JP4326478B2 - Single double-effect absorption refrigerator - Google Patents

Single double-effect absorption refrigerator Download PDF

Info

Publication number
JP4326478B2
JP4326478B2 JP2005003973A JP2005003973A JP4326478B2 JP 4326478 B2 JP4326478 B2 JP 4326478B2 JP 2005003973 A JP2005003973 A JP 2005003973A JP 2005003973 A JP2005003973 A JP 2005003973A JP 4326478 B2 JP4326478 B2 JP 4326478B2
Authority
JP
Japan
Prior art keywords
regenerator
low
heat source
condenser
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005003973A
Other languages
Japanese (ja)
Other versions
JP2006194469A (en
Inventor
洋介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005003973A priority Critical patent/JP4326478B2/en
Publication of JP2006194469A publication Critical patent/JP2006194469A/en
Application granted granted Critical
Publication of JP4326478B2 publication Critical patent/JP4326478B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、一重二重効用吸収式冷凍機(吸収冷温水機を含む)に係わるものである。   The present invention relates to a single double-effect absorption refrigerator (including an absorption chiller / heater).

この種の吸収式冷凍機としては、例えば図2に示したようにガスバーナ4で生成する燃焼熱を熱源として吸収液を加熱し冷媒を蒸発分離する高温再生器5、その高温再生器5から供給される冷媒蒸気を熱源として吸収液を加熱し冷媒を蒸発分離する二重効用再生器の低温再生器6、その低温再生器6に並設され、低温再生器6から供給される冷媒蒸気を凝縮する二重効用凝縮器の凝縮器7、コージェネレーション装置などから低熱源供給管19を介して供給される、例えば80℃程度の比較的低温度の温排水を熱源として吸収液を加熱し冷媒を蒸発分離する一重効用再生器の低熱源再生器9、その低熱源再生器9に並設され、低熱源再生器9から供給される冷媒蒸気を凝縮する一重効用凝縮器の凝縮器10、凝縮器7および凝縮器10から供給される冷媒液を蒸発させる蒸発器1、その蒸発器1で蒸発した冷媒蒸気を低温再生器6から供給される濃吸収液に吸収させる吸収器2、稀吸収液ポンプP1、中間吸収液ポンプP2、冷媒ポンプP4などを備えた一重二重効用の吸収式冷凍機100Xが周知である(例えば、特許文献1参照。)。   As this type of absorption refrigerator, for example, as shown in FIG. 2, a high-temperature regenerator 5 that heats the absorption liquid using the combustion heat generated in the gas burner 4 as a heat source and evaporates and separates the refrigerant is supplied from the high-temperature regenerator 5 The refrigerant vapor supplied from the low-temperature regenerator 6 is arranged in parallel with the low-temperature regenerator 6 of the dual-effect regenerator that heats the absorption liquid using the generated refrigerant vapor as a heat source and evaporates and separates the refrigerant. The absorption liquid is heated by using a relatively low temperature hot waste water of, for example, about 80 ° C. supplied from the condenser 7 of the double-effect condenser, the cogeneration device, etc. through the low heat source supply pipe 19, for example. A low heat source regenerator 9 of a single effect regenerator for evaporating and separating, a condenser 10 of a single effect condenser which is provided in parallel to the low heat source regenerator 9 and condenses the refrigerant vapor supplied from the low heat source regenerator 9, a condenser 7 and condenser 10 An evaporator 1 for evaporating the refrigerant liquid to be evaporated, an absorber 2 for absorbing the refrigerant vapor evaporated in the evaporator 1 by the concentrated absorbent supplied from the low-temperature regenerator 6, a rare absorbent pump P1, and an intermediate absorbent pump P2. A single-double-effect absorption refrigerator 100X equipped with a refrigerant pump P4 and the like is well known (see, for example, Patent Document 1).

なお、図中12は低温熱交換器、13は高温熱交換器、15Xは排熱回収器、17は図示しない熱負荷に冷熱または温熱を循環供給して冷暖房などを行うためのブライン(例えば水)が内部を流れるブライン管、18は冷却水管である。   In the figure, 12 is a low-temperature heat exchanger, 13 is a high-temperature heat exchanger, 15X is an exhaust heat recovery unit, 17 is a brine (for example, water) for circulating and supplying cold heat or heat to a heat load (not shown) for air conditioning and the like. ) Is a brine pipe flowing inside, and 18 is a cooling water pipe.

上記構成の吸収式冷凍機100Xにおいては、二重効用運転、又は一重二重効用運転から、ガスバーナ4におけるガスの燃焼を停止し、低熱源供給管19から伝熱管9Bに供給する温排水だけで吸収液の加熱再生と、冷媒蒸気の生成を行う一重効用運転に移行した時には、高温再生器5の残圧により高温再生器5内の吸収液の液面が次第に低下する。   In the absorption chiller 100X having the above-described configuration, the combustion of the gas in the gas burner 4 is stopped from the double-effect operation or the single-double-effect operation, and only the hot waste water supplied from the low heat source supply pipe 19 to the heat transfer pipe 9B is used. When shifting to the single effect operation in which the heat regeneration of the absorption liquid and the generation of the refrigerant vapor are performed, the liquid level of the absorption liquid in the high temperature regenerator 5 gradually decreases due to the residual pressure of the high temperature regenerator 5.

そのため、高温再生器5内の吸収液液面が一定となるように制御される中間吸収液ポンプP2は運転と停止を繰り返し、冷媒を蒸発分離して冷媒吸収が可能に再生されて低熱源再生器9から吸収器2に流入する吸収液の量が変動するので、吸収器2において吸収液に吸収される冷媒の量が変動する。したがって、蒸発器1における冷媒の蒸発量が変動し、蒸発器1から熱負荷に循環供給するブラインの温度が変動すると云った問題点があった。
特開平11−281186号公報
Therefore, the intermediate absorbing liquid pump P2 that is controlled so that the liquid level of the absorbing liquid in the high-temperature regenerator 5 is constant is repeatedly operated and stopped, and is regenerated so that the refrigerant can be absorbed by evaporating and separating the refrigerant to regenerate the low heat source. Since the amount of the absorbing liquid flowing from the vessel 9 into the absorber 2 varies, the amount of the refrigerant absorbed by the absorbing solution in the absorber 2 varies. Therefore, there has been a problem that the amount of refrigerant evaporated in the evaporator 1 fluctuates and the temperature of the brine that is circulated from the evaporator 1 to the heat load fluctuates.
Japanese Patent Laid-Open No. 11-281186

そのため、一重二重効用吸収式冷凍機において、二重効用運転又は一重二重効用運転から一重効用運転に移行した時にも、蒸発器から取り出して熱負荷に供給するブラインの温度が変動しないようにする必要があり、その解決が課題となっていた。   Therefore, in a single double-effect absorption refrigerator, even when shifting from a double-effect operation or single-double-effect operation to a single-effect operation, the temperature of the brine that is taken out of the evaporator and supplied to the heat load will not fluctuate. It was necessary to solve this, and the solution was an issue.

本発明は、上記の課題を解決するため、
蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、冷媒ポンプ、吸収液ポンプなどを配管接続して構成した一重二重効用吸収式冷凍機において、
上記の高温再生器から上記の低温再生器に至る冷媒配管と、上記の低熱源再生器凝縮器胴及び/又は上記の低熱源再生器凝縮器胴の凝縮器とを開閉弁が介在する均圧管により接続し、
上記の低熱源再生器へ流入する上記の熱源の温度及び上記の高温再生器に備えられたガスバーナの運転状態により、上記の開閉弁を開閉することを特徴とする一重二重効用吸収冷凍機と、
上記の一重二重効用吸収式冷凍機において、
上記の高温再生器における吸収液の加熱を停止し、上記の低熱源再生器凝縮器胴の上記の低熱源再生器における吸収液の加熱のみに切替えた時に、上記の均圧管の上記の開閉弁を開弁する構成と
を提供するものである。
In order to solve the above problems , the present invention
Evaporator absorber cylinder containing the evaporator and absorber, low temperature regenerator condenser cylinder containing the low temperature regenerator and condenser, low heat source regenerator and condenser using hot wastewater as the heat source. Low heat source regenerator Condenser barrel, high temperature regenerator, low temperature heat exchanger, high temperature heat exchanger, refrigerant pump, absorption liquid pump, etc.
A pressure equalizing pipe in which an on-off valve is interposed between the refrigerant pipe from the high temperature regenerator to the low temperature regenerator and the low heat source regenerator condenser body and / or the condenser of the low heat source regenerator condenser body. Connected by
A single-double-effect absorption refrigerator characterized by opening and closing the on-off valve according to the temperature of the heat source flowing into the low heat source regenerator and the operating state of the gas burner provided in the high temperature regenerator ; ,
In the above single double effect absorption refrigerator,
When the heating of the absorbing liquid in the high-temperature regenerator is stopped and the heating is switched to only heating the absorbing liquid in the low-heat source regenerator of the condenser body of the low-heat source regenerator, the on-off valve of the pressure equalizing pipe With the configuration to open the valve
Is to provide.

本発明によれば、高温再生器から低温再生器に至る冷媒蒸気管と、低温再生器凝縮器胴及び/又は熱源再生器凝縮器胴の凝縮器とを接続している均圧管の開閉弁が、二重効用運転又は一重二重効用運転から一重効用運転に切り換わる時に開弁されるので、高温再生器で生成された高温・高圧の冷媒蒸気は冷却水に放熱して高温再生器の残圧は速やかに低下し、高温再生器に吸収液を搬送する吸収液ポンプは運転と停止を繰返すことがない。   According to the present invention, there is provided an on-off valve for a pressure equalizing pipe connecting a refrigerant vapor pipe from a high temperature regenerator to a low temperature regenerator and a condenser of the low temperature regenerator condenser cylinder and / or the heat source regenerator condenser cylinder. Therefore, the high-temperature and high-pressure refrigerant vapor generated in the high-temperature regenerator dissipates heat to the cooling water and remains in the high-temperature regenerator because the valve is opened when switching from double-effect operation or single-double-effect operation to single-effect operation. The pressure quickly decreases, and the absorbent pump that transports the absorbent to the high-temperature regenerator does not repeat operation and stop.

そのため、冷媒を蒸発分離して冷媒吸収が可能に再生された低熱源再生器から吸収器に流入する吸収液の量が安定し、吸収器において吸収液に吸収される冷媒の量が安定するので、蒸発器における冷媒の蒸発量が安定し、蒸発器で冷却して熱負荷に循環供給するブラインの温度は安定する。   Therefore, the amount of absorbing liquid flowing into the absorber from the low heat source regenerator regenerated so that the refrigerant can be absorbed by evaporating and separating the refrigerant is stabilized, and the amount of refrigerant absorbed in the absorbing liquid in the absorber is stabilized. The amount of refrigerant evaporated in the evaporator is stabilized, and the temperature of the brine that is cooled by the evaporator and circulated to the heat load is stabilized.

蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、冷媒ポンプ、吸収液ポンプなどを配管接続して構成する一重二重効用吸収式冷凍機において、高温再生器から低温再生器に至る冷媒蒸気管と、低温再生器凝縮器胴及び/又は熱源再生器凝縮器胴の凝縮器とを開閉弁が介在する均圧管により接続すると共に、高温再生器における吸収液の加熱を停止し、低熱源再生器凝縮器胴の低熱源再生器における吸収液の加熱のみに切替えた時に、均圧管の開閉弁を開弁するようにした。   Evaporator absorber cylinder containing the evaporator and absorber, low temperature regenerator condenser cylinder containing the low temperature regenerator and condenser, low heat source regenerator and condenser using the hot drain as a heat source. Low heat source regenerator Condenser barrel, high temperature regenerator, low temperature heat exchanger, high temperature heat exchanger, refrigerant pump, absorption liquid pump, etc. The refrigerant vapor pipe leading to the low-temperature regenerator and the low-temperature regenerator condenser cylinder and / or the condenser of the heat source regenerator condenser cylinder are connected by a pressure equalizing pipe with an open / close valve, and the absorption liquid is heated in the high-temperature regenerator. Was stopped, and the switching valve of the pressure equalizing pipe was opened when switching to only heating of the absorption liquid in the low heat source regenerator of the condenser body of the low heat source regenerator.

以下、本発明の一実施例を図1A・図1Bに基づいて詳細に説明する。なお、理解を容易にするため、この図1A・図1Bにおいても、前記図2において説明した部分と同様の機能を有する部分には、同一の符号を付した。 Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1A and 1B . Incidentally, order to facilitate understanding, in FIG. 1A · 1B, the portions having the same functions as the portions described in FIG. 2, the same reference numerals are given.

図1A・図1Bに例示した本発明の吸収式冷凍機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用した一重二重効用の吸収式冷温水機であり、蒸発器1と 吸収器2とを収納した蒸発器吸収器胴3、ガスバーナ4を備えた高温再生器5、低温再生器6、低温再生器6に並設された凝縮器7、低温再生器6と凝縮器7と を収納した低温再生器凝縮器胴8、温排水などを熱源とする低熱源再生器9、低熱源再生器9に並設された凝縮器10、低熱源再生器9と凝縮器10とを収納し た低熱源再生器凝縮器胴11、低温熱交換器12、高温熱交換器13、冷媒ドレン熱回収器14、第1の排ガス熱回収器15、第2の排ガス熱回収器16、ブラ イン(例えば水)が流れるブライン管17、冷却水管18、低熱源供給管19、稀吸収液ポンプP1、中間吸収液ポンプP2、濃吸収液ポンプP3、冷媒ポンプ P4などを備えており、それらは図示したように配管接続されている。また、符号Cは制御器である。 The absorption refrigerator 100 of the present invention illustrated in FIGS. 1A and 1B is a single double-effect absorption chiller / heater using water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an absorption liquid. An evaporator absorber body 3 containing the regenerator 1 and the absorber 2, a high temperature regenerator 5 having a gas burner 4, a low temperature regenerator 6, a condenser 7 juxtaposed to the low temperature regenerator 6, a low temperature regenerator 6, A low-temperature regenerator condenser body 8 containing the condenser 7, a low-heat source regenerator 9 that uses hot wastewater or the like as a heat source, a condenser 10 provided in parallel with the low-heat source regenerator 9, a low-heat source regenerator 9 and a condenser 10, a low heat source regenerator condenser body 11, a low temperature heat exchanger 12, a high temperature heat exchanger 13, a refrigerant drain heat recovery device 14, a first exhaust gas heat recovery device 15, and a second exhaust gas heat recovery device. 16, brine pipe 17 through which the brine (for example, water) flows, cooling water pipe 18, low heat source supply pipe 19, A rare absorbent pump P1, an intermediate absorbent pump P2, a concentrated absorbent pump P3, a refrigerant pump P4, and the like are provided, and these are connected by piping as shown in the figure. Symbol C is a controller.

すなわち、本発明の吸収式冷凍機100においては、吸収器2の下部に形成された稀吸収液溜りと低熱源再生器9の気相部とを接続している吸収液管21の上流側に稀吸収液ポンプP1が設けられている。   That is, in the absorption chiller 100 of the present invention, on the upstream side of the absorption liquid pipe 21 connecting the dilute absorption liquid reservoir formed in the lower part of the absorber 2 and the gas phase part of the low heat source regenerator 9. A rare absorbent pump P1 is provided.

そして、吸収液管21の稀吸収液ポンプP1の吐出側、すなわち下流側は吸収器2の上部側に設けられた溶液冷却吸収器2Aを経由した後、低温熱交換器12が介在する吸収液管21Aと、冷媒ドレン熱回収器14が介在する吸収液管21Bとに分岐し、その後合流して低熱源再生器9内の上部に配置された散布器9Aに接続されている。   And the discharge side of the rare absorption liquid pump P1, that is, the downstream side of the absorption liquid pipe 21 passes through the solution cooling absorber 2A provided on the upper side of the absorber 2, and then the absorption liquid in which the low temperature heat exchanger 12 is interposed. The pipe 21 </ b> A and the absorption liquid pipe 21 </ b> B in which the refrigerant drain heat recovery unit 14 intervenes are branched, and then merged and connected to a spreader 9 </ b> A disposed at the upper part in the low heat source regenerator 9.

低熱源再生器9の下部に形成された中間吸収液溜りと高温再生器5の気相部とは、中間吸収液ポンプP2、高温熱交換器13、第1の排ガス熱回収器15、開閉弁V1が上流側から直列に介在する吸収液管22により接続されている。なお、この吸収液管22には、開閉弁V2が介在する吸収液管22Aが図示したように接続されている。   The intermediate absorption liquid reservoir formed in the lower part of the low heat source regenerator 9 and the gas phase part of the high temperature regenerator 5 are the intermediate absorption liquid pump P2, the high temperature heat exchanger 13, the first exhaust gas heat recovery unit 15, the on-off valve. V1 is connected by an absorbing liquid pipe 22 interposed in series from the upstream side. The absorption liquid pipe 22 is connected to an absorption liquid pipe 22A with an on-off valve V2 interposed therebetween as shown in the figure.

また、高温再生器5の吸収液溜りと低温再生器6の気相部とは、高温熱交換器13を経由する吸収液管23により接続され、その吸収液管23の高温熱交換器13上流側と吸収器2とは開閉弁V3が介在する吸収液管24により接続されている。   The absorption liquid reservoir of the high temperature regenerator 5 and the gas phase part of the low temperature regenerator 6 are connected by an absorption liquid pipe 23 that passes through the high temperature heat exchanger 13, and the absorption liquid pipe 23 upstream of the high temperature heat exchanger 13. The side and the absorber 2 are connected by an absorbing liquid pipe 24 with an on-off valve V3 interposed therebetween.

また、低温再生器6の吸収液溜りと溶液冷却吸収器2Aの散布器2Bとを接続する濃吸収液管25は、濃吸収液ポンプP3、低温熱交換器12を経由して配管され、濃吸収液ポンプP3の上流側と低温熱交換器12下流側とはバイパス管26により接続され、中間吸収液ポンプP2の上流側と濃吸収液ポンプP3の上流側とはバイパス管27により接続されている。   A concentrated absorbent pipe 25 connecting the absorbent reservoir of the low-temperature regenerator 6 and the sprayer 2B of the solution-cooled absorbent 2A is piped through the concentrated absorbent pump P3 and the low-temperature heat exchanger 12, and concentrated. The upstream side of the absorption liquid pump P3 and the downstream side of the low-temperature heat exchanger 12 are connected by a bypass pipe 26, and the upstream side of the intermediate absorption liquid pump P2 and the upstream side of the concentrated absorption liquid pump P3 are connected by a bypass pipe 27. Yes.

また、高温再生器5の気相部と凝縮器7の底部とは、低温再生器6の底部に配管された伝熱管6Aと、冷媒ドレン熱回収器14とを経由する冷媒管31により接続され、その冷媒管31の伝熱管6A上流側と吸収器2の気相部とは開閉弁V4が介在する冷媒管32により接続され、冷媒管31の伝熱管6A上流側と低熱源再生器凝縮器胴11に収納された凝縮器10の気相部とは開閉弁V5が介在する均圧管41により接続されている。   The gas phase part of the high temperature regenerator 5 and the bottom part of the condenser 7 are connected by a refrigerant pipe 31 that passes through the heat transfer pipe 6 </ b> A piped to the bottom part of the low temperature regenerator 6 and the refrigerant drain heat recovery unit 14. The upstream side of the heat transfer pipe 6A of the refrigerant pipe 31 and the gas phase part of the absorber 2 are connected by a refrigerant pipe 32 with an on-off valve V4 interposed therebetween, and the upstream side of the heat transfer pipe 6A of the refrigerant pipe 31 and the low heat source regenerator condenser. The gas phase part of the condenser 10 accommodated in the cylinder 11 is connected by a pressure equalizing pipe 41 with an on-off valve V5 interposed.

また、凝縮器7の底部側と蒸発器1の気相部とはUシール部が介在する冷媒管33により接続され、その冷媒管34のUシール部近傍と、凝縮器10の底部側とが冷媒管34により接続されている。また、蒸発器1の冷媒液溜りと蒸発器1内上部の散布器1Aとは冷媒ポンプP4が介在するに冷媒管35により接続され、その冷媒管35の冷媒ポンプP4下流側と吸収器2の吸収液溜りとは開閉弁V6が介在する冷媒管36により接続されている。   Further, the bottom side of the condenser 7 and the vapor phase part of the evaporator 1 are connected by a refrigerant pipe 33 in which a U seal part is interposed, and the vicinity of the U seal part of the refrigerant pipe 34 and the bottom side of the condenser 10 are connected. The refrigerant pipe 34 is connected. Further, the refrigerant liquid reservoir of the evaporator 1 and the spreader 1A in the upper part of the evaporator 1 are connected by the refrigerant pipe 35 with the refrigerant pump P4 interposed therebetween, and the downstream side of the refrigerant pump P4 of the refrigerant pipe 35 and the absorber 2 The absorption liquid reservoir is connected by a refrigerant pipe 36 in which an on-off valve V6 is interposed.

また、蒸発器1と凝縮器7の7の気相部同士は均圧管42により接続され、蒸発器1と凝縮器10の気相部同士は均圧管43により接続され、ブライン管17の蒸発器1出口側と冷却水管18の凝縮器7と凝縮器10との間は開閉弁V7が介在する均圧管44により接続されている。   The vapor phase portions of the evaporator 1 and the condenser 7 are connected to each other by a pressure equalizing tube 42, and the vapor phase portions of the evaporator 1 and the condenser 10 are connected to each other by a pressure equalizing tube 43. 1 outlet side and the condenser 7 of the cooling water pipe | tube 18 and the condenser 10 are connected by the pressure equalization pipe | tube 44 which the on-off valve V7 interposes.

なお、低熱源再生器凝縮器胴11の低熱源再生器9においては、低熱源供給管19が接続された伝熱管9Bが散布器9Aの下方に設置され、中間吸収液管22は低熱源再生器9の底部分に接続されている。   In the low heat source regenerator 9 of the low heat source regenerator condenser body 11, the heat transfer pipe 9B connected to the low heat source supply pipe 19 is installed below the spreader 9A, and the intermediate absorption liquid pipe 22 is regenerated as the low heat source. It is connected to the bottom part of the vessel 9.

そして、冷房等の冷却運転時においては、ブライン管17を介して図示しない熱負荷に循環供給されるブライン(例えば冷水)の蒸発器1出口側温度、すなわち蒸発器1の冷媒液溜りに溜り、冷媒ポンプP4により揚液されて散布器1Aから伝熱管1Bの上に散布された冷媒液が蒸発する際の気化熱により、伝熱管1B内を流れる際に冷却され、蒸発器1から吐出して温度センサS1により計測されたブラインの蒸発器1出口側温度が所定の設定温度、例えば7℃になるように吸収式冷凍機100に投入される熱量が制御器Cにより制御される。   During cooling operation such as cooling, the temperature of the evaporator 1 outlet side of brine (for example, cold water) circulated and supplied to a heat load (not shown) via the brine pipe 17, that is, accumulated in the refrigerant liquid reservoir of the evaporator 1, The refrigerant liquid pumped by the refrigerant pump P4 and sprayed from the spreader 1A onto the heat transfer tube 1B is cooled when flowing through the heat transfer tube 1B due to evaporation, and discharged from the evaporator 1 The controller C controls the amount of heat input to the absorption refrigeration machine 100 so that the brine evaporator 1 outlet side temperature measured by the temperature sensor S1 becomes a predetermined set temperature, for example, 7 ° C.

例えば、熱負荷が大きく、且つ、低熱源供給管19を介して低熱源再生器9に供給する温排水の温度が所定温度、例えば85℃に達している時には、低熱源供給管19から低熱源再生器9に温排水を定格量供給すると共に、全てのポンプを起動し、且つ、ガスバーナ4においてガスを燃焼させる一重二重効用運転を行い、温度センサS1が計測するブラインの温度が、所定の7℃となるようにガスバーナ4の火力が制御器Cにより制御される。   For example, when the heat load is large and the temperature of the hot wastewater supplied to the low heat source regenerator 9 via the low heat source supply pipe 19 reaches a predetermined temperature, for example, 85 ° C., the low heat source supply pipe 19 While supplying the rated amount of warm wastewater to the regenerator 9, all the pumps are started, and the gas burner 4 performs a single double effect operation in which gas is burned, and the temperature of the brine measured by the temperature sensor S1 is a predetermined value. The heating power of the gas burner 4 is controlled by the controller C so as to be 7 ° C.

この一重二重効用運転時の冷媒と吸収液の挙動を説明すると、吸収器2から吸収液管21を介して稀吸収液ポンプP1により低熱源再生器凝縮器胴11の低熱源再生器9に搬送された稀吸収液は、滴下される過程で低熱源供給管19から供給される温排水により伝熱管9Bの管壁を介して加熱され、冷媒を蒸発分離する。   The behavior of the refrigerant and the absorption liquid during the single double effect operation will be described. The low heat source regenerator 9 of the low heat source regenerator condenser body 11 is supplied from the absorber 2 through the absorption liquid pipe 21 by the rare absorption liquid pump P1. The transported rare absorbent is heated via the tube wall of the heat transfer tube 9B by the hot waste water supplied from the low heat source supply tube 19 in the process of dropping, and evaporates and separates the refrigerant.

冷媒を蒸発分離して吸収液濃度が高くなった中間吸収液は、吸収液管22の中間吸収液ポンプP2により高温熱交換器13、第1の排ガス熱回収器15を経由して加熱され高温再生器5に送られる。   The intermediate absorption liquid whose absorption liquid concentration has been increased by evaporating and separating the refrigerant is heated by the intermediate absorption liquid pump P2 of the absorption liquid pipe 22 via the high-temperature heat exchanger 13 and the first exhaust gas heat recovery unit 15 to obtain a high temperature. It is sent to the regenerator 5.

高温再生器5に搬送された中間吸収液は、ここでガスバーナ4による火炎および高温の燃焼ガスにより加熱されて冷媒が蒸発分離する。高温再生器5で冷媒を蒸発分離して濃度が上昇した中間吸収液は、従来の二重効用吸収式冷凍機と同様に高温熱交換器13を経由して低温再生器6へ送られる。   The intermediate absorption liquid conveyed to the high temperature regenerator 5 is heated here by the flame by the gas burner 4 and the high temperature combustion gas, and the refrigerant evaporates and separates. The intermediate absorption liquid whose concentration has been increased by evaporating and separating the refrigerant in the high temperature regenerator 5 is sent to the low temperature regenerator 6 via the high temperature heat exchanger 13 as in the conventional double effect absorption refrigerator.

そして、中間吸収液は低温再生器6において、高温再生器5から冷媒蒸気管31を介して供給されて伝熱管6Aに流入する高温の冷媒蒸気により加熱され、さらに冷媒が分離して濃度が一段と高くなり、この濃吸収液が低温熱交換器12を経由して吸収器2へ送られ、溶液冷却吸収器2Aの上方から散布される。   Then, the intermediate absorbing liquid is heated by the high-temperature refrigerant vapor supplied from the high-temperature regenerator 5 through the refrigerant vapor pipe 31 and flowing into the heat transfer pipe 6A in the low-temperature regenerator 6, and further the refrigerant is separated to further increase the concentration. The concentrated absorbent is sent to the absorber 2 via the low-temperature heat exchanger 12 and sprayed from above the solution-cooled absorber 2A.

一方、低熱源再生器9で分離生成した冷媒は凝縮器10に入って凝縮し、低温再生器6で分離生成した冷媒は凝縮器7に入って凝縮する。そして、凝縮器7で生成された冷媒液は冷媒管33を、凝縮器10で凝縮生成した冷媒液は冷媒管34を経由して蒸発器1に入り、冷媒ポンプ4の運転により揚液されて散布器1Aから伝熱管1Bの上に散布される。   On the other hand, the refrigerant separated and generated by the low heat source regenerator 9 enters the condenser 10 and condenses, and the refrigerant separated and generated by the low temperature regenerator 6 enters the condenser 7 and condenses. The refrigerant liquid generated by the condenser 7 enters the evaporator 1 via the refrigerant pipe 33 and the refrigerant liquid condensed and generated by the condenser 10 enters the evaporator 1 via the refrigerant pipe 34 and is pumped by the operation of the refrigerant pump 4. It spreads on the heat exchanger tube 1B from the spreader 1A.

伝熱管1Bの上に散布された冷媒液は、伝熱管1Bの内部を通るブラインから気化熱を奪って蒸発するので、伝熱管1Bの内部を通るブラインは冷却され、こうして温度を下げたブラインがブライン管17から熱負荷に供給されて冷房等の冷却運転が行われる。   The refrigerant liquid sprayed on the heat transfer tube 1B takes the heat of vaporization from the brine passing through the inside of the heat transfer tube 1B and evaporates. Therefore, the brine passing through the inside of the heat transfer tube 1B is cooled. Cooling operation such as cooling is performed by being supplied to the heat load from the brine pipe 17.

そして、蒸発器1で蒸発した冷媒は吸収器2へ入り、低温再生器6より供給されて上方から散布される濃吸収液に吸収されて、吸収器2の吸収液溜りに溜り、稀吸収液ポンプP1によって低熱源再生器凝縮器胴11の低熱源再生器9に搬送される循環を繰り返す。   Then, the refrigerant evaporated in the evaporator 1 enters the absorber 2, is absorbed by the concentrated absorbent supplied from the low temperature regenerator 6 and sprayed from above, and accumulates in the absorbent reservoir of the absorber 2, and becomes a rare absorbent. The circulation conveyed to the low heat source regenerator 9 of the low heat source regenerator condenser body 11 by the pump P1 is repeated.

上記一重二重効用運転時においては、前記したように温度センサS1が計測する温度、すなわち蒸発器1内の伝熱管1B内で冷却され、ブライン管17に吐出して熱負荷に循環供給されるブラインの温度が所定の7℃になるように、ガスバーナ4による加熱量、具体的にはガスバーナ4に供給するガス量が制御器Cにより制御される。   At the time of the single double effect operation, the temperature measured by the temperature sensor S1 as described above, that is, cooled in the heat transfer pipe 1B in the evaporator 1, discharged to the brine pipe 17 and circulated and supplied to the heat load. The amount of heating by the gas burner 4, specifically, the amount of gas supplied to the gas burner 4 is controlled by the controller C so that the brine temperature becomes a predetermined 7 ° C.

そして、ガスバーナ4による加熱量を最小にしても、温度センサS1が所定の7℃より低い温度を計測すると、ガスの燃焼を止めてガスバーナ4による加熱を停止すると共に、中間吸収液ポンプP2の運転も停止する。   Even when the amount of heating by the gas burner 4 is minimized, when the temperature sensor S1 measures a temperature lower than the predetermined 7 ° C., the combustion of the gas is stopped and the heating by the gas burner 4 is stopped, and the operation of the intermediate absorbent pump P2 is performed. Also stop.

この場合の吸収液は、低熱源供給管19から供給される温排水により低熱源再生器凝縮器胴11の低熱源再生器9においてだけ加熱されて冷媒を蒸発分離する。そして、吸収液濃度が高くなった吸収液は、濃吸収液ポンプP3の運転によりバイパス管27、低温熱交換器12を経由して溶液冷却吸収器2Aに戻される。   The absorbing liquid in this case is heated only in the low heat source regenerator 9 of the low heat source regenerator condenser body 11 by the hot waste water supplied from the low heat source supply pipe 19 to evaporate and separate the refrigerant. Then, the absorption liquid whose absorption liquid concentration has been increased is returned to the solution cooling absorber 2A via the bypass pipe 27 and the low-temperature heat exchanger 12 by the operation of the concentrated absorption liquid pump P3.

一方、低熱源再生器9で分離生成した冷媒蒸気は凝縮器10に入って凝縮し、冷媒管34を経由して蒸発器1に入り、冷媒ポンプP4の運転により散布器1Aから伝熱管1Bの上に散布され、伝熱管1B内を通るブラインから熱を奪って蒸発し、吸収器2に入って上方から散布される吸収液に吸収されると云った循環が行われる。   On the other hand, the refrigerant vapor separated and generated by the low heat source regenerator 9 enters the condenser 10 and condenses, enters the evaporator 1 through the refrigerant pipe 34, and operates from the spreader 1A to the heat transfer pipe 1B by operating the refrigerant pump P4. A circulation is performed in which heat is taken from the brine passing through the heat transfer tube 1B and evaporated to enter the absorber 2 and be absorbed by the absorbent dispersed from above.

上記一重効用運転時においては、温度センサS1が計測する温度、すなわち蒸発器1内の伝熱管1Bで冷却され、ブライン管17に吐出して熱負荷に循環供給されるブラインの温度が所定の7℃になるように、低熱源再生器9における加熱量、具体的には低熱源供給管19から伝熱管9Bに取り込む温排水の量、すなわち三方弁V7の開度が制御器Cにより制御される。   During the single effect operation, the temperature measured by the temperature sensor S1, that is, the temperature of the brine cooled by the heat transfer pipe 1B in the evaporator 1 and discharged to the brine pipe 17 and circulated and supplied to the heat load is a predetermined 7 The controller C controls the amount of heating in the low heat source regenerator 9, specifically, the amount of warm waste water taken into the heat transfer tube 9 B from the low heat source supply pipe 19, that is, the opening degree of the three-way valve V 7 so .

そして、低熱源供給管19を流れる温排水の全量が伝熱管9Bに流れるように三方弁V7を操作しても、温度センサS1が所定温度の7℃以下の温度を計測しない時、すなわち伝熱管1Bで冷却されてブライン管17に吐出したブラインが所定の7℃まで低下しない時には、前記のようにガスバーナ4でガスを燃焼させ、高温再生器5における吸収液の加熱再生と冷媒蒸気の生成とを再開し、前記一重二重効用運転に戻る。   And even if the three-way valve V7 is operated so that the entire amount of the hot drainage flowing through the low heat source supply pipe 19 flows to the heat transfer pipe 9B, the temperature sensor S1 does not measure a temperature of 7 ° C. or less, that is, the heat transfer pipe. When the brine cooled by 1B and discharged to the brine pipe 17 does not drop to a predetermined 7 ° C., the gas is burned by the gas burner 4 as described above, and the high temperature regenerator 5 heats and regenerates the absorption liquid and generates refrigerant vapor. Is resumed, and the operation returns to the single double effect operation.

なお、熱負荷は大きいが、低熱源供給管19を介して低熱源再生器9に供給する温排水の温度が所定の85℃に達していない時には、低熱源供給管19から低熱源再生器9に温排水が供給されないように三方弁V7を切替えると共に、全てのポンプを起動し、且つ、ガスバーナ4においてガスを燃焼させる二重効用運転を行う。この場合も、温度センサS1が計測するブラインの温度が所定温度の7℃となるように、ガスバーナ4の火力が制御器Cにより制御される。   Although the heat load is large, the temperature of the hot wastewater supplied to the low heat source regenerator 9 via the low heat source supply pipe 19 does not reach the predetermined 85 ° C., the low heat source regenerator 9 is connected to the low heat source supply pipe 19. In addition, the three-way valve V7 is switched so that hot wastewater is not supplied to the gas generator, all the pumps are started, and the gas burner 4 performs a double-effect operation in which gas is burned. Also in this case, the heating power of the gas burner 4 is controlled by the controller C so that the temperature of the brine measured by the temperature sensor S1 becomes a predetermined temperature of 7 ° C.

この二重効用運転では、吸収器2の吸収液溜りにある稀吸収液は稀吸収液ポンプP1により低熱源再生器9に搬送されて散布器9Aから伝熱管9Bの上に散布されるが、伝熱管9Bには熱源としての温排水は供給されていないので、加熱されることなく滴下し、中間吸収液ポンプP2の運転により高温熱交換器13を経由して高温再生器5に搬送され、その後は前記一重二重効用運転時と同様に循環しながら加熱されて、高温再生器5と低温再生器6とで吸収液の濃縮再生と冷媒の分離生成とがなされる。   In this double-effect operation, the rare absorption liquid in the absorption liquid reservoir of the absorber 2 is conveyed to the low heat source regenerator 9 by the rare absorption liquid pump P1 and dispersed on the heat transfer tube 9B from the spreader 9A. Since the hot drainage as a heat source is not supplied to the heat transfer tube 9B, it is dropped without being heated and is transported to the high temperature regenerator 5 via the high temperature heat exchanger 13 by the operation of the intermediate absorbent pump P2. After that, it is heated while being circulated in the same manner as in the single double effect operation, and the high temperature regenerator 5 and the low temperature regenerator 6 concentrate and regenerate the absorbing liquid and separate and produce the refrigerant.

そして、ガスバーナ4によりガスを燃焼させて高温再生器5で吸収液を加熱再生すると共に、冷媒蒸気を生成する運転状態、すなわち二重効用運転、又は一重二重効用運転から、ガスバーナ4におけるガスの燃焼を停止し、低熱源供給管19から伝熱管9Bに供給する温排水だけで吸収液の加熱再生と、冷媒蒸気の生成を行う時には、制御器Cにより開閉弁V5を開弁して、高温再生器5で生成された冷媒蒸気を冷媒管31と均圧管41を介して凝縮器10に直接流し、冷却水管18の内部を流れる冷却水に放熱させて凝縮させる。   Then, the gas is burned by the gas burner 4 and the absorption liquid is heated and regenerated by the high-temperature regenerator 5, and from the operation state in which refrigerant vapor is generated, that is, from the double effect operation or the single double effect operation, When the combustion is stopped and the heating liquid is regenerated and the refrigerant vapor is generated only by the warm waste water supplied from the low heat source supply pipe 19 to the heat transfer pipe 9B, the controller C opens the on-off valve V5 to increase the temperature. The refrigerant vapor generated in the regenerator 5 is directly flowed to the condenser 10 via the refrigerant pipe 31 and the pressure equalizing pipe 41, and is dissipated to the cooling water flowing inside the cooling water pipe 18 to be condensed.

それ故、本発明の吸収式冷凍機100においては、二重効用運転、又は一重二重効用運転から、ガスバーナ4におけるガスの燃焼を停止し、低熱源供給管19から伝熱管9Bに供給する温排水だけで吸収液の加熱再生と、冷媒蒸気の生成を行う一重効用運転に移行する時には高温再生器5の残圧は速やかに低下し、中間吸収液ポンプP2は運転と停止を繰返すことがない。   Therefore, in the absorption refrigerator 100 of the present invention, the gas supplied from the low heat source supply pipe 19 to the heat transfer pipe 9B is stopped by stopping the gas combustion in the gas burner 4 from the double effect operation or the single double effect operation. The residual pressure of the high-temperature regenerator 5 quickly decreases when shifting to a single-effect operation in which the absorption liquid is heated and regenerated and the refrigerant vapor is generated only by drainage, and the intermediate absorption liquid pump P2 is not repeatedly operated and stopped. .

そのため、冷媒を蒸発分離して冷媒吸収が可能に再生され、低熱源再生器9から吸収器2に流入する吸収液の量は安定する。したがって、吸収器2において吸収液に吸収される冷媒の量が安定し、蒸発器1における冷媒の蒸発量が安定するので、蒸発器1からブライン管17を介して熱負荷に循環供給するブラインの温度が安定する。   Therefore, the refrigerant is regenerated so as to be able to absorb the refrigerant by evaporating and separating, and the amount of the absorbing liquid flowing into the absorber 2 from the low heat source regenerator 9 is stabilized. Accordingly, since the amount of refrigerant absorbed in the absorbing liquid in the absorber 2 is stabilized and the amount of refrigerant evaporated in the evaporator 1 is stabilized, the amount of brine to be circulated from the evaporator 1 to the heat load via the brine pipe 17 is increased. The temperature stabilizes.

なお、本発明の吸収式冷凍機100においては、ガスバーナ4で生成される燃焼排ガスが第1、第2の排ガス熱回収器15、16を経由して排気されるように構成してある。したがって、第1の排ガス熱回収器15においては高温再生器5に流入する中間吸収液により燃焼排ガスが保有する廃熱が回収され、第2の排ガス熱回収器16においてはガスバーナ4に供給される燃焼用空気により燃焼排ガスが保有する廃熱が回収される。そのため、高温再生器5に流入する中間吸収液とガスバーナ4に供給される燃焼用空気の温度が上昇し、ガスバーナ4で燃焼する燃料の消費が抑えられる。   In the absorption refrigerator 100 of the present invention, the combustion exhaust gas generated by the gas burner 4 is configured to be exhausted via the first and second exhaust gas heat recovery units 15 and 16. Therefore, in the first exhaust gas heat recovery unit 15, the waste heat retained by the combustion exhaust gas is recovered by the intermediate absorption liquid flowing into the high temperature regenerator 5, and is supplied to the gas burner 4 in the second exhaust gas heat recovery unit 16. The waste heat possessed by the combustion exhaust gas is recovered by the combustion air. Therefore, the temperature of the intermediate absorption liquid flowing into the high-temperature regenerator 5 and the combustion air supplied to the gas burner 4 rise, and the consumption of fuel combusted in the gas burner 4 is suppressed.

ところで、本発明は上記実施例に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。   By the way, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit described in the claims.

そして、図1Bに示す構成が〔課題を解決するための手段〕に対応する構成であるが、
例えば、冷媒管31の伝熱管6A上流側と低温再生器凝縮器胴8に収納された凝縮器7の気相部とが、開閉弁V5が介在する均圧管41により接続されても良いし、冷媒管31の伝熱管6A上流側が低熱源再生器凝縮器胴11に収納された凝縮器10の気相部と低温再生器凝縮器胴8に収納された凝縮器7の気相部の両方 に、開閉弁V5が介在する均一管41により接続されても良い。
The configuration shown in FIG. 1B corresponds to [means for solving the problem].
For example, the upstream side of the heat transfer pipe 6A of the refrigerant pipe 31 and the gas phase part of the condenser 7 housed in the low temperature regenerator condenser body 8 may be connected by a pressure equalizing pipe 41 with an on-off valve V5 interposed therebetween, The upstream side of the heat transfer pipe 6 </ b> A of the refrigerant pipe 31 is provided in both the gas phase part of the condenser 10 housed in the low heat source regenerator condenser body 11 and the gas phase part of the condenser 7 housed in the low temperature regenerator condenser body 8. Further, they may be connected by a uniform pipe 41 with an on-off valve V5 interposed therebetween.

また、冷媒ドレン熱回収器14、吸収器2に設けた溶液冷却吸収器2A等は必ずしも備える必要はない。   The refrigerant drain heat recovery unit 14 and the solution cooling absorber 2A provided in the absorber 2 are not necessarily provided.

本発明の吸収式冷凍機の構成を示す説明図である。It is explanatory drawing which shows the structure of the absorption refrigerator of this invention. 本発明の吸収式冷凍機の構成を示す説明図である。It is explanatory drawing which shows the structure of the absorption refrigerator of this invention. 従来技術を示す説明図である。It is explanatory drawing which shows a prior art.

符号の説明Explanation of symbols

1 蒸発器
2 吸収器
3 蒸発器吸収器胴
5 高温再生器
6 低温再生器
7 凝縮器
8 低温再生器凝縮器胴
9 低熱源再生器
10 凝縮器
11 低熱源再生器凝縮器胴
12 低温熱交換器
13 高温熱交換器
14 冷媒ドレン熱回収器
17 ブライン管
18 冷却水管
19 低熱源供給管
21〜25 吸収液管
31〜34 冷媒管
41〜44 均圧管
C 制御器
P1 稀吸収液ポンプ
P2 中間吸収液ポンプ
P3 濃吸収液ポンプ
P4 冷媒ポンプ
S1 温度センサ
V1〜V6 開閉弁
V7 三方弁
100、100X 吸収式冷凍機
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 3 Evaporator absorber cylinder 5 High temperature regenerator 6 Low temperature regenerator 7 Condenser 8 Low temperature regenerator condenser cylinder 9 Low heat source regenerator 10 Condenser 11 Low heat source regenerator condenser cylinder 12 Low temperature heat exchange 13 High temperature heat exchanger 14 Refrigerant drain heat recovery unit 17 Brine pipe 18 Cooling water pipe 19 Low heat source supply pipe 21-25 Absorption liquid pipe 31-34 Refrigerant pipe 41-44 Pressure equalizing pipe C Controller P1 Rare absorption liquid pump P2 Intermediate absorption Liquid pump P3 Concentrated liquid pump P4 Refrigerant pump S1 Temperature sensor V1-V6 On-off valve V7 Three-way valve 100, 100X Absorption type refrigerator

Claims (2)

蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、冷媒ポンプ、吸収液ポンプなどを配管接続して構成した一重二重効用吸収式冷凍機において、
前記高温再生器から前記低温再生器に至る冷媒配管と、前記低熱源再生器凝縮器胴及び/又は前記低熱源再生器凝縮器胴の凝縮器とを開閉弁が介在する均圧管により接続し、
前記低熱源再生器へ流入する前記熱源の温度及び前記高温再生器に備えられたガスバーナの運転状態により、前記開閉弁を開閉することを特徴とする一重二重効用吸収冷凍機。
Evaporator absorber cylinder containing the evaporator and absorber, low temperature regenerator condenser cylinder containing the low temperature regenerator and condenser, low heat source regenerator and condenser using the hot drain as a heat source. Low heat source regenerator Condenser barrel, high temperature regenerator, low temperature heat exchanger, high temperature heat exchanger, refrigerant pump, absorption liquid pump, etc.
Connecting the refrigerant pipe leading to the low temperature regenerator from the Atsushi Ko regenerator, wherein the pressure equalizing pipe cold source regenerator condenser cylinders and / or said low-temperature heat source regenerator condenser cylinder condenser and an on-off valve is interposed And
A single-double-effect absorption refrigerator that opens and closes the on-off valve according to the temperature of the heat source flowing into the low heat source regenerator and the operating state of a gas burner provided in the high temperature regenerator .
前記高温再生器における吸収液の加熱を停止し、前記低熱源再生器凝縮器胴の前記低熱源再生器における吸収液の加熱のみに切替えた時に、前記均圧管の前記開閉弁を開弁することを特徴とする請求項1記載の一重二重効用吸収式冷凍機。 The heating was stopped of the absorbent in the high temperature regenerator, wherein when the switch only for heating the absorbent solution in the low heat source regenerator condenser cylinder of the low heat source regenerator, opening the opening closing of the equalizing pipe The single-double-effect absorption refrigerator according to claim 1.
JP2005003973A 2005-01-11 2005-01-11 Single double-effect absorption refrigerator Expired - Fee Related JP4326478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003973A JP4326478B2 (en) 2005-01-11 2005-01-11 Single double-effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003973A JP4326478B2 (en) 2005-01-11 2005-01-11 Single double-effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2006194469A JP2006194469A (en) 2006-07-27
JP4326478B2 true JP4326478B2 (en) 2009-09-09

Family

ID=36800692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003973A Expired - Fee Related JP4326478B2 (en) 2005-01-11 2005-01-11 Single double-effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4326478B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893227B1 (en) 2006-07-28 2009-04-16 주식회사 엘지화학 Anode for improving storage performance at a high temperature and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JP2006194469A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
CN102032706B (en) Absorbing type refrigerator
JP3883838B2 (en) Absorption refrigerator
KR101046059B1 (en) Dual-effect Absorption Chiller in Japan and Its Operation Control Method
KR20120079605A (en) Absorption type cooler and heater
JP5384072B2 (en) Absorption type water heater
JP3905986B2 (en) Waste heat utilization air conditioning system
JP2003343940A (en) Absorption water cooler/heater
JP4326478B2 (en) Single double-effect absorption refrigerator
JP5575519B2 (en) Absorption refrigerator
JP5405335B2 (en) Absorption refrigerator
JP4148830B2 (en) Single double effect absorption refrigerator
JP3883894B2 (en) Absorption refrigerator
JP2010276252A (en) Absorption type refrigerating machine
JP4315855B2 (en) Absorption refrigerator
JP4260095B2 (en) Single double effect absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JP6264636B2 (en) Absorption refrigerator
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP4632633B2 (en) Absorption heat pump device
JP2010266170A (en) Absorption-type refrigerating machine
JP7054855B2 (en) Absorption chiller
JP5456368B2 (en) Absorption refrigerator
JP6765056B2 (en) Absorption chiller
JP4260099B2 (en) Absorption refrigerator
JP3728092B2 (en) Single double-effect absorption chiller / heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees