exhaust heat / hot water heat exchanger 8 is transferred to the low temperature regenerator 2. And the high temperature heat exchanger 7. The purpose is the same as in FIG. 6, and an extension line 33 is provided together with the bypass line 31. FIG. 11 is a parallel flow type having the same configuration as that of FIG. 10, but the idea of FIG. 4 in which only a branch pipe 34 </ b> A is provided without a bypass pipe is applied.
[0056]
In FIG. 12, the absorbing liquid is not sent from the exhaust heat / hot water heat exchanger 8 to the low temperature regenerator 2, and only the absorbing liquid 3 b that has passed through the high temperature heat exchanger 7 is supplied from the high temperature regenerator 3 to the low temperature regenerator 2. This is an example of a series flow type absorption refrigerator / cooling / heating machine. Even in this case, the refrigerant vapor 8 s is generated by the exhaust heat / hot water heat exchanger 8, thereby reducing the amount of refrigerant vapor generated by the low temperature regenerator 2. The purpose is the same as in FIG. 6, and an extension line 33 is provided together with the bypass line 31. FIG. 13 is a series flow type having the same configuration as that of FIG. 12, but the bypass pipe is not provided and the idea of FIG. 4 in which only the branch pipe 34A is provided is applied.
[0057]
Although the example applied to the above various absorption refrigerators / cooling / heating machines has been described, it is not limited to each double-effect type but can also be applied to a triple-effect type including an intermediate regenerator. This is obvious in the thought. Moreover, although the example on the premise of GENELINK was used, if there exists hot water which is not restricted to the exhaust heat hot water of a gas engine and exists in the above-mentioned temperature range, it can be used. In that case, needless to say, the exhaust heat hot water heat exchanger may be a so-called hot water heat exchanger.
[0058]
In other words, during cooling operation, the average concentration of the absorbent must be higher than that intentionally reduced during heating. For example, it may be possible to open a valve separately provided at the beginning of the cooling operation and remove the refrigerant reservoir absorption liquid, but if the cooling running-in time is secured at that time, the refrigerant pump should be stopped during that time. By so doing, the absorbing liquid in the refrigerant reservoir can be gradually replaced with the refrigerant liquid.
[0059]
【The invention's effect】
According to the present invention, all or part of the absorbing liquid returned to the absorber is supplied to the evaporator, so that it is impossible to take out high-temperature hot water for heating, which is impossible when using a hot-water heat exchanger. Is possible. Not only that, it is possible to reduce the concentration of the absorbing liquid circulating in the system as a whole by retaining a part of the absorbing liquid in the evaporator, leading to a decrease in saturation temperature and promoting latent heat recovery using externally generated hot water. Is done. On the other hand, the absorption liquid going to the hot water heat exchanger is small even if it is not preheated by the low temperature regenerator, so the low temperature absorption liquid can be introduced into the hot water heat exchanger, and sensible heat recovery is also possible. Figured. If the effect of sensible heat and latent heat recovery by using externally generated hot water is increased, gas consumption in the high-temperature regenerator will be reduced. In addition, the latent heat recovery in the hot water heat exchanger reduces the burden of refrigerant vapor generation in the low temperature regenerator, which in turn reduces the amount of refrigerant vapor generated in the high temperature regenerator, further promoting the suppression of gas consumption. it can.
[0060]
If hot water is used as cooling water for a gas engine fueled by city gas installed outside the system, and if the heating source of the high-temperature regenerator is also used as city gas, the heat generated from the gas engine can be used in the cogeneration system. This can greatly contribute to the reduction of gas consumption.
[0061]
The hot water may be heat exchange water heated by the exhaust gas of a gas engine using city gas as fuel, or it may be cooling water of the gas engine heated by an exhaust gas heat exchanger into which the exhaust gas is introduced. You can also. In any case, if the hot water supplied to the hot water heat exchanger is 83 to 95 ° C., energy saving in the multi-effect absorption refrigerator / cold hot / cold water heater is promoted.
[Brief description of the drawings]
FIG. 1 shows an entire system during heating operation of a reverse flow type absorption refrigerator / cooling / heating machine to which a heating operation method is applied in a multi-effect absorption refrigerator / cooling / heating machine according to the present invention. All or part of it bypasses the low-temperature heat exchanger and goes to the exhaust heat / hot water heat exchanger, and after the absorption liquid directed to the absorber is branched downstream of the low-temperature heat exchanger, all or part of it goes to the evaporator A system diagram when it is introduced.
FIG. 2 is a system diagram during cooling operation of the absorption refrigerator / cooling / heating device of FIG. 1;
FIG. 3 shows that the cogeneration system is used, and all or part of the absorbing liquid bypasses the low-temperature heat exchanger and goes to the exhaust heat / hot water heat exchanger, and all or part of the absorbing liquid that goes to the absorber The system figure at the time of making it introduce | transduce into an evaporator, without passing through a low-temperature heat exchanger.
[Fig. 4] All of the absorbing liquid passes through the low-temperature heat exchanger and goes to the exhaust heat hot water heat exchanger, and all or part of the absorbing liquid going to the absorber goes to the evaporator without passing through the low-temperature heat exchanger. A system diagram when it is introduced.
5 is a system diagram at the time of cooling operation of the absorption refrigerator / cooling / heating device of FIG. 4;
[Fig. 6] When applied to a parallel flow type absorption refrigerator / chiller / heater, where all or a part of the absorption liquid bypasses the low-temperature heat exchanger and a part of it becomes an exhaust heat / hot water heat exchanger. The system figure at the time of making all or one part introduce | transduce into an evaporator after making the absorption liquid which faces and goes to an absorber branch on the downstream side of a low-temperature heat exchanger.
FIG. 7 shows a case where it is applied to a parallel flow type absorption refrigerator / cooling / heating water machine, where all of the absorption liquid passes through the low-temperature heat exchanger and part of it is directed to the exhaust heat / hot water heat exchanger and absorbed. The system figure at the time of making it introduce | transduce into an evaporator, without all or one part of the absorption liquid which goes to a container pass a low-temperature heat exchanger.
FIG. 8 shows a case where the present invention is applied to a parallel flow type absorption refrigerator / cooling / heating machine, where all or a part of the absorption liquid bypasses the low-temperature heat exchanger and goes to the exhaust heat / hot water heat exchanger. The system figure at the time of making it introduce | transduce into an evaporator, without passing all or one part of the absorption liquid which goes to a low temperature heat exchanger.
FIG. 9 shows the case where the absorption liquid is applied to a parallel flow type absorption refrigerator / cooling / heating machine, and all of the absorption liquid passes through the low-temperature heat exchanger toward the exhaust heat / hot water heat exchanger and absorption toward the absorber. The system figure at the time of making it introduce | transduce into an evaporator, without all or one part of liquid passing a low-temperature heat exchanger.
FIG. 10 shows a case where the present invention is applied to a parallel flow type absorption refrigerator / chiller / heater, in which all or part of the absorption liquid bypasses the low-temperature heat exchanger and goes to the exhaust heat / hot water heat exchanger. The system figure at the time of making all or one part introduce | transduce into an evaporator, after making the absorption liquid which heads to the downstream of a low-temperature heat exchanger branch.
FIG. 11 shows a case where the present invention is applied to a parallel flow type absorption refrigerator / chiller / heater, in which an absorption liquid passes through a low-temperature heat exchanger, and all or a part thereof is directed to an exhaust heat / hot water heat exchanger. The system figure at the time of making it introduce | transduce into an evaporator, without all or one part of the absorption liquid which goes to a container pass a low-temperature heat exchanger.
[Fig. 12] When applied to a series flow type absorption refrigerator / chiller / heater, where all or part of the absorption liquid bypasses the low-temperature heat exchanger and all or part of it is waste heat / hot water heat exchange The system figure at the time of having made the absorption liquid which goes to a container and branching the absorption liquid which goes to an absorber on the downstream side of a low-temperature heat exchanger to introduce all or one part into an evaporator.
[Fig. 13] When applied to a series flow type absorption refrigerator / chiller / heater, the absorption liquid passes through the low-temperature heat exchanger, and all or part of it is directed to the exhaust heat / hot water heat exchanger. The system figure at the time of making it introduce | transduce into an evaporator, without all or one part of the absorption liquid which goes to a container pass a low-temperature heat exchanger.
FIG. 14 is a system diagram showing the entire system of an existing reverse flow type absorption refrigerator / cooling / heating machine as a prior art, during cooling operation.
15 is a system diagram at the time of heating operation of the absorption refrigerator / cooling / heating machine of FIG. 14;
FIG. 16 is a system diagram of a heating operation in a case where an entire system of an existing reverse flow type absorption refrigerator / chiller / heater as a conventional technology is provided with an exhaust heat / hot water heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Absorber, 1a ... Absorbing liquid, 1b ... Absorbing liquid, 2 ... Low temperature regenerator, 3 ... High temperature regenerator, 3b, 3b 7 ... absorbing liquid (concentrated absorbing liquid), 3s ... refrigerant vapor, 4 ... condenser, 5 ... evaporator, 5c ... spraying pipe, 5p ... evaporator pipe, 6 ... low temperature heat exchanger, 7 ... high temperature heat exchanger, 8 ... Hot water heat exchanger (exhaust heat hot water heat exchanger), 8s ... refrigerant vapor, 10 ... double effect absorption refrigerator / cold water heater, 12 ... gas engine, 12a ... exhaust heat hot water (externally generated hot water), 15 ... Exhaust gas heat exchanger, 20 ... cold / hot water, 21 2 , 21 Three , 21 8 ... Cooling / heating switching valve, 31 ... Bypass pipe, 31v ... Switching valve (cooling / heating switching valve), 32 ... Pipe line toward the absorber, 33 ... Extension pipe, 33v ... Switching valve (cooling / heating switching valve), 34, 34A ... branch line.

Claims (9)

吸収器、低温再生器、高温再生器、凝縮器、蒸発器、前記吸収器へ戻される吸収液が熱源として導入され吸収器から導出された吸収液を予熱する低温熱交換器、前記高温再生器から導出された吸収液が熱源として導入され高温再生器に向かう吸収液を予熱する高温熱交換器、系外より導入された外部生成温水と前記吸収器から低温熱交換器を経て導出された吸収液の全部または一部とを熱交換させる温水熱交換器が備えられた吸収冷凍機・冷温水機における暖房運転法において、
冷房時に前記吸収器から導出され低温熱交換器を経て前記温水熱交換器に向かう吸収液を、暖房時にはその全部もしくは一部を前記吸収器から直接前記温水熱交換器に向かわせ、
冷房時に前記低温熱交換器を介して前記吸収器へ戻される吸収液を、暖房時にはその全部もしくは一部を低温熱交換器から前記蒸発器へ供給し、
該蒸発器内の蒸発器管を流通する温水を系内発生冷媒蒸気で加熱すると共に、蒸発器へ供給された吸収液を前記蒸発器管に散布して加熱し、
蒸発器に吸収液を供給したことによって前記吸収器における吸収液濃度を低下させ、これによって吸収液飽和温度を低くして前記温水熱交換器における潜熱回収作用を増強させたことを特徴とする多重効用吸収冷凍機・冷温水機における暖房運転法。
Absorber, low-temperature regenerator, high-temperature regenerator, condenser, evaporator, low-temperature heat exchanger in which the absorption liquid returned to the absorber is introduced as a heat source and preheats the absorption liquid derived from the absorber, and the high-temperature regenerator Absorption liquid derived from the high temperature heat exchanger that preheats the absorption liquid toward the high temperature regenerator introduced as a heat source, externally generated hot water introduced from outside the system, and absorption derived from the absorber via the low temperature heat exchanger In the heating operation method in the absorption refrigerator / cooling / heating machine equipped with the hot water heat exchanger for exchanging heat with all or part of the liquid,
Absorbing liquid that is led out from the absorber during cooling and goes to the hot water heat exchanger via a low-temperature heat exchanger, and when heating, directs all or part of it from the absorber directly to the hot water heat exchanger,
Absorbing liquid returned to the absorber via the low-temperature heat exchanger during cooling, supplying all or part of the absorption liquid from the low-temperature heat exchanger to the evaporator during heating,
While heating the hot water flowing through the evaporator pipe in the evaporator with the generated refrigerant vapor in the system, the absorption liquid supplied to the evaporator is sprayed on the evaporator pipe and heated,
The absorption liquid is supplied to the evaporator to reduce the concentration of the absorption liquid in the absorber, thereby lowering the saturation temperature of the absorption liquid and enhancing the latent heat recovery action in the hot water heat exchanger. Heating operation method for utility absorption refrigerators and cold / hot water machines.
吸収器、低温再生器、高温再生器、凝縮器、蒸発器、前記吸収器へ戻される吸収液が熱源として導入され吸収器から導出された吸収液を予熱する低温熱交換器、前記高温再生器から導出された吸収液が熱源として導入され高温再生器に向かう吸収液を予熱する高温熱交換器、系外より導入された外部生成温水と前記吸収器から低温熱交換器を経て導出された吸収液の全部または一部とを熱交換させる温水熱交換器が備えられた吸収冷凍機・冷温水機における暖房運転法において、
冷房時に前記吸収器から導出され低温熱交換器を経て前記温水熱交換器に向かう吸収液を、暖房時にはその全部もしくは一部を前記吸収器から直接前記温水熱交換器に向かわせ、
冷房時に前記低温熱交換器を通過した後前記吸収器へ戻される吸収液を、暖房時にはその全部もしくは一部を低温熱交換器を通過させることなく前記蒸発器へ供給し、
該蒸発器内の蒸発器管を流通する温水を系内発生冷媒蒸気で加熱すると共に、蒸発器へ供給された吸収液を前記蒸発器管に散布して加熱し、
蒸発器に吸収液を供給したことによって前記吸収器における吸収液濃度を低下させ、これによって吸収液飽和温度を低くして前記温水熱交換器における潜熱回収作用を増強させたことを特徴とする多重効用吸収冷凍機・冷温水機における暖房運転法。
Absorber, low-temperature regenerator, high-temperature regenerator, condenser, evaporator, low-temperature heat exchanger in which the absorption liquid returned to the absorber is introduced as a heat source and preheats the absorption liquid derived from the absorber, and the high-temperature regenerator Absorption liquid derived from the high temperature heat exchanger that preheats the absorption liquid toward the high temperature regenerator introduced as a heat source, externally generated hot water introduced from outside the system, and absorption derived from the absorber via the low temperature heat exchanger In the heating operation method in the absorption refrigerator / cooling / heating machine equipped with the hot water heat exchanger for exchanging heat with all or part of the liquid,
Absorbing liquid that is led out from the absorber during cooling and goes to the hot water heat exchanger via a low-temperature heat exchanger, and when heating, directs all or part of it from the absorber directly to the hot water heat exchanger,
The absorption liquid returned to the absorber after passing through the low-temperature heat exchanger during cooling is supplied to the evaporator without passing through all or part of the absorption liquid during heating,
While heating the hot water flowing through the evaporator pipe in the evaporator with the generated refrigerant vapor in the system, the absorption liquid supplied to the evaporator is sprayed on the evaporator pipe and heated,
The absorption liquid is supplied to the evaporator to reduce the concentration of the absorption liquid in the absorber, thereby lowering the saturation temperature of the absorption liquid and enhancing the latent heat recovery action in the hot water heat exchanger. Heating operation method for utility absorption refrigerators and cold / hot water machines.
吸収器、低温再生器、高温再生器、凝縮器、蒸発器、前記吸収器へ戻される吸収液が熱源として導入され吸収器から導出された吸収液を予熱する低温熱交換器、前記高温再生器から導出された吸収液が熱源として導入され高温再生器に向かう吸収液を予熱する高温熱交換器、系外より導入された外部生成温水と前記吸収器から低温熱交換器を経て導出された吸収液の全部または一部とを熱交換させる温水熱交換器が備えられた吸収冷凍機・冷温水機における暖房運転法において、
冷房時に前記吸収器から導出され低温熱交換器を経て前記温水熱交換器に向かう吸収液を、暖房時にも同じ経路をたどって温水熱交換器に向かわせ、
冷房時に前記低温熱交換器を通過した後前記吸収器へ戻される吸収液を、暖房時にはその全部もしくは一部を低温熱交換器を通過させることなく前記蒸発器へ供給し、
該蒸発器内の蒸発器管を流通する温水を系内発生冷媒蒸気で加熱すると共に、蒸発器へ供給された吸収液を前記蒸発器管に散布して加熱し、
蒸発器に吸収液を供給したことによって前記吸収器における吸収液濃度を低下させ、これによって吸収液飽和温度を低くして前記温水熱交換器における潜熱回収作用を増強させたことを特徴とする多重効用吸収冷凍機・冷温水機における暖房運転法。
Absorber, low-temperature regenerator, high-temperature regenerator, condenser, evaporator, low-temperature heat exchanger in which the absorption liquid returned to the absorber is introduced as a heat source and preheats the absorption liquid derived from the absorber, and the high-temperature regenerator Absorption liquid derived from the high temperature heat exchanger that preheats the absorption liquid toward the high temperature regenerator introduced as a heat source, externally generated hot water introduced from outside the system, and absorption derived from the absorber via the low temperature heat exchanger In the heating operation method in the absorption refrigerator / cooling / heating machine equipped with the hot water heat exchanger for exchanging heat with all or part of the liquid,
Absorbing liquid that is led out from the absorber during cooling and goes to the hot water heat exchanger via a low-temperature heat exchanger, is directed to the hot water heat exchanger along the same path during heating,
The absorption liquid returned to the absorber after passing through the low-temperature heat exchanger during cooling is supplied to the evaporator without passing through all or part of the absorption liquid during heating,
While heating the hot water flowing through the evaporator pipe in the evaporator with the generated refrigerant vapor in the system, the absorption liquid supplied to the evaporator is sprayed on the evaporator pipe and heated,
The absorption liquid is supplied to the evaporator to reduce the concentration of the absorption liquid in the absorber, thereby lowering the saturation temperature of the absorption liquid and enhancing the latent heat recovery action in the hot water heat exchanger. Heating operation method for utility absorption refrigerators and cold / hot water machines.
前記外部生成温水は吸収冷凍機・冷温水機系外に設置された都市ガスを燃料とするガスエンジンの冷却水であり、前記高温再生器の加熱源も都市ガスであることを特徴とする請求項1ないし請求項3のいずれか一項に記載された多重効用吸収冷凍機・冷温水機における暖房運転法。  The externally generated hot water is a cooling water of a gas engine using a city gas as a fuel installed outside an absorption refrigerator / cooling / heating machine system, and a heating source of the high-temperature regenerator is a city gas. The heating operation method in the multi-effect absorption refrigerating machine / cooling / heating machine according to any one of claims 1 to 3. 前記外部生成温水は、都市ガスを燃料とするガスエンジンの排ガスで加熱された熱交換水であり、前記高温再生器の加熱源も都市ガスであることを特徴とする請求項1ないし請求項3のいずれか一項に記載された多重効用吸収冷凍機・冷温水機における暖房運転法。  4. The externally generated hot water is heat exchange water heated by an exhaust gas from a gas engine using city gas as fuel, and a heating source of the high temperature regenerator is also city gas. The heating operation method in the multi-effect absorption refrigerator / cooling / heating machine described in any one of the above. 前記外部生成温水は、都市ガスを燃料とするガスエンジンの排ガスが導入される排ガス熱交換器によって昇温されたガスエンジンの冷却水であり、前記高温再生器の加熱源も都市ガスであることを特徴とする請求項1ないし請求項3のいずれか一項に記載された多重効用吸収冷凍機・冷温水機における暖房運転法。  The externally generated hot water is cooling water of a gas engine heated by an exhaust gas heat exchanger into which exhaust gas of a gas engine using city gas as fuel is introduced, and a heating source of the high temperature regenerator is also city gas The heating operation method in the multi-effect absorption refrigerator / cooling / heating machine according to any one of claims 1 to 3. 前記温水熱交換器に導入される外部生成温水は、83ないし95℃であることを特徴とする請求項1ないし請求項6のいずれか一項に記載された多重効用吸収冷凍機・冷温水機における暖房運転法。  The multi-effect absorption refrigerator / cooling / heating machine according to any one of claims 1 to 6, wherein the externally generated warm water introduced into the hot water heat exchanger is 83 to 95 ° C. Heating operation method. 吸収器、低温再生器、高温再生器、凝縮器、蒸発器、前記吸収器へ戻される吸収液が熱源として導入され吸収器から導出された吸収液を予熱する低温熱交換器、前記高温再生器から導出された吸収液が熱源として導入され高温再生器に向かう吸収液を予熱する高温熱交換器、系外より導入された外部生成温水と前記吸収器から低温熱交換器を経て導出された吸収液の全部または一部とを熱交換させる温水熱交換器が備えられた吸収冷凍機・冷温水機において、
前記吸収器から導出された吸収液を低温熱交換器を経て前記温水熱交換器に向かわせる管路に、前記低温熱交換器を迂回するバイパス管路が設けられ、
前記低温熱交換器を介して吸収液を前記吸収器へ戻す管路に、前記蒸発器へ向かうイクステンション管路が接続されていることを特徴とする多重効用吸収冷凍機・冷温水機。
Absorber, low-temperature regenerator, high-temperature regenerator, condenser, evaporator, low-temperature heat exchanger in which the absorption liquid returned to the absorber is introduced as a heat source and preheats the absorption liquid derived from the absorber, and the high-temperature regenerator Absorption liquid derived from the high temperature heat exchanger that preheats the absorption liquid toward the high temperature regenerator introduced as a heat source, externally generated hot water introduced from outside the system, and absorption derived from the absorber via the low temperature heat exchanger In absorption refrigerators / cooling / heating machines equipped with hot water heat exchangers that exchange heat with all or part of the liquid,
A bypass line that bypasses the low-temperature heat exchanger is provided in a pipe that directs the absorption liquid derived from the absorber to the hot-water heat exchanger via a low-temperature heat exchanger,
A multi-effect absorption refrigerator / cooling / heating machine, wherein an extension conduit toward the evaporator is connected to a conduit for returning the absorbing liquid to the absorber via the low-temperature heat exchanger.
吸収器、低温再生器、高温再生器、凝縮器、蒸発器、前記吸収器へ戻される吸収液が熱源として導入され吸収器から導出された吸収液を予熱する低温熱交換器、前記高温再生器から導出された吸収液が熱源として導入され高温再生器に向かう吸収液を予熱する高温熱交換器、系外より導入された外部生成温水と前記吸収器から低温熱交換器を経て導出された吸収液の全部または一部とを熱交換させる温水熱交換器が備えられた吸収冷凍機・冷温水機において、
前記吸収器から導出された吸収液を低温熱交換器を経て前記温水熱交換器に向かわせる管路に、前記低温熱交換器を迂回するバイパス管路が設けられ、
前記吸収器に向かう吸収液を通過させる前記低温熱交換器が介在されている管路に、該低温熱交換器を通ることなく前記蒸発器へ向かうブランチ管路が設けられていることを特徴とする多重効用吸収冷凍機・冷温水機。
Absorber, low-temperature regenerator, high-temperature regenerator, condenser, evaporator, low-temperature heat exchanger in which the absorption liquid returned to the absorber is introduced as a heat source and preheats the absorption liquid derived from the absorber, and the high-temperature regenerator Absorption liquid derived from the high temperature heat exchanger that preheats the absorption liquid toward the high temperature regenerator introduced as a heat source, externally generated hot water introduced from outside the system, and absorption derived from the absorber via the low temperature heat exchanger In absorption refrigerators / cooling / heating machines equipped with hot water heat exchangers that exchange heat with all or part of the liquid,
A bypass line that bypasses the low-temperature heat exchanger is provided in a pipe that directs the absorption liquid derived from the absorber to the hot-water heat exchanger via a low-temperature heat exchanger,
A branch pipe that goes to the evaporator without passing through the low-temperature heat exchanger is provided in a pipe that interposes the low-temperature heat exchanger that passes the absorbing liquid that goes to the absorber. Multi-effect absorption refrigerator / cooling / heating machine.
JP2002008238A 2002-01-17 2002-01-17 Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine Expired - Lifetime JP4086505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008238A JP4086505B2 (en) 2002-01-17 2002-01-17 Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008238A JP4086505B2 (en) 2002-01-17 2002-01-17 Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine

Publications (2)

Publication Number Publication Date
JP2003207222A JP2003207222A (en) 2003-07-25
JP4086505B2 true JP4086505B2 (en) 2008-05-14

Family

ID=27646557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008238A Expired - Lifetime JP4086505B2 (en) 2002-01-17 2002-01-17 Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine

Country Status (1)

Country Link
JP (1) JP4086505B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982700B2 (en) * 2011-11-15 2016-08-31 川重冷熱工業株式会社 Absorption chiller / heater and operation method thereof
CN112880761B (en) * 2021-01-29 2022-12-20 山东中实易通集团有限公司 Method and system for measuring circulating water flow

Also Published As

Publication number Publication date
JP2003207222A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP2011075180A (en) Absorption type refrigerating machine
JP2011089722A (en) Method and device for refrigeration/air conditioning
WO2002018849A1 (en) Absorption refrigerating machine
KR101137582B1 (en) Single and double effect absorption refrigerator and operation control method therefor
JP5384072B2 (en) Absorption type water heater
JP3905986B2 (en) Waste heat utilization air conditioning system
JP4086505B2 (en) Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine
KR101363492B1 (en) High efficiency hybrid cooling/heating water apparatus with absorption type
JP3578207B2 (en) Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
JP4007795B2 (en) Absorption heat source equipment
JP3481530B2 (en) Absorption chiller / heater
JP4553523B2 (en) Absorption refrigerator
JP2000205691A (en) Absorption refrigerating machine
WO2002018850A1 (en) Absorption refrigerating machine
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP4007541B2 (en) Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP2003343939A (en) Absorption refrigerating machine
KR200154287Y1 (en) Absorption type air conditioner
KR200144045Y1 (en) Absorption type cooler
KR101045463B1 (en) Absorption type refrigerator having the solution heating condensor
JP2003176961A (en) Excess hot heat utilizing method in multiple-effect absorption refrigerator and water cooler/heater
JP2645948B2 (en) Hot water absorption absorption chiller / heater
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JP3851136B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4086505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

EXPY Cancellation because of completion of term