JP4260095B2 - Single double effect absorption refrigerator - Google Patents

Single double effect absorption refrigerator Download PDF

Info

Publication number
JP4260095B2
JP4260095B2 JP2004309492A JP2004309492A JP4260095B2 JP 4260095 B2 JP4260095 B2 JP 4260095B2 JP 2004309492 A JP2004309492 A JP 2004309492A JP 2004309492 A JP2004309492 A JP 2004309492A JP 4260095 B2 JP4260095 B2 JP 4260095B2
Authority
JP
Japan
Prior art keywords
refrigerant
regenerator
heat source
low
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004309492A
Other languages
Japanese (ja)
Other versions
JP2006118823A (en
Inventor
洋介 田中
秀樹 府内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004309492A priority Critical patent/JP4260095B2/en
Publication of JP2006118823A publication Critical patent/JP2006118823A/en
Application granted granted Critical
Publication of JP4260095B2 publication Critical patent/JP4260095B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Description

本発明は、一重二重効用吸収冷凍機(吸収冷温水機を含む)に係わるものである。   The present invention relates to a single double-effect absorption refrigerator (including an absorption chiller / heater).

この種の吸収冷凍機としては、例えば図2に示したようにガスバーナ4で生成する燃焼熱を熱源として吸収液を加熱し冷媒を蒸発分離する高温再生器5、その高温再生器5から供給される冷媒蒸気を熱源として吸収液を加熱し冷媒を蒸発分離する二重効用再生器の低温再生器6、その低温再生器6に並設され、低温再生器6から供給される冷媒蒸気を凝縮する二重効用凝縮器の凝縮器7、コージェネレーションシステムなどから低熱源供給管28を介して供給される、例えば80℃程度の比較的低温度の温排水を熱源として吸収液を加熱し冷媒を蒸発分離する一重効用再生器の低熱源再生器9、その低熱源再生器9に並設され、低熱源再生器9から供給される冷媒蒸気を凝縮する一重効用凝縮器の凝縮器10、凝縮器7および凝縮器10から供給される冷媒液を蒸発させる蒸発器1、その蒸発器1で蒸発した冷媒蒸気を低温再生器6から供給される濃吸収液に吸収させる吸収器2、稀吸収液ポンプP1、中間吸収液ポンプP2、冷媒ポンプP5などを備えた一重二重効用吸収冷凍機100Xが周知である(例えば、特許文献1参照。)。   As this type of absorption refrigerator, for example, as shown in FIG. 2, a high-temperature regenerator 5 that heats the absorption liquid by using combustion heat generated by the gas burner 4 as a heat source and evaporates and separates the refrigerant is supplied from the high-temperature regenerator 5 The low-temperature regenerator 6 is a double-effect regenerator that heats the absorption liquid by using the refrigerant vapor as a heat source and evaporates and separates the refrigerant, and the refrigerant vapor supplied from the low-temperature regenerator 6 is condensed in parallel with the low-temperature regenerator 6. The absorption liquid is heated by using a relatively low temperature hot waste water of, for example, about 80 ° C. supplied from the condenser 7 of the double effect condenser, the cogeneration system, etc. via the low heat source supply pipe 28, and the refrigerant is evaporated. A low heat source regenerator 9 of a single effect regenerator to be separated, a condenser 10 of a single effect condenser which is provided in parallel to the low heat source regenerator 9 and condenses the refrigerant vapor supplied from the low heat source regenerator 9, a condenser 7 And from the condenser 10 An evaporator 1 for evaporating supplied refrigerant liquid, an absorber 2 for absorbing refrigerant vapor evaporated in the evaporator 1 by a concentrated absorbent supplied from a low temperature regenerator 6, a rare absorbent pump P1, an intermediate absorbent pump A single double-effect absorption refrigerator 100X including P2, a refrigerant pump P5, and the like is well known (see, for example, Patent Document 1).

なお、図中12は低温熱交換器、13は高温熱交換器、26は図示しない熱負荷に冷熱または温熱を循環供給して冷暖房などを行うためのブライン(例えば水)が流れるブライン管、27は冷却水管、28Aは低熱源供給管28に設けられたバイパス管、V1、V2、V8、V9は開閉弁、V4は低熱源供給管28に設けられた三方弁である。   In the figure, reference numeral 12 denotes a low-temperature heat exchanger, 13 denotes a high-temperature heat exchanger, 26 denotes a brine pipe through which brine (for example, water) flows for cooling and heating by supplying cold heat or heat to a heat load (not shown), 27 Is a cooling water pipe, 28A is a bypass pipe provided in the low heat source supply pipe 28, V1, V2, V8 and V9 are open / close valves, and V4 is a three-way valve provided in the low heat source supply pipe 28.

上記構成の一重二重効用吸収冷凍機100Xにおいては、暖房などの加熱運転を行うために熱負荷にブライン管26を介して温水を循環供給するときには、開閉弁V1、V2、V8、V9を開弁し、高温再生器4で生成した高温の冷媒蒸気を冷媒管20、20Aを経由して蒸発器吸収器胴3に流し、その冷媒蒸気によって伝熱管1B内を流れるブラインの水を加熱し、その加熱された温水がブライン管26を介して熱負荷に循環供給される。
特開平06−341729号公報
In the single double-effect absorption refrigerator 100X having the above-described configuration, when hot water is circulated and supplied to the heat load via the brine pipe 26 in order to perform heating operation such as heating, the on-off valves V1, V2, V8, and V9 are opened. The high-temperature refrigerant vapor generated in the high-temperature regenerator 4 is caused to flow to the evaporator absorber barrel 3 via the refrigerant tubes 20 and 20A, and the brine water flowing in the heat transfer tube 1B is heated by the refrigerant vapor, The heated warm water is circulated and supplied to the heat load via the brine pipe 26.
Japanese Patent Application Laid-Open No. 06-341729

上記構成の従来の一重二重効用吸収冷凍機は、暖房などの加熱運転時においては高温再生器で生成した冷媒蒸気を蒸発器吸収器胴に送ってブラインの水を加熱するものであり、熱負荷が小さいときであってもコージェネレーションシステムなどから供給される、例えば80℃程度の比較的低温度の温排水を熱源とする低熱源再生器のみで、ブライン加熱用の冷媒蒸気を生成することはできない構造となっていた。   The conventional single-double-effect absorption refrigerator having the above-described configuration heats the brine water by sending the refrigerant vapor generated by the high-temperature regenerator to the evaporator absorber body during heating operation such as heating. Even when the load is small, only a low heat source regenerator supplied from a cogeneration system or the like, for example, with a relatively low temperature hot waste water of about 80 ° C. as a heat source, generates refrigerant vapor for brine heating. The structure was not possible.

したがって、熱効率を高めるために、熱負荷の小さいときの暖房などの加熱運転では、低熱源再生器のみで生成した冷媒蒸気によってブラインが加熱できるようにする必要があり、それが解決すべき課題となっていた。   Therefore, in order to increase the thermal efficiency, in heating operation such as heating when the heat load is small, it is necessary to enable the brine to be heated by the refrigerant vapor generated only by the low heat source regenerator. It was.

本発明は、蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、冷媒ポンプ、稀吸収液ポンプ、中間吸収液ポンプなどを配管接続して構成する一重二重効用吸収冷凍機において、蒸発器の気相部と低熱源再生器凝縮器胴の気相部との間に配管され、加熱運転時に開操作される弁が介在する冷媒管と、蒸発器の冷媒液溜りと蒸発器内の上部に設置した冷媒散布器との間に配管され、冷媒ポンプが介在する冷媒管と、その冷媒管の冷媒ポンプ吐出側と低熱源再生器との間に配管され、加熱運転時に開操作される弁が介在する冷媒管とを備えるようにした一重二重効用吸収冷凍機である。   The present invention relates to an evaporator absorber cylinder containing an evaporator and an absorber, a low temperature regenerator condenser cylinder containing a low temperature regenerator and a condenser, and a low heat source regenerator and condenser using a hot drain as a heat source. Low heat source regenerator condenser body, high temperature regenerator, low temperature heat exchanger, high temperature heat exchanger, refrigerant pump, rare absorption liquid pump, intermediate absorption liquid pump, etc. In an absorption refrigerator, a refrigerant pipe that is piped between a vapor phase portion of an evaporator and a vapor phase portion of a low heat source regenerator condenser body and that has a valve that is opened during heating operation, and a refrigerant liquid of the evaporator Piped between the reservoir and the refrigerant spreader installed in the upper part of the evaporator, piped between the refrigerant pipe with the refrigerant pump interposed between the refrigerant pump discharge side of the refrigerant pipe and the low heat source regenerator, and heated A single-double-effect suction system equipped with a refrigerant pipe with a valve that is opened during operation. It is a refrigerator.

本発明によれば、低熱源再生器で加熱生成した冷媒蒸気は蒸発器に送られるので、その冷媒蒸気によるブラインの加熱が可能である。したがって、熱負荷が小さいときには、コージェネレーションシステムなどから供給される80℃程度の温排水を熱源とする低熱源再生器で生成した冷媒蒸気のみによるブラインの加熱が可能であり、熱効率が高い。   According to the present invention, since the refrigerant vapor generated by heating in the low heat source regenerator is sent to the evaporator, the brine can be heated by the refrigerant vapor. Therefore, when the heat load is small, the brine can be heated only by the refrigerant vapor generated by the low heat source regenerator using a warm waste water of about 80 ° C. supplied from a cogeneration system or the like as the heat source, and the thermal efficiency is high.

しかも、低熱源再生器の伝熱管の上に冷媒濃度の高い吸収液を散布することができるので、コージェネレーションシステムなどから低熱源再生器に供給される温排水の温度が80℃程度と低くても、吸収液から冷媒は速やかに蒸発し、排熱回収率は高い。   In addition, since the absorbing liquid with a high refrigerant concentration can be sprayed on the heat transfer tubes of the low heat source regenerator, the temperature of the hot wastewater supplied to the low heat source regenerator from a cogeneration system or the like is as low as about 80 ° C. However, the refrigerant quickly evaporates from the absorbing liquid, and the exhaust heat recovery rate is high.

蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、冷媒ポンプ、稀吸収液ポンプ、中間吸収液ポンプなどを配管接続して構成する一重二重効用吸収冷凍機において、蒸発器の気相部と低熱源再生器凝縮器胴の凝縮器の気相部との間に配管され、加熱運転時に開操作される弁が介在する冷媒管と、蒸発器の冷媒液溜りと蒸発器内の上部に設置した冷媒散布器との間に配管され、冷媒ポンプが介在する冷媒管と、その冷媒管の冷媒ポンプ吐出側と低熱源再生器との間に配管され、加熱運転時に開操作される弁が介在する冷媒管とを備えるようにした一重二重効用吸収冷凍機。   Evaporator absorber cylinder containing the evaporator and absorber, low temperature regenerator condenser cylinder containing the low temperature regenerator and condenser, low heat source regenerator and condenser using the hot drain as a heat source. Low heat source regenerator Condenser body, high temperature regenerator, low temperature heat exchanger, high temperature heat exchanger, refrigerant pump, rare absorption liquid pump, intermediate absorption liquid pump, etc. A refrigerant pipe which is piped between the vapor phase portion of the evaporator and the vapor phase portion of the condenser of the low heat source regenerator condenser body and which has a valve opened during heating operation, and a refrigerant liquid reservoir of the evaporator And a refrigerant spreader installed in the upper part of the evaporator, and is connected between a refrigerant pipe in which a refrigerant pump is interposed, a refrigerant pump discharge side of the refrigerant pipe and a low heat source regenerator, and heating operation. Single-double-effect absorption with a refrigerant pipe with a valve that is sometimes opened Freezing machine.

以下、本発明の一実施例を図1に基づいて詳細に説明する。なお、理解を容易にするため、前記図2において説明した部分と同様の機能を有する部分には同一の符号を付した。   Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG. In order to facilitate understanding, parts having the same functions as those described with reference to FIG.

図1に例示した一重二重効用吸収冷凍機100は、蒸発器1と吸収器2とを収納した蒸発器吸収器胴3、ガスバーナ4を備えた高温再生器5、低温再生器6、低温再生器6に並設された凝縮器7、低温再生器6と凝縮器7とを収納した低温再生器凝縮器胴8、低熱源再生器9、低熱源再生器9に並設された凝縮器10、低熱源再生器9と凝縮器10とを収納した低熱源再生器凝縮器胴11、低温熱交換器12、高温熱交換器13、冷媒ドレン熱回収器14、熱負荷に供給するブライン(例えば水)が流れるブライン管26、冷却水管27、低熱源再生器9にコージェネレーションシステムなどから供給される温排水などを供給する低熱源供給管28、稀吸収液ポンプP1、中間吸収液ポンプP2、濃吸収液ポンプP3、冷媒ポンプP5などを備えており、それらは図のように配管接続されている。   A single double-effect absorption refrigerator 100 illustrated in FIG. 1 includes an evaporator body 3 containing an evaporator 1 and an absorber 2, a high temperature regenerator 5 including a gas burner 4, a low temperature regenerator 6, and a low temperature regenerator. A condenser 7 juxtaposed to the condenser 6, a low-temperature regenerator condenser cylinder 8 containing the low-temperature regenerator 6 and the condenser 7, a low heat source regenerator 9, and a condenser 10 juxtaposed to the low heat source regenerator 9. , A low heat source regenerator condenser 11 containing a low heat source regenerator 9 and a condenser 10, a low temperature heat exchanger 12, a high temperature heat exchanger 13, a refrigerant drain heat recovery unit 14, and a brine to be supplied to a heat load (for example, Brine pipe 26 through which water) flows, cooling water pipe 27, low heat source supply pipe 28 for supplying warm drainage supplied from a cogeneration system to the low heat source regenerator 9, a rare absorbent pump P1, an intermediate absorbent pump P2, Concentrated liquid pump P3, refrigerant pump P5, etc. Eteori, they are connected by piping as shown in FIG.

すなわち、本発明の一重二重効用吸収冷凍機100においては、吸収器2の下部に形成された吸収液溜りと低熱源再生器9の気相部に設けた散布器9Aとを接続している吸収液管15の上流部分に稀吸収液ポンプP1が設けられている。   That is, in the single double effect absorption refrigerator 100 of the present invention, the absorption liquid reservoir formed in the lower part of the absorber 2 and the spreader 9A provided in the gas phase part of the low heat source regenerator 9 are connected. A rare absorbent pump P <b> 1 is provided upstream of the absorbent pipe 15.

そして、吸収液管15の稀吸収液ポンプP1の吐出側、すなわち下流側は吸収器2の上部側に設けられた溶液冷却吸収器2Aを経由した後、低温熱交換器12が介在する吸収液管15Aと、冷媒ドレン熱回収器14が介在する吸収液管15Bとに分岐し、その後合流して低熱源再生器9内の上部に配置された散布器9Aに接続されている。   And the discharge side of the rare absorption liquid pump P1 of the absorption liquid pipe 15, that is, the downstream side passes through the solution cooling absorber 2A provided on the upper side of the absorber 2, and then the absorption liquid interposing the low-temperature heat exchanger 12 The pipe 15 </ b> A and the absorbing liquid pipe 15 </ b> B interposing the refrigerant drain heat recovery device 14 are branched, and then merged and connected to a spreader 9 </ b> A disposed in the upper part of the low heat source regenerator 9.

また、低熱源再生器9の下部に形成された吸収液溜りと高温再生器5の気相部とを接続している吸収液管16には中間吸収液ポンプP2、高温熱交換器13が介在し、高温再生器1の吸収液溜まりと低温再生器6の気相部とを接続している吸収液管17には高温熱交換器13が介在し、吸収液管17の高温熱交換器13入口側と吸収器2の気相部とを接続している吸収液管17Aには開閉弁V1が介在し、低温再生器6の吸収液溜りと吸収器2の気相部に設けた散布器2Bとを接続している吸収液管18には濃吸収液ポンプP3、低温熱交換器12が介在し、吸収液管16の中間吸収液ポンプP2上流側と収液管18の濃吸収液ポンプP3上流側とはバイパス管19により接続されている。   Further, an intermediate absorption liquid pump P2 and a high temperature heat exchanger 13 are interposed in the absorption liquid pipe 16 connecting the absorption liquid reservoir formed at the lower part of the low heat source regenerator 9 and the gas phase part of the high temperature regenerator 5. The high-temperature heat exchanger 13 is interposed in the absorption liquid pipe 17 connecting the absorption liquid reservoir of the high-temperature regenerator 1 and the gas phase part of the low-temperature regenerator 6, and the high-temperature heat exchanger 13 of the absorption liquid pipe 17. An on-off valve V1 is interposed in the absorption liquid pipe 17A connecting the inlet side and the gas phase part of the absorber 2, and a spreader provided in the absorption liquid reservoir of the low temperature regenerator 6 and the gas phase part of the absorber 2. 2B, a concentrated absorbent pump P3 and a low-temperature heat exchanger 12 are interposed between the absorbent pipe 18 and 2B. The concentrated absorbent pump of the intermediate absorbent pump P2 upstream of the absorbent pipe 16 and the concentrated pipe 18 The P3 upstream side is connected by a bypass pipe 19.

また、高温再生器1の気相部上部と凝縮器7の底部とは、低温再生器6内に設置された伝熱管6Aと冷媒ドレン熱回収器14が介在する冷媒管20により接続され、高温再生器1で吸収液から蒸発分離した冷媒蒸気が伝熱管6Aの管壁を介して低温再生器6内の吸収液を加熱し、吸収液から冷媒を蒸発分離する過程で放熱・凝縮して凝縮器7に導入される冷媒ドレンが冷媒ドレン熱回収器14に供給されるようになっている。   The upper part of the gas phase part of the high-temperature regenerator 1 and the bottom part of the condenser 7 are connected by a refrigerant pipe 20 in which the heat transfer pipe 6A installed in the low-temperature regenerator 6 and the refrigerant drain heat recovery unit 14 are interposed. The refrigerant vapor evaporated and separated from the absorption liquid in the regenerator 1 heats the absorption liquid in the low-temperature regenerator 6 through the tube wall of the heat transfer pipe 6A, and dissipates heat and condenses in the process of evaporating and separating the refrigerant from the absorption liquid. The refrigerant drain introduced into the vessel 7 is supplied to the refrigerant drain heat recovery unit 14.

また、冷媒管20の低温再生器6入口側と吸収器2の気相部とは開閉弁V2が介在する冷媒管20Aにより接続されている。また、蒸発器1の気相部と凝縮器7の底部とはU字状部を備えた冷媒管21により接続され、その冷媒管21の下部側と凝縮器10の底部とは冷媒管22により接続されている。   Moreover, the low temperature regenerator 6 inlet side of the refrigerant pipe 20 and the gas phase part of the absorber 2 are connected by a refrigerant pipe 20A having an on-off valve V2. Further, the vapor phase part of the evaporator 1 and the bottom part of the condenser 7 are connected by a refrigerant pipe 21 having a U-shaped part, and the lower side of the refrigerant pipe 21 and the bottom part of the condenser 10 are connected by a refrigerant pipe 22. It is connected.

また、冷媒ポンプP5の運転により、蒸発器1の冷媒液溜まりに溜まっている冷媒液を蒸発器1の散布器1Aからブライン管26に接続された伝熱管1Bの上、または低熱源再生器9の散布器9Aから伝熱管9Bの上に散布できるように冷媒管が設けられている。   In addition, by operating the refrigerant pump P5, the refrigerant liquid accumulated in the refrigerant liquid reservoir of the evaporator 1 is transferred over the heat transfer pipe 1B connected to the brine pipe 26 from the spreader 1A of the evaporator 1 or the low heat source regenerator 9. The refrigerant pipe is provided so that it can be spread from the spreader 9A onto the heat transfer pipe 9B.

すなわち、一端が蒸発器1の冷媒液溜まりに連結され、冷媒ポンプP5が介在する冷媒管23の冷媒ポンプP5下流側の他端に三方弁V3が設けられ、その三方弁V3から散布器1Aに至る冷媒管23Aと散布器9Aに至る冷媒管23Bとが延設されている。また、冷媒管23の冷媒ポンプP5と三方弁V3との間と吸収器2の吸収液溜まりの間は、開閉弁V7が介在する冷媒管23Cにより接続されている。   That is, one end is connected to the refrigerant liquid reservoir of the evaporator 1, and a three-way valve V3 is provided at the other end on the downstream side of the refrigerant pump P5 of the refrigerant pipe 23 in which the refrigerant pump P5 is interposed, and from the three-way valve V3 to the spreader 1A. A refrigerant pipe 23 </ b> A reaching and a refrigerant pipe 23 </ b> B reaching the spreader 9 </ b> A are extended. The refrigerant pipe 23 is connected between the refrigerant pump P5 and the three-way valve V3 and the absorption liquid reservoir of the absorber 2 by a refrigerant pipe 23C in which an on-off valve V7 is interposed.

また、低熱源再生器凝縮器胴11の低熱源再生器9においては、低熱源供給管28が接続された伝熱管9Bが散布器9Aの下方に設置されている。28Aは低熱源供給管28に設けられたバイパス管、V4は低熱源供給管28とバイパス管28Aとの合流部に設けられた三方弁である。   Further, in the low heat source regenerator 9 of the low heat source regenerator condenser body 11, a heat transfer tube 9B to which the low heat source supply pipe 28 is connected is installed below the spreader 9A. Reference numeral 28A denotes a bypass pipe provided in the low heat source supply pipe 28, and reference numeral V4 denotes a three-way valve provided at a junction between the low heat source supply pipe 28 and the bypass pipe 28A.

また、蒸発器1と凝縮器7の気相部同士は暖房などの加熱運転する際に開弁される開閉弁V5が介在する冷媒管24により接続され、蒸発器1と凝縮器10の気相部同士は暖房などの加熱運転する際に開弁される開閉弁V6が介在する冷媒管25により接続されている。また、ブライン管26と冷却水管27とは開閉弁V9が介在する均圧管29により接続されている。   Further, the vapor phase portions of the evaporator 1 and the condenser 7 are connected by a refrigerant pipe 24 having an open / close valve V5 opened during a heating operation such as heating, and the vapor phases of the evaporator 1 and the condenser 10 are connected. The parts are connected by a refrigerant pipe 25 in which an on-off valve V6 that is opened when a heating operation such as heating is performed is interposed. The brine pipe 26 and the cooling water pipe 27 are connected by a pressure equalizing pipe 29 with an on-off valve V9 interposed.

上記構成の一重二重効用吸収冷凍機100を暖房などの加熱運転に供する際には、冷却水管27による吸収器2、凝縮器7、10への冷却水の供給は行わない。そして、暖房などの加熱負荷が小さく、したがってコージェネレーションシステムなどから低熱源供給管28を介して低熱源再生器凝縮器胴11の低熱源再生器9に供給する熱量だけで十分な熱量が吸収冷凍機に供給可能なときには、高温再生器5におけるガスバーナ4による吸収液の加熱は行わない。そのため、中間吸収液ポンプP2の運転は行わない。三方弁V3は、冷媒ポンプP5が搬送する蒸発器1内の冷媒液が、低熱源再生器凝縮器胴11の散布器9Aから伝熱管9Bの上に散布されるようにその流路が設定される。   When the single-double effect absorption refrigerator 100 having the above-described configuration is subjected to a heating operation such as heating, the cooling water pipe 27 does not supply the cooling water to the absorber 2 and the condensers 7 and 10. A heating load such as heating is small, and therefore, a sufficient amount of heat is absorbed by the amount of heat supplied from the cogeneration system or the like to the low heat source regenerator 9 of the low heat source regenerator condenser body 11 through the low heat source supply pipe 28. When it can be supplied to the machine, the absorption liquid is not heated by the gas burner 4 in the high-temperature regenerator 5. For this reason, the intermediate absorbing liquid pump P2 is not operated. The flow path of the three-way valve V3 is set so that the refrigerant liquid in the evaporator 1 conveyed by the refrigerant pump P5 is sprayed from the sprayer 9A of the low heat source regenerator condenser body 11 onto the heat transfer tube 9B. The

以下に、そのときの冷媒と吸収液の循環を説明する。低熱源再生器凝縮器胴11の低熱源再生器9においては、低熱源供給管28を介してコージェネレーションシステムなどから供給される、例えば80℃程度の比較的低温度の温排水を熱源として吸収液が伝熱管9Bの管壁を介して加熱され、吸収液から冷媒が蒸発分離する。   Hereinafter, the circulation of the refrigerant and the absorbing liquid at that time will be described. Low heat source regenerator In the low heat source regenerator 9 of the condenser body 11, a relatively low temperature hot waste water of about 80 ° C., for example, supplied from a cogeneration system or the like via a low heat source supply pipe 28 is absorbed as a heat source. The liquid is heated through the tube wall of the heat transfer tube 9B, and the refrigerant is evaporated and separated from the absorption liquid.

低熱源再生器9で吸収液から蒸発分離した冷媒蒸気は、低熱源再生器9に並設された低熱源再生器凝縮器胴11の凝縮器10に入る。凝縮器10に入った冷媒蒸気は、凝縮器10と冷媒管25を介して連通されている蒸発器吸収器胴3の蒸発器1内が、熱負荷からブライン管26を介して伝熱管1B内に還流した低温のブラインにより冷却されて低圧となっているので、その低圧の蒸発器1内に導入され、伝熱管1B内を流れる低温のブラインに放熱して凝縮する。   The refrigerant vapor evaporated and separated from the absorption liquid by the low heat source regenerator 9 enters the condenser 10 of the low heat source regenerator condenser body 11 provided in parallel with the low heat source regenerator 9. The refrigerant vapor that has entered the condenser 10 passes through the evaporator 1 of the evaporator absorber cylinder 3 communicated with the condenser 10 via the refrigerant pipe 25 from the heat load into the heat transfer pipe 1B via the brine pipe 26. Since it is cooled by the low-temperature brine refluxed to a low pressure, it is introduced into the low-pressure evaporator 1 and dissipates heat to the low-temperature brine flowing through the heat transfer tube 1B to condense.

この冷媒蒸気の放熱により、伝熱管1B内を流れるブラインが所定の温度、例えば55℃に加熱されてブライン管26を介して暖房などの熱負荷に循環供給される。そして、蒸発器1の冷媒溜まりに溜まった冷媒液は、冷媒ポンプP5の運転により、再び低熱源再生器9の散布器9Aから伝熱管9Bの上に散布される。   Due to the heat radiation of the refrigerant vapor, the brine flowing in the heat transfer tube 1B is heated to a predetermined temperature, for example, 55 ° C., and is circulated and supplied to a heat load such as heating through the brine tube. And the refrigerant | coolant liquid collected in the refrigerant | coolant pool of the evaporator 1 is spread | dispersed on the heat exchanger tube 9B again from the spreader 9A of the low-heat-source regenerator 9 by the driving | operation of the refrigerant | coolant pump P5.

一方、低熱源再生器9で冷媒を蒸発分離し、吸収液濃度が上昇した吸収液は、濃吸収液ポンプP3の運転により低温熱交換器12を経由して蒸発器吸収器胴3の吸収器2内に散布器2Bから散布されて底部の吸収液溜まりに溜まり、稀吸収液ポンプP1の運転により低熱源再生器9に戻されて散布器9Aから伝熱管9Bの上に散布される。   On the other hand, the absorption liquid having the absorption liquid concentration increased by evaporating and separating the refrigerant in the low heat source regenerator 9 is passed through the low-temperature heat exchanger 12 by the operation of the concentrated absorption liquid pump P3, and the absorber of the evaporator absorber body 3 is absorbed. 2 is sprayed from the spreader 2B and collected in the absorption liquid reservoir at the bottom, returned to the low heat source regenerator 9 by the operation of the rare absorbent pump P1, and sprayed from the sprayer 9A onto the heat transfer tube 9B.

上記構成の本発明の一重二重効用吸収冷凍機100においては、冷媒と吸収液とが上記のように循環するので、稀吸収液ポンプP1より冷媒ポンプP5を優先的に運転することで、低熱源再生器9の伝熱管9Bの上には冷媒濃度の高い吸収液が散布される。   In the single double-effect absorption refrigerator 100 of the present invention having the above-described configuration, the refrigerant and the absorption liquid circulate as described above. Therefore, by operating the refrigerant pump P5 with priority over the rare absorption liquid pump P1, the low On the heat transfer tube 9B of the heat source regenerator 9, an absorbing liquid having a high refrigerant concentration is dispersed.

そのため、コージェネレーションシステムなどから低熱源供給管28を介して伝熱管9Bに供給される温排水の温度が80℃程度と低くても、冷媒は吸収液から速やかに蒸発し、排熱回収率が高くなると云った特長がある。   Therefore, even if the temperature of the warm wastewater supplied from the cogeneration system or the like to the heat transfer pipe 9B through the low heat source supply pipe 28 is as low as about 80 ° C., the refrigerant quickly evaporates from the absorption liquid, and the exhaust heat recovery rate is high. There is a feature that it becomes higher.

上記の特長は、開閉弁V1、V2も開弁し、高温再生器5においてガスバーナ4による吸収液の加熱を行うと共に、中間吸収液ポンプP2も運転し、低熱源再生器凝縮器胴11の低熱源再生器9において低熱源供給管28から供給される温排水による加熱により冷媒を蒸発分離して濃縮した吸収液を高温再生器5に送って加熱し、吸収液から蒸発分離した冷媒蒸気と、冷媒を蒸発分離して濃縮された吸収液とを蒸発器吸収器胴3の吸収器2に送って、吸収器2に並設された蒸発器1の伝熱管1B内を流れるブラインを主に冷媒蒸気が凝縮する際の潜熱により加熱する、高熱負荷運転時にも発揮される。   The above feature is that the on-off valves V1 and V2 are also opened, the absorption liquid is heated by the gas burner 4 in the high-temperature regenerator 5, and the intermediate absorption liquid pump P2 is also operated, so that the low heat source regenerator condenser body 11 is low. In the heat source regenerator 9, the refrigerant vapor evaporated and separated by heating with the warm waste water supplied from the low heat source supply pipe 28 is sent to the high temperature regenerator 5 to be heated, and the refrigerant vapor evaporated and separated from the absorbent liquid; The absorption liquid concentrated by evaporating and separating the refrigerant is sent to the absorber 2 of the evaporator absorber body 3, and the brine flowing in the heat transfer tube 1B of the evaporator 1 arranged in parallel with the absorber 2 is mainly used as the refrigerant. It is also demonstrated during high heat load operation, where heating is performed by latent heat when steam condenses.

なお、本発明の一重二重効用吸収冷凍機100においては、冷却水管27に冷却水を流して吸収器2、凝縮器7、10に冷却水を供給しながら、ア)コージェネレーションシステムなどから供給される温排水を低熱源再生器9の伝熱管9Bに低熱源供給管28を介して供給する、イ)ガスバーナ4で天然ガスなどを燃焼させる、などして低熱源再生器9と高温再生器5において吸収液を加熱して吸収液から冷媒を蒸発分離し、その冷媒蒸気を冷却水が供給されている凝縮器で凝縮させ、その凝縮した冷媒液を蒸発器1で蒸発させる冷房などの冷却運転に供することも勿論できるが、本発明は一重二重効用吸収冷凍機の暖房などの加熱運転に係るものであるので、冷却運転時の冷媒と吸収液の説明は省略する。   In the single double-effect absorption refrigerator 100 of the present invention, a cooling water is supplied to the absorber 2 and the condensers 7 and 10 while flowing the cooling water to the cooling water pipe 27 and supplied from a) a cogeneration system or the like. The heated waste water is supplied to the heat transfer pipe 9B of the low heat source regenerator 9 through the low heat source supply pipe 28. b) The natural gas is burned by the gas burner 4, and the low heat source regenerator 9 and the high temperature regenerator. 5, cooling the refrigerant by evaporating and separating the refrigerant vapor from the absorbent, condensing the refrigerant vapor in a condenser to which cooling water is supplied, and evaporating the condensed refrigerant liquid in the evaporator 1. Needless to say, the present invention relates to a heating operation such as heating of a single double-effect absorption refrigerator, and therefore the description of the refrigerant and the absorbing liquid during the cooling operation is omitted.

ところで、本発明は上記実施例に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。   By the way, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit described in the claims.

例えば、三方弁V3に代えて、冷房などの冷却運転する際に開弁される開閉弁を冷媒管23Aに設け、暖房などの加熱運転する際に開弁される開閉弁を冷媒管23Bに設ける。   For example, instead of the three-way valve V3, an opening / closing valve that is opened when performing a cooling operation such as cooling is provided in the refrigerant pipe 23A, and an opening / closing valve that is opened during a heating operation such as heating is provided in the refrigerant pipe 23B. .

また、溶液冷却吸収器2A、冷媒ドレン熱回収器14は必ずしも設ける必要はないし、冷却水管27は、冷却水が吸収器2、凝縮器6、10に分岐して流れるように構成することも可能である。   Further, the solution cooling absorber 2A and the refrigerant drain heat recovery device 14 are not necessarily provided, and the cooling water pipe 27 can be configured such that the cooling water branches and flows to the absorber 2, the condensers 6 and 10. It is.

本発明の一重二重効用吸収冷凍機の構成を示す説明図である。It is explanatory drawing which shows the structure of the single double effect absorption refrigerator of this invention. 従来技術を示す説明図である。It is explanatory drawing which shows a prior art.

符号の説明Explanation of symbols

1 蒸発器
1A 散布器
1B 伝熱管
2 吸収器
3 蒸発器吸収器胴
5 高温再生器
6 低温再生器
7 凝縮器
8 低温再生器凝縮器胴
9 低熱源再生器
9A 散布器
9B 伝熱管
10 凝縮器
11 低熱源再生器凝縮器胴
12 低温熱交換器
13 高温熱交換器
14 冷媒ドレン熱回収器
15、16、17、18 吸収液管
19 バイパス管
20、21、22、23、24、25 冷媒管
26 ブライン管
27 冷却水管
28 低熱源供給管
P1 稀吸収液ポンプ
P2 中間吸収液ポンプ
P3 濃吸収液ポンプ
P5 冷媒ポンプ
V1、V2、V5、V6、V7、V8、V9 開閉弁
V3、V4 三方弁
100、100X 一重二重効用吸収冷凍機
DESCRIPTION OF SYMBOLS 1 Evaporator 1A Spreader 1B Heat exchanger tube 2 Absorber 3 Evaporator absorber cylinder 5 High temperature regenerator 6 Low temperature regenerator 7 Condenser 8 Low temperature regenerator condenser cylinder 9 Low heat source regenerator 9A Spreader 9B Heat transfer tube 10 Condenser DESCRIPTION OF SYMBOLS 11 Low heat source regenerator condenser body 12 Low temperature heat exchanger 13 High temperature heat exchanger 14 Refrigerant drain heat recovery device 15, 16, 17, 18 Absorption liquid pipe 19 Bypass pipe 20, 21, 22, 23, 24, 25 Refrigerant pipe 26 Brine pipe 27 Cooling water pipe 28 Low heat source supply pipe P1 Rare absorbent pump P2 Intermediate absorbent pump P3 Concentrated absorbent pump P5 Refrigerant pump V1, V2, V5, V6, V7, V8, V9 On-off valve V3, V4 Three-way valve 100 , 100X single double effect absorption refrigerator

Claims (1)

蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、冷媒ポンプ、稀吸収液ポンプ、中間吸収液ポンプなどを配管接続して構成する一重二重効用吸収冷凍機において、蒸発器の気相部と低熱源再生器凝縮器胴の気相部との間に配管され、加熱運転時に開操作される弁が介在する冷媒管と、蒸発器の冷媒液溜りと蒸発器内の上部に設置した冷媒散布器との間に配管され、冷媒ポンプが介在する冷媒管と、その冷媒管の冷媒ポンプ吐出側と低熱源再生器との間に配管され、加熱運転時に開操作される弁が介在する冷媒管とを備えたことを特徴とする一重二重効用吸収冷凍機。   Evaporator absorber cylinder containing the evaporator and absorber, low temperature regenerator condenser cylinder containing the low temperature regenerator and condenser, low heat source regenerator and condenser using the hot drain as a heat source. Low heat source regenerator Condenser body, high temperature regenerator, low temperature heat exchanger, high temperature heat exchanger, refrigerant pump, rare absorption liquid pump, intermediate absorption liquid pump, etc. A refrigerant pipe that is piped between the vapor phase portion of the evaporator and the vapor phase portion of the condenser body of the low heat source regenerator, and has a valve that is opened during heating operation, and a refrigerant liquid reservoir and evaporator of the evaporator It is piped between the refrigerant spreader installed in the upper part of the inside and piped between the refrigerant pipe in which the refrigerant pump is interposed, the refrigerant pump discharge side of the refrigerant pipe and the low heat source regenerator, and is opened during heating operation. Single-effect double-effect absorption cooling Machine.
JP2004309492A 2004-10-25 2004-10-25 Single double effect absorption refrigerator Expired - Fee Related JP4260095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309492A JP4260095B2 (en) 2004-10-25 2004-10-25 Single double effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309492A JP4260095B2 (en) 2004-10-25 2004-10-25 Single double effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2006118823A JP2006118823A (en) 2006-05-11
JP4260095B2 true JP4260095B2 (en) 2009-04-30

Family

ID=36536869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309492A Expired - Fee Related JP4260095B2 (en) 2004-10-25 2004-10-25 Single double effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4260095B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825370A (en) * 2009-09-19 2010-09-08 李华玉 Backheating type double-effect and multi-effect second-class absorption heat pump
CN113546434B (en) * 2021-07-30 2022-06-14 贵州飞云岭药业股份有限公司 Double-effect energy-saving evaporation concentration system

Also Published As

Publication number Publication date
JP2006118823A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP5210896B2 (en) Single double-effect absorption chiller / heater
JP2004257705A (en) Concentration device using absorption heat pump
JP3883838B2 (en) Absorption refrigerator
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
KR100541303B1 (en) Absorption chiller
JP2003343940A (en) Absorption water cooler/heater
JP4260095B2 (en) Single double effect absorption refrigerator
JP4148830B2 (en) Single double effect absorption refrigerator
KR100512827B1 (en) Absorption type refrigerator
JP4315854B2 (en) Absorption refrigerator
KR101045463B1 (en) Absorption type refrigerator having the solution heating condensor
KR100493598B1 (en) Absorption Type Refrigerator
JP4326478B2 (en) Single double-effect absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JP2004257704A (en) Absorption heat pump device
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP4596683B2 (en) Absorption refrigerator
JP5210897B2 (en) Single double-effect absorption chiller / heater
JP3858655B2 (en) Absorption refrigeration system
JP2005106408A (en) Absorption type freezer
KR20080001999U (en) Apparatus for preventing warming changeover valve pipe from crystallization in absorption water cooler and heater
KR100858776B1 (en) Apparatus for supplying warm water during cooling mode or operation stop in absorption water cooler and heater
JP2003207222A (en) Heating operation method and device in multiple-effect absorption refrigerating machine and water cooling and heating unit
JP2006170611A (en) Absorption type refrigerator
JP2005326089A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees