JP2000121196A - Cooling/heating system utilizing waste heat - Google Patents

Cooling/heating system utilizing waste heat

Info

Publication number
JP2000121196A
JP2000121196A JP10297165A JP29716598A JP2000121196A JP 2000121196 A JP2000121196 A JP 2000121196A JP 10297165 A JP10297165 A JP 10297165A JP 29716598 A JP29716598 A JP 29716598A JP 2000121196 A JP2000121196 A JP 2000121196A
Authority
JP
Japan
Prior art keywords
hot water
heat source
regenerator
temperature
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10297165A
Other languages
Japanese (ja)
Other versions
JP3905986B2 (en
Inventor
Kazuhiro Yoshii
一寛 吉井
Tatsumi Toki
達美 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29716598A priority Critical patent/JP3905986B2/en
Publication of JP2000121196A publication Critical patent/JP2000121196A/en
Application granted granted Critical
Publication of JP3905986B2 publication Critical patent/JP3905986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PROBLEM TO BE SOLVED: To provide a cooling/heating system which can deal with a partial cooling load in winter season where heating load prevails substantially. SOLUTION: Absorbing solution piping 21, 23 and refrigerant vapor piping 25 are provided with on/off valves V1, V2, V3 opening at the time of full cooling operation in summer season and closing in winter season. In winter season, refrigerant vapor generated from a high temperature regenerator 4 by heating is fed to a hot water unit 12 in order to heat up water flowing through a hot water heat exchanger 32A and heated water is circulated through a heating load 14. On the side of upper and lower shells 8, 3, water in the heat exchanger 28A of an evaporator 1 is cooled by refrigeration cycle utilizing engine cooling water being supplied from a low temperature heat source hot water supply piping 30 to a low temperature heat source regenerator heat exchanger 30A in a low temperature heat source regenerator 6. Cooling is peformed by circulating the cold water thus produced from cold water supply piping 28 to a cold water load 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発電用エンジンの冷
却水などが保有する熱、いわゆるを排熱を利用して熱効
率を高めるようにした冷暖房システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling and heating system in which heat efficiency of cooling water or the like of a power generating engine, that is, so-called exhaust heat is used to enhance thermal efficiency.

【0002】[0002]

【従来の技術】この種の装置として、例えば特開平7−
324839号公報に提案された一重二重効用吸収冷温
水機が周知である。
2. Description of the Related Art For example, Japanese Patent Application Laid-Open No.
The single double effect absorption chiller / heater proposed in Japanese Patent No. 324839 is well known.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した従来
の一重二重効用吸収冷温水機においては、冷/暖房の同
時供給が行えないと云った問題点があった。すなわち、
コジェネレーション対応(熱電併給)の吸収冷温水機に
おいても、冬季は当然暖房主体の運転となるが、排熱利
用のみで賄える程度の冷房が必要となるエリアが一部で
はあるが存在するので、このような要求にも対応できる
冷暖房システムを提供する必要があった。
However, the conventional single double effect absorption chiller / heater as described above has a problem that cooling / heating cannot be simultaneously supplied. That is,
Even in the absorption chiller / heater compatible with cogeneration (cogeneration), in winter, the operation will mainly be based on heating, but there are some areas that require cooling enough to use only the waste heat. It was necessary to provide a cooling and heating system that could meet such demands.

【0004】[0004]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するため、蒸発器、吸収器、高温再生器、低
温熱源用再生器、凝縮器、吸収液ポンプ、冷媒液ポン
プ、高温再生器に連結して設けた温水器、高温再生器に
供給されている吸収液と吸収器に戻されている吸収液と
が熱交換する吸収液/吸収液熱交換器、エンジン冷却水
など(以下、気体を含めて低熱源温水と云う)を供給す
る排熱熱源、排熱熱源と連結されて低熱源温水が保有す
る熱を汲み上げる排熱熱交換器などを配管接続し、蒸発
器から取り出した冷水を冷水負荷に供給して冷房などを
行い、温水器から取り出した温水を温水負荷に供給して
暖房などを行う排熱利用冷暖房システムにおいて、排熱
熱交換器に流れる低熱源温水と低温熱源用再生器に流れ
る低熱源温水の流量比率が制御可能に低熱源温水回路を
形成すると共に、排熱熱交換器で低熱源温水の保有する
熱を汲み上げた温水が温水器を経由して温水負荷に流れ
るように温水回路を形成し、さらに吸収器から高温再生
器に吸収液を供給する吸収液配管、高温再生器から凝縮
器に冷媒を供給する冷媒配管、高温再生器から吸収液/
吸収液熱交換器を経由して吸収器に吸収液を供給する吸
収液配管それぞれに開閉弁を設け、吸収器から低温熱源
用再生器に吸収液を供給する吸収液配管を設けたことを
特徴とする排熱利用冷暖房システムを提供するものであ
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, the present invention provides an evaporator, an absorber, a high-temperature regenerator, a regenerator for a low-temperature heat source, a condenser, an absorbing liquid pump, a refrigerant liquid pump, and a high-temperature pump. A water heater connected to a regenerator, an absorbent / absorbent heat exchanger for exchanging heat between the absorbent supplied to the high-temperature regenerator and the absorbent returned to the absorber, engine cooling water, etc. (Hereinafter referred to as low heat source hot water including gas.) A pipe is connected to the exhaust heat heat source that supplies the low heat source hot water that is connected to the exhaust heat heat source to pump the heat held by the low heat source hot water, and is taken out from the evaporator. In a cooling / heating system using waste heat, where cold water is supplied to a cold water load to perform cooling, etc., and hot water taken out of the water heater is supplied to the hot water load to perform heating, etc., the low heat source hot water flowing to the waste heat exchanger and the low temperature Flow rate of low heat source hot water flowing to heat source regenerator A low heat source hot water circuit is formed so that the rate can be controlled, and a hot water circuit is formed so that the hot water pumped up by the heat possessed by the low heat source hot water in the exhaust heat exchanger flows to the hot water load via the water heater, Further, an absorbent pipe for supplying the absorbing liquid from the absorber to the high-temperature regenerator, a refrigerant pipe for supplying the refrigerant from the high-temperature regenerator to the condenser, and an absorbing liquid /
An on-off valve is provided for each of the absorption liquid pipes that supply the absorption liquid to the absorber via the absorption liquid heat exchanger, and an absorption liquid pipe that supplies the absorption liquid from the absorber to the regenerator for the low-temperature heat source is provided. It is intended to provide a cooling / heating system utilizing waste heat.

【0005】[0005]

【発明の実施の形態】本発明の一実施形態を図1に基づ
いて説明する。図1に例示した本発明になる排熱利用冷
暖房システムは、例えば冷媒に水、吸収液(溶液)に臭
化リチウム(LiBr)溶液を用いるものであり、1は
蒸発器、2は吸収器、3は蒸発器1と吸収器2とを収納
した蒸発器吸収器胴(以下、下胴と云う)、4は加熱手
段としてのガスバーナ5を備えた高温再生器、6は低温
熱源用再生器、7は凝縮器、8は低温熱源用再生器6と
凝縮器7とを収納した低温熱源用再生器凝縮器胴(以
下、上胴と云う)、9は本システムの排熱熱源となる発
電用などのエンジン9、10はエンジン9を冷却して温
度が高くなった冷却水が供給される排熱熱交換器、11
は吸収液/吸収液熱交換器、12は温水器、13は冷水
負荷、14は温水負荷である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. The exhaust heat cooling / heating system according to the present invention illustrated in FIG. 1 uses, for example, water as a refrigerant and a lithium bromide (LiBr) solution as an absorbing liquid (solution), where 1 is an evaporator, 2 is an absorber, Reference numeral 3 denotes an evaporator absorber body (hereinafter, referred to as a lower body) accommodating the evaporator 1 and the absorber 2, 4 denotes a high-temperature regenerator provided with a gas burner 5 as a heating means, 6 denotes a regenerator for a low-temperature heat source, 7 is a condenser, 8 is a low temperature heat source regenerator condenser body (hereinafter referred to as an upper body) containing a low temperature heat source regenerator 6 and a condenser 7, and 9 is a power generation exhaust heat source of the present system. Engines 9 and 10 are exhaust heat exchangers to which cooling water whose temperature is increased by cooling the engine 9 is supplied.
Is an absorbent / absorbent heat exchanger, 12 is a water heater, 13 is a cold water load, and 14 is a hot water load.

【0006】2Aは吸収器2の下部に形成された稀吸収
液溜りであり、この稀吸収液溜り2Aと高温再生器4の
気相部とは、途中に吸収液ポンプP1と吸収液/吸収液
熱交換器11と開閉弁V1とを備えた吸収液配管21に
より配管接続されている。また、吸収液配管21の開閉
弁V1上流側と低温熱源用再生器6の気相部とは吸収液
配管22によって配管接続されている。
Reference numeral 2A denotes a rare absorbing liquid reservoir formed at the lower portion of the absorber 2. The rare absorbing liquid reservoir 2A and the gas phase of the high-temperature regenerator 4 have an absorbing liquid pump P1 and an absorbing liquid / absorbing liquid in the middle. The liquid heat exchanger 11 and the on-off valve V1 are connected by an absorbing liquid pipe 21 provided with the pipe. The upstream side of the on-off valve V1 of the absorbent pipe 21 and the gas phase of the regenerator 6 for low-temperature heat source are connected by an absorbent pipe 22.

【0007】4Aは高温再生器4に形成された濃吸収液
溜りであり、この濃吸収液溜り4Aと低温熱源用再生器
6の吸収液溜り6Aとは、途中に開閉弁V2を備えた吸
収液配管23によって配管接続されている。また、吸収
液配管23の開閉弁V2下流側と吸収器2の気相部に設
けられた濃吸収液散布装置2Bとは、吸収液/吸収液熱
交換器11を経由する吸収液配管24によって配管接続
されている。
Reference numeral 4A denotes a concentrated absorbing liquid reservoir formed in the high-temperature regenerator 4. The concentrated absorbing liquid reservoir 4A and the absorbing liquid reservoir 6A of the low-temperature heat source regenerator 6 have an on-off valve V2 provided on the way. They are connected by a liquid pipe 23. Further, the downstream side of the on-off valve V2 of the absorbent pipe 23 and the concentrated absorbent spray device 2B provided in the gas phase of the absorber 2 are connected by the absorbent pipe 24 passing through the absorbent / absorbent heat exchanger 11. Piping is connected.

【0008】25は高温再生器4の気相部から上胴8に
至る冷媒蒸気配管であり、途中に開閉弁V3を備えて、
凝縮器7に開口している。
Reference numeral 25 denotes a refrigerant vapor pipe extending from the gas phase portion of the high-temperature regenerator 4 to the upper body 8, provided with an on-off valve V3 on the way.
Open to the condenser 7.

【0009】26は凝縮器7の底部と蒸発器1の気相部
とを配管接続する冷媒液配管であり、この冷媒液配管2
6の途中にはUシール部26Aが形成されている。ま
た、27は蒸発器1の冷媒液溜り1Aと冷媒液散布装置
1Bとを配管接続する冷媒液配管であり、この冷媒液配
管27の途中に冷媒液ポンプP2が設けられている。
Reference numeral 26 denotes a refrigerant liquid pipe for connecting the bottom of the condenser 7 to the gas phase of the evaporator 1.
A U seal portion 26A is formed in the middle of 6. Reference numeral 27 denotes a refrigerant liquid pipe for connecting the refrigerant liquid reservoir 1A of the evaporator 1 to the refrigerant liquid spraying device 1B. A refrigerant liquid pump P2 is provided in the refrigerant liquid pipe 27.

【0010】28は蒸発器1内に設置した蒸発器熱交換
器28Aと冷水負荷13とを接続して冷水回路を形成し
ている冷水供給配管であり、途中に冷水ポンプP3を備
えている。また、29は冷却水供給配管であり、この冷
却水供給配管29は冷却塔(図示せず)から吸収器熱交
換器29A・凝縮器熱交換器29Bを経て冷却塔に還流
する冷却水の循環路を形成している。
Reference numeral 28 denotes a chilled water supply pipe which connects the chilled water load 13 with the evaporator heat exchanger 28A installed in the evaporator 1 to form a chilled water circuit, and includes a chilled water pump P3 on the way. Reference numeral 29 denotes a cooling water supply pipe. The cooling water supply pipe 29 circulates cooling water from the cooling tower (not shown) to the cooling tower via the absorber heat exchanger 29A and the condenser heat exchanger 29B. Forming a road.

【0011】30はエンジン9と排熱熱交換器10と低
温熱源用再生器6内に設置した低温熱源用再生器熱交換
器30Aとを配管接続してエンジン冷却水の回路を形成
している低熱源温水供給配管であり、途中にエンジン冷
却水ポンプP4と、三方弁V4とV5とを備えて、エン
ジン9を冷却して95℃程度に温度が上昇したエンジン
冷却水が排熱熱交換器10と低温熱源用再生器熱交換器
30Aとに所望の比率で供給できるように配管接続され
ている。
A pipe 30 connects the engine 9, the exhaust heat exchanger 10, and the low-temperature heat source regenerator heat exchanger 30A installed in the low-temperature heat source regenerator 6 to form a circuit for engine cooling water. This is a low heat source hot water supply pipe, which is provided with an engine cooling water pump P4 and three-way valves V4 and V5 on the way to cool the engine 9 and raise the temperature of the engine cooling water to about 95 ° C., and the exhaust water heat exchanger The pipes are connected so that they can be supplied at a desired ratio to the low-temperature heat source regenerator heat exchanger 30A.

【0012】25Aは冷媒蒸気配管25の開閉弁V3上
流側から分岐し、温水器12の気相部に至る冷媒蒸気配
管である。31は温水器12の底部と高温再生器4の気
相部とを配管接続している冷媒液配管である。
Reference numeral 25A denotes a refrigerant vapor pipe branched from the upstream side of the on-off valve V3 of the refrigerant vapor pipe 25 and reaching the gas phase of the water heater 12. Reference numeral 31 denotes a refrigerant liquid pipe connecting the bottom of the water heater 12 and the gas phase of the high-temperature regenerator 4.

【0013】32は温水器12内に設置した温水器熱交
換器32Aと排熱熱交換器10と温水負荷14とを直列
に配管接続して温水回路を形成している温水供給配管で
あり、途中に温水ポンプP5を備えている。
Reference numeral 32 denotes a hot water supply pipe which forms a hot water circuit by connecting a hot water heat exchanger 32A, a waste heat heat exchanger 10, and a hot water load 14 in series in the water heater 12 to form a hot water circuit. A hot water pump P5 is provided on the way.

【0014】S1は冷水供給配管28の蒸発器1出口部
に設置されてこの中を流れている冷水の温度を検出して
制御器Cに出力する温度センサ、S2は温水供給配管3
2の温水器12出口部に設置されてこの中を流れている
温水の温度を検出して制御器Cに出力する温度センサで
ある。
S1 is a temperature sensor installed at the outlet of the evaporator 1 of the chilled water supply pipe 28 to detect the temperature of the chilled water flowing therethrough and output it to the controller C. S2 is a hot water supply pipe 3
2 is a temperature sensor which is installed at the outlet of the second water heater 12 and detects the temperature of the hot water flowing therethrough and outputs it to the controller C.

【0015】冷水負荷13が小さく、温水負荷14が大
きい冬季の運転においては、開閉弁V1・V2・V3を
閉弁し、高温再生器4と下胴3・上胴8とを回路的に切
り離して、それぞれ単独で運転する。
In winter operation when the cold water load 13 is small and the hot water load 14 is large, the on-off valves V1, V2 and V3 are closed, and the high temperature regenerator 4 and the lower body 3 and the upper body 8 are separated from each other in a circuit. And drive alone.

【0016】すなわち、高温再生器4から回路的に切り
離された下胴3・上胴8側では、制御器Cによって吸収
液ポンプP1・冷媒液ポンプP2・冷水ポンプP3・エ
ンジン冷却水ポンプP4が運転されると共に、冷却水供
給配管29からは吸収器2と凝縮器7とに冷却水が供給
され、低熱源温水供給配管30からはエンジン9を冷却
して95℃程度に温度上昇したエンジン冷却水が低温熱
源用再生器6内の低温熱源用再生器熱交換器30Aに循
環供給されるので、吸収器2の稀吸収液溜り2Aから吸
収液配管21・22を介して吸収液ポンプP1により上
胴8の低温熱源用再生器6に送り込まれた稀吸収液は、
低温熱源用再生器熱交換器30Aの管壁を介してエンジ
ン冷却水により加熱され、冷媒を蒸発分離する。
That is, on the lower trunk 3 and the upper trunk 8 side which are separated from the high temperature regenerator 4 in circuit, the controller C controls the absorption liquid pump P1, the refrigerant liquid pump P2, the cold water pump P3, and the engine cooling water pump P4. During operation, cooling water is supplied to the absorber 2 and the condenser 7 from the cooling water supply pipe 29, and the engine cooling is performed from the low heat source hot water supply pipe 30 to cool the engine 9 and increase the temperature to about 95 ° C. Since the water is circulated and supplied to the low-temperature heat source regenerator heat exchanger 30A in the low-temperature heat source regenerator 6, the absorption liquid pump P1 from the rare absorption liquid reservoir 2A of the absorber 2 through the absorption liquid pipes 21 and 22. The rare absorbing liquid sent to the low temperature heat source regenerator 6 of the upper body 8 is
The regenerator for low-temperature heat source is heated by the engine cooling water through the tube wall of the heat exchanger 30A, and the refrigerant is evaporated and separated.

【0017】冷媒を蒸発分離して吸収液濃度が高くなっ
た吸収液は、吸収液配管23・24を経て吸収液/吸収
液熱交換器11で吸収器2から低温熱源用再生器6に送
られている温度の低い稀吸収液を加熱し、自身の温度を
下げて吸収器2の濃吸収液散布装置2Bから吸収器熱交
換器29Aに散布され、吸収器2に戻される。
The absorption liquid whose absorption liquid concentration has been increased by evaporating and separating the refrigerant is sent from the absorber 2 to the low-temperature heat source regenerator 6 in the absorption liquid / absorption liquid heat exchanger 11 through the absorption liquid pipes 23 and 24. The diluted absorbent having a low temperature is heated, the temperature of the diluted absorbent is lowered, and the concentrated absorbent is dispersed from the concentrated absorbent dispersion device 2B of the absorber 2 to the absorber heat exchanger 29A and returned to the absorber 2.

【0018】一方、低温熱源用再生器6でエンジン冷却
水により加熱され吸収液から蒸発分離した冷媒蒸気は凝
縮器7に入り、冷却水供給配管29の凝縮器熱交換器2
9B内を流れる冷却水に放熱して凝縮し、冷媒液配管2
6を通って蒸発器1に流入する。
On the other hand, the refrigerant vapor heated by the engine cooling water in the regenerator 6 for low-temperature heat source and evaporated and separated from the absorbing liquid enters the condenser 7, and enters the condenser heat exchanger 2 in the cooling water supply pipe 29.
9B, radiates heat and condenses into the cooling water flowing through the cooling water pipe 9B.
6 into the evaporator 1.

【0019】蒸発器1の冷媒液溜り1Aに溜った冷媒液
は、冷媒液配管27の冷媒液ポンプP2の運転によっ
て、冷媒液散布装置1Bから蒸発器熱交換器28Aに散
布される。そして、冷媒液は蒸発器熱交換器28Aの内
部を通る冷水から蒸発熱を奪って蒸発するので、蒸発器
熱交換器28Aの内部を通る冷水は冷却され、こうして
温度を下げた冷水が冷水供給配管28から冷水負荷13
に供給されて冷房などが行われる。
The refrigerant liquid accumulated in the refrigerant liquid reservoir 1A of the evaporator 1 is sprayed from the refrigerant liquid spraying device 1B to the evaporator heat exchanger 28A by the operation of the refrigerant liquid pump P2 of the refrigerant liquid pipe 27. Then, the refrigerant liquid evaporates by taking away the heat of evaporation from the cold water passing through the inside of the evaporator heat exchanger 28A, so that the cold water passing through the inside of the evaporator heat exchanger 28A is cooled. Cold water load 13 from pipe 28
Is supplied to the air conditioner to perform cooling or the like.

【0020】そして、蒸発器1で蒸発した冷媒は吸収器
2へ流入し、低温熱源用再生器6より供給されて濃吸収
液散布装置2Bから散布される吸収液に吸収されて、稀
吸収液溜り2Aに溜り吸収液ポンプP1により低温熱源
用再生器6に送られる。
The refrigerant evaporated in the evaporator 1 flows into the absorber 2 and is supplied from the regenerator 6 for the low-temperature heat source and is absorbed by the absorbing liquid scattered from the concentrated absorbing liquid spraying device 2B. The liquid is collected in the pool 2A and sent to the low-temperature heat source regenerator 6 by the absorbent pump P1.

【0021】冷媒と吸収液の上記一重効用冷凍サイクル
において、温度センサS1が検出して出力する温度、す
なわち蒸発器1内の蒸発器熱交換器28Aで冷却され、
冷水供給配管28に流れ出た冷水が所定の温度、例えば
7℃になるように低温熱源用再生器6における冷媒蒸気
の発生量、具体的には低熱源温水供給配管30から低温
熱源用再生器熱交換器30Aに取り込むエンジン冷却水
の量、すなわち三方弁V4の開度が制御器Cにより制御
されるので、冷水供給配管28を介して冷水負荷13に
は所定の温度の冷水が循環するようになり、この冷水に
よって冷房などが行われる。
In the single effect refrigeration cycle of the refrigerant and the absorbing liquid, the temperature detected and output by the temperature sensor S1, that is, cooled by the evaporator heat exchanger 28A in the evaporator 1,
The amount of refrigerant vapor generated in the low-temperature heat source regenerator 6, specifically, the low-temperature heat source regenerator heat from the low-temperature heat source hot water supply pipe 30 so that the cold water flowing into the cold water supply pipe 28 has a predetermined temperature, for example, 7 ° C. The amount of engine cooling water taken into the exchanger 30A, that is, the opening of the three-way valve V4 is controlled by the controller C, so that cold water of a predetermined temperature circulates in the cold water load 13 through the cold water supply pipe 28. The cooling water is used for cooling.

【0022】なお、三方弁V5は、エンジン9に戻るエ
ンジン冷却水の温度が所定温度、例えば70℃を下回る
ことがない範囲で、エンジン冷却水が排熱熱交換器10
に流れるようにその開度が制御され、温水供給配管32
を通って温水ポンプP5により送られてくる温水を加熱
する。
It should be noted that the three-way valve V5 allows the engine cooling water to return to the exhaust heat exchanger 10 within a range where the temperature of the engine cooling water returning to the engine 9 does not fall below a predetermined temperature, for example, 70 ° C.
The opening is controlled so as to flow through the hot water supply pipe 32.
The hot water sent by the hot water pump P5 through the hot water is heated.

【0023】そして、高温再生器4の側では温水ポンプ
P5を起動すると共に、ガスバーナ5に点火して高温再
生器4内の吸収液を加熱し、吸収液に溶解している冷媒
を蒸発分離させると、高温再生器で加熱生成された冷媒
蒸気は冷媒蒸気配管25・25Aを通って温水器12に
流入し、排熱熱交換器10でエンジン冷却水により加熱
され温水ポンプP5によって温水供給配管32の温水器
熱交換器32A内を流されている温水に放熱してこれを
加熱すると共に、冷媒自身は凝縮し、冷媒液配管31を
通って高温再生器4に戻り再び加熱されると云った冷媒
循環が起こる。
On the side of the high-temperature regenerator 4, the hot water pump P5 is started, and the gas burner 5 is ignited to heat the absorption liquid in the high-temperature regenerator 4 and evaporate and separate the refrigerant dissolved in the absorption liquid. Then, the refrigerant vapor heated and generated by the high-temperature regenerator flows into the water heater 12 through the refrigerant vapor pipes 25 and 25A, is heated by the engine cooling water in the exhaust heat exchanger 10, and is supplied by the hot water pump P5 to the hot water supply pipe 32. It is said that while radiating heat to the hot water flowing in the water exchanger 32A and heating it, the refrigerant itself condenses and returns to the high temperature regenerator 4 through the refrigerant liquid pipe 31 to be heated again. Refrigerant circulation occurs.

【0024】このとき、温度センサS2が計測して出力
する温水が所定の温度、例えば55℃になるように、ガ
スバーナ5の火力、具体的にはガスバーナ5に供給する
ガスの量が制御器Cによって制御されるので、温水供給
配管32を介して温水負荷14に循環供給される所定の
温度の温水によって暖房などが行なわれる。
At this time, the thermal power of the gas burner 5, specifically, the amount of gas supplied to the gas burner 5 is controlled by the controller C so that the hot water measured and output by the temperature sensor S2 becomes a predetermined temperature, for example, 55 ° C. Therefore, heating or the like is performed by hot water of a predetermined temperature circulated and supplied to the hot water load 14 through the hot water supply pipe 32.

【0025】なお、夏季には開閉弁V1・V2・V3を
開弁して、高温再生器4と下胴3・上胴8とを連通さ
せ、一重効用の冷凍サイクルを形成して冷水負荷13へ
の冷水供給のみを行う。このとき、温水ポンプP5は停
止する。
In the summer, the on-off valves V1, V2, and V3 are opened to communicate the high temperature regenerator 4 with the lower body 3 and the upper body 8 to form a single-effect refrigeration cycle and load the chilled water 13 Supply only cold water to At this time, the hot water pump P5 stops.

【0026】この一重効用冷凍サイクルによる冷水供給
運転では、冷媒を吸収して吸収器2の稀吸収液溜り2A
に溜った稀吸収液は、吸収液ポンプP1によって高温再
生器4と低温熱源用再生器6とに分岐して送られる。
In the chilled water supply operation by the single-effect refrigeration cycle, the refrigerant is absorbed and the rare absorbing liquid reservoir 2A of the absorber 2 is absorbed.
The rare absorbing liquid accumulated in the tank is branched and sent to the high-temperature regenerator 4 and the low-temperature heat source regenerator 6 by the absorbing liquid pump P1.

【0027】高温再生器4と低温熱源用再生器6とに送
られた稀吸収液は、それぞれガスバーナ5と、エンジン
9の冷却水によって加熱され、冷媒を蒸発分離して吸収
液濃度を高める。
The diluted absorption liquid sent to the high-temperature regenerator 4 and the low-temperature heat source regenerator 6 is heated by the gas burner 5 and the cooling water of the engine 9, respectively, and evaporates and separates the refrigerant to increase the absorption liquid concentration.

【0028】そして、高温再生器4と低温熱源用再生器
6で冷媒を蒸発分離して生成された濃吸収液は、吸収液
配管24に一緒になって流れ込み、吸収液/吸収液熱交
換器11で吸収器2から高温再生器4と低温熱源用再生
器6とに送られている温度の低い稀吸収液と熱交換して
これを加熱し、自身の温度を下げて濃吸収液散布装置2
Bから散布され、吸収器2に戻される。
Then, the concentrated absorbent generated by evaporating and separating the refrigerant in the high-temperature regenerator 4 and the low-temperature heat source regenerator 6 flows together into the absorbent pipe 24, and flows into the absorbent / absorbent heat exchanger. At 11, heat exchange is performed with the low-temperature rare absorbing liquid sent from the absorber 2 to the high-temperature regenerator 4 and the low-temperature heat source regenerator 6, and the diluted absorbing liquid is heated. 2
B and is returned to the absorber 2.

【0029】一方、高温再生器4と低温熱源用再生器6
とで加熱されて稀吸収液から蒸発分離した冷媒蒸気は共
に凝縮器7に入り、冷却水供給配管29の凝縮器熱交換
器29B内を流れる冷却水に放熱して凝縮する。
On the other hand, the high temperature regenerator 4 and the low temperature heat source regenerator 6
Then, the refrigerant vapor heated and vaporized and separated from the diluted absorption liquid together enters the condenser 7 and radiates heat to the cooling water flowing in the condenser heat exchanger 29B of the cooling water supply pipe 29 to condense.

【0030】凝縮器7で放熱して凝縮した冷媒液は蒸発
器1に流入し、その後は冬季の一重効用運転の場合と同
様に、冷媒液配管27の冷媒液ポンプP2によって冷媒
液散布装置1Bから蒸発器熱交換器28Aに散布され、
蒸発器熱交換器28Aの内部を流れる冷水から蒸発熱を
奪って蒸発し、吸収器2へ流入して高温再生器4と低温
熱源用再生器6とから供給されて濃吸収液散布装置2B
から散布される濃吸収液に吸収され、稀吸収液となって
稀吸収液溜り2Aに溜ったのち、吸収液ポンプP1によ
って高温再生器4と低温熱源用再生器6とに分岐して送
られる。
The refrigerant liquid radiated and condensed by the condenser 7 flows into the evaporator 1 and thereafter, as in the case of the single effect operation in winter, by the refrigerant liquid pump P2 of the refrigerant liquid pipe 27, the refrigerant liquid spraying device 1B From the evaporator heat exchanger 28A,
The cold water flowing inside the evaporator heat exchanger 28A evaporates by removing the heat of evaporation from the cold water, flows into the absorber 2, is supplied from the high-temperature regenerator 4 and the regenerator 6 for the low-temperature heat source, and is sprayed with the concentrated absorbent 2B.
Is absorbed by the concentrated absorbing solution sprayed from the reservoir, becomes a rare absorbing solution, accumulates in the rare absorbing solution reservoir 2A, and is branched and sent to the high temperature regenerator 4 and the low temperature heat source regenerator 6 by the absorbing solution pump P1. .

【0031】そして、冷水供給配管28の蒸発器熱交換
器28Aの内部で冷媒に蒸発熱を奪われて温度を下げた
冷水は、冷水負荷13に循環供給されて冷房などが行わ
れる。
The chilled water whose temperature has been reduced by depriving the refrigerant of heat of evaporation inside the evaporator heat exchanger 28A of the chilled water supply pipe 28 is circulated and supplied to the chilled water load 13 to perform cooling or the like.

【0032】この冷水供給運転において、吸収液から冷
媒を蒸発分離する加熱は上胴8の低温熱源用再生器6に
おける加熱を優先し、不足分を高温再生器4で補うよう
に制御する。
In this cold water supply operation, the heating for evaporating and separating the refrigerant from the absorbing liquid is given priority to the heating in the regenerator 6 for the low-temperature heat source of the upper body 8, and the shortage is controlled by the high-temperature regenerator 4.

【0033】すなわち、制御器Cは温度センサS1が検
出している冷水が所定の例えば7℃になるように、低熱
源温水供給配管30から低温熱源用再生器熱交換器30
Aに取り込むエンジン冷却水の流量とガスバーナ5の火
力とを制御するが、先ず低熱源温水供給配管30から低
温熱源用再生器熱交換器30Aに取り込むエンジン冷却
水の流量を許容される範囲内で最大となるように三方弁
V4を制御し、この状態で温度センサS1が検出してい
る冷水の温度が7℃になるようにガスバーナ5の火力を
制御するので、ガスバーナ5で消費する燃料費が節約で
きる。
That is, the controller C sends the low-temperature heat source regenerator heat exchanger 30 from the low-heat-source hot-water supply pipe 30 so that the cold water detected by the temperature sensor S1 becomes a predetermined temperature of, for example, 7 ° C.
The flow rate of the engine cooling water to be taken into A and the thermal power of the gas burner 5 are controlled. First, the flow rate of the engine cooling water taken into the low temperature heat source regenerator heat exchanger 30A from the low heat source hot water supply pipe 30 is within an allowable range. Since the three-way valve V4 is controlled to be the maximum and the thermal power of the gas burner 5 is controlled so that the temperature of the cold water detected by the temperature sensor S1 becomes 7 ° C. in this state, the fuel cost consumed by the gas burner 5 is reduced. Can save.

【0034】ところで、本発明は上記実施形態に限定さ
れるものではないので、特許請求の範囲に記載の趣旨か
ら逸脱しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above embodiment, various modifications can be made without departing from the spirit of the present invention.

【0035】例えば、高温再生器4から供給される冷媒
蒸気によって吸収液を再加熱して冷媒を蒸発分離するも
う一つの低温熱源用再生器を付け加えたり、高温再生器
4で加熱生成した冷媒蒸気を上胴8に導く冷媒蒸気配管
25が低温熱源用再生器6の内部を経由して凝縮器7に
至る、いわゆる二重効用のように配管することもでき
る。
For example, another regenerator for a low-temperature heat source for reheating the absorbing liquid by the refrigerant vapor supplied from the high-temperature regenerator 4 to evaporate and separate the refrigerant may be added, or the refrigerant vapor generated by heating the high-temperature regenerator 4 may be added. May be connected to the condenser 7 via the inside of the regenerator 6 for the low-temperature heat source, that is, the refrigerant vapor pipe 25 for leading to the upper body 8.

【0036】また、夏季の全面冷房運転時に閉弁する開
閉弁を冷媒液配管31に設置し、夏季の冷房運転時に高
温再生器4で蒸発分離された冷媒が温水器12を経由し
て高温再生器4に戻ることがないようにすることもでき
る。
An on-off valve that closes during the full cooling operation in the summer is installed in the refrigerant liquid pipe 31, and the refrigerant evaporated and separated by the high temperature regenerator 4 during the cooling operation in the summer is regenerated to a high temperature through the water heater 12. It is also possible not to return to the vessel 4.

【0037】また、低温熱源用再生器6・排熱熱交換器
10に供給する低熱源流体としては、エンジン9から出
る高温の排気ガスなどであっても良い。
The low heat source fluid supplied to the low temperature heat source regenerator 6 and the exhaust heat exchanger 10 may be high temperature exhaust gas from the engine 9 or the like.

【0038】[0038]

【発明の効果】以上説明したように本発明の排熱利用冷
暖房システムにおいては、発電機の冷却に使用した冷却
水などを用いる効率の高い冷房運転が夏期に行えるのは
勿論、殆どが暖房負荷となる冬季にはガスや油などを燃
料とした暖房運転を行いながら、一部に残る冷房負荷に
は前記冷却水などを利用した冷房運転で対応することが
できるので、利用価値が高い。
As described above, in the cooling / heating system utilizing waste heat according to the present invention, not only the cooling operation with high efficiency using the cooling water used for cooling the generator can be performed in summer, but also the heating load is almost always increased. In the winter season, while performing a heating operation using gas, oil, or the like as a fuel, the remaining cooling load can be dealt with by the cooling operation using the cooling water or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる冷暖房システムの構成図である。FIG. 1 is a configuration diagram of a cooling and heating system according to the present invention.

【符号の説明】[Explanation of symbols]

1 蒸発器 1B 冷媒液散布装置 2 吸収器 2B 濃吸収液散布装置 3 下胴(蒸発器吸収器胴) 4 高温再生器 5 ガスバーナ 6 低温熱源用再生器 7 凝縮器 8 上胴(低温熱源用再生器凝縮器胴) 9 エンジン 10 排熱熱交換器 11 吸収液/吸収液熱交換器 12 温水器 13 冷水負荷 14 温水負荷 21・22・23・24 吸収液配管 25・25A 冷媒蒸気配管 26・27 冷媒液配管 28 冷水供給配管 28A 蒸発器熱交換器 29 冷却水供給配管 29A 吸収器熱交換器 29B 凝縮器熱交換器 30 低熱源温水供給配管 30A 低温熱源用再生器熱交換器 31 冷媒液配管 32 温水供給配管 32A 温水器熱交換器 C 制御器 P1 吸収液ポンプ P2 冷媒液ポンプ P3 冷水ポンプ P4 エンジン冷却水ポンプ P5 温水ポンプ S1・S2 温度センサ V1・V2・V3 開閉弁 V4・V5 三方弁 DESCRIPTION OF SYMBOLS 1 Evaporator 1B Refrigerant liquid spraying apparatus 2 Absorber 2B Thick absorbing liquid spraying apparatus 3 Lower body (evaporator absorber body) 4 High temperature regenerator 5 Gas burner 6 Low temperature heat source regenerator 7 Condenser 8 Upper body (Low temperature heat source regeneration) 9 Engine 10 Exhaust heat exchanger 11 Absorbent / absorbent heat exchanger 12 Water heater 13 Cold water load 14 Hot water load 21 ・ 22 ・ 23 ・ 24 Absorbent pipe 25 ・ 25A Refrigerant vapor pipe 26 ・ 27 Refrigerant liquid pipe 28 Cold water supply pipe 28A Evaporator heat exchanger 29 Cooling water supply pipe 29A Absorber heat exchanger 29B Condenser heat exchanger 30 Low heat source hot water supply pipe 30A Low temperature heat source regenerator heat exchanger 31 Refrigerant liquid pipe 32 Hot water supply pipe 32A Water heater heat exchanger C Controller P1 Absorbent pump P2 Refrigerant pump P3 Cold water pump P4 Engine cooling water pump P5 Hot water pump S1 / S 2 Temperature sensor V1, V2, V3 On-off valve V4, V5 Three-way valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器、吸収器、高温再生器、低温熱源
用再生器、凝縮器、吸収液ポンプ、冷媒液ポンプ、高温
再生器に連結して設けた温水器、高温再生器に供給され
ている吸収液と吸収器に戻されている吸収液とが熱交換
する吸収液/吸収液熱交換器、エンジン冷却水など(以
下、気体を含めて低熱源温水と云う)を供給する排熱熱
源、排熱熱源と連結されて低熱源温水が保有する熱を汲
み上げる排熱熱交換器などを配管接続し、蒸発器から取
り出した冷水を冷水負荷に供給して冷房などを行い、温
水器から取り出した温水を温水負荷に供給して暖房など
を行う排熱利用冷暖房システムにおいて、排熱熱交換器
に流れる低熱源温水と低温熱源用再生器に流れる低熱源
温水の流量比率が制御可能に低熱源温水回路を形成する
と共に、排熱熱交換器で低熱源温水の保有する熱を汲み
上げた温水が温水器を経由して温水負荷に流れるように
温水回路を形成し、さらに吸収器から高温再生器に吸収
液を供給する吸収液配管、高温再生器から凝縮器に冷媒
を供給する冷媒配管、高温再生器から吸収液/吸収液熱
交換器を経由して吸収器に吸収液を供給する吸収液配管
それぞれに開閉弁を設け、吸収器から低温熱源用再生器
に吸収液を供給する吸収液配管を設けたことを特徴とす
る排熱利用冷暖房システム。
1. An evaporator, an absorber, a high-temperature regenerator, a regenerator for a low-temperature heat source, a condenser, an absorption liquid pump, a refrigerant liquid pump, and a water heater and a high-temperature regenerator connected to the high-temperature regenerator. Liquid / absorptive liquid heat exchanger for exchanging heat between the absorbing liquid and the absorbing liquid returned to the absorber, exhaust heat for supplying engine cooling water, etc. (hereinafter referred to as low heat source hot water including gas) A pipe is connected to a heat source, an exhaust heat exchanger that is connected to the exhaust heat source to pump the heat held by the low heat source hot water, and supplies cold water taken out of the evaporator to the cold water load to perform cooling, etc. In an exhaust heat cooling and heating system that supplies the extracted hot water to a hot water load and performs heating, etc., the flow rate ratio of the low heat source hot water flowing to the waste heat exchanger and the low heat source hot water flowing to the low temperature heat source regenerator can be controlled. A heat source hot water circuit is formed, and exhaust heat exchange A hot water circuit is formed so that the hot water pumped up by the heat from the low heat source hot water flows into the hot water load via the hot water heater, and an absorbent pipe for supplying the absorbent from the absorber to the high temperature regenerator. An on-off valve is provided for each of the refrigerant pipe for supplying the refrigerant from the regenerator to the condenser and the absorbent pipe for supplying the absorbent from the high temperature regenerator to the absorber via the absorbent / absorbent heat exchanger. A cooling / heating system utilizing exhaust heat, wherein an absorbing liquid pipe for supplying the absorbing liquid to a regenerator for a low-temperature heat source is provided.
JP29716598A 1998-10-19 1998-10-19 Waste heat utilization air conditioning system Expired - Fee Related JP3905986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29716598A JP3905986B2 (en) 1998-10-19 1998-10-19 Waste heat utilization air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29716598A JP3905986B2 (en) 1998-10-19 1998-10-19 Waste heat utilization air conditioning system

Publications (2)

Publication Number Publication Date
JP2000121196A true JP2000121196A (en) 2000-04-28
JP3905986B2 JP3905986B2 (en) 2007-04-18

Family

ID=17843039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29716598A Expired - Fee Related JP3905986B2 (en) 1998-10-19 1998-10-19 Waste heat utilization air conditioning system

Country Status (1)

Country Link
JP (1) JP3905986B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536008A (en) * 2008-02-28 2010-11-25 チンファ ユニバーシティ Heat exchanger for heat supply
KR101127521B1 (en) 2011-04-12 2012-03-22 (주)월드이엔씨 Single-effect, double stage generator, hot water driven absorption chiller
CN102563952A (en) * 2011-12-22 2012-07-11 福田雷沃国际重工股份有限公司 Novel air-conditioning system for excavating machine
CN105423594A (en) * 2015-12-25 2016-03-23 双良节能系统股份有限公司 Heating normal-temperature smoke discharge smoke hot water type lithium bromide absorbing type cold and hot water unit
CN105423593A (en) * 2015-12-25 2016-03-23 双良节能系统股份有限公司 Heating normal-temperature smoke exhaust direct combustion type lithium bromide absorbing type cold and hot water unit
CN105423595A (en) * 2015-12-25 2016-03-23 双良节能系统股份有限公司 Heating efficient energy-saving direct combustion type lithium bromide absorbing type cold and hot water unit
CN105423596A (en) * 2015-12-25 2016-03-23 双良节能系统股份有限公司 Heating efficient smoke type lithium bromide absorbing type cold and hot water unit
CN105509365A (en) * 2015-12-25 2016-04-20 双良节能系统股份有限公司 Efficient heating smoke water-heating type lithium bromide absorption type water chiller-heater unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390300B (en) * 2014-11-24 2017-02-22 东南大学 Heat source tower heat pump solution regeneration device achieving cooling in summer and solution regeneration in winter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536008A (en) * 2008-02-28 2010-11-25 チンファ ユニバーシティ Heat exchanger for heat supply
KR101127521B1 (en) 2011-04-12 2012-03-22 (주)월드이엔씨 Single-effect, double stage generator, hot water driven absorption chiller
CN102563952A (en) * 2011-12-22 2012-07-11 福田雷沃国际重工股份有限公司 Novel air-conditioning system for excavating machine
CN105423594A (en) * 2015-12-25 2016-03-23 双良节能系统股份有限公司 Heating normal-temperature smoke discharge smoke hot water type lithium bromide absorbing type cold and hot water unit
CN105423593A (en) * 2015-12-25 2016-03-23 双良节能系统股份有限公司 Heating normal-temperature smoke exhaust direct combustion type lithium bromide absorbing type cold and hot water unit
CN105423595A (en) * 2015-12-25 2016-03-23 双良节能系统股份有限公司 Heating efficient energy-saving direct combustion type lithium bromide absorbing type cold and hot water unit
CN105423596A (en) * 2015-12-25 2016-03-23 双良节能系统股份有限公司 Heating efficient smoke type lithium bromide absorbing type cold and hot water unit
CN105509365A (en) * 2015-12-25 2016-04-20 双良节能系统股份有限公司 Efficient heating smoke water-heating type lithium bromide absorption type water chiller-heater unit
CN105423594B (en) * 2015-12-25 2017-09-08 双良节能系统股份有限公司 Fume hot-water type lithium bromide absorption cold, the Hot water units of heating normal temperature smoke evacuation
CN105423593B (en) * 2015-12-25 2017-09-08 双良节能系统股份有限公司 Heating normal temperature smoke evacuation direct-burning type lithium bromide absorption type hot water or cold water's unit
CN105423595B (en) * 2015-12-25 2017-09-08 双良节能系统股份有限公司 A kind of energy-efficient direct-burning type lithium bromide absorption type hot water or cold water unit of heating

Also Published As

Publication number Publication date
JP3905986B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
JPS5828903B2 (en) Single and double effect absorption chiller
JP3905986B2 (en) Waste heat utilization air conditioning system
KR101137582B1 (en) Single and double effect absorption refrigerator and operation control method therefor
JP2003343940A (en) Absorption water cooler/heater
JP5384072B2 (en) Absorption type water heater
JP4553523B2 (en) Absorption refrigerator
JPH0237262A (en) Device for utilizing waste heat of fuel battery
JP3578207B2 (en) Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
JP3986122B2 (en) Exhaust heat absorption type absorption air conditioner
JP4315855B2 (en) Absorption refrigerator
JP2003343939A (en) Absorption refrigerating machine
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP4086505B2 (en) Heating operation method and apparatus for a multi-effect absorption refrigerator / cooling / heating machine
JPH05280825A (en) Absorption heat pump
KR200144045Y1 (en) Absorption type cooler
KR200154287Y1 (en) Absorption type air conditioner
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
KR100781880B1 (en) Absorption chiller
JP2645948B2 (en) Hot water absorption absorption chiller / heater
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JPS5829819Y2 (en) Absorption heat pump
JPS6113546B2 (en)
JPH11211262A (en) Absorption type refrigerating machine system
JPS6113550B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070115

LAPS Cancellation because of no payment of annual fees