JP4315854B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4315854B2
JP4315854B2 JP2004118134A JP2004118134A JP4315854B2 JP 4315854 B2 JP4315854 B2 JP 4315854B2 JP 2004118134 A JP2004118134 A JP 2004118134A JP 2004118134 A JP2004118134 A JP 2004118134A JP 4315854 B2 JP4315854 B2 JP 4315854B2
Authority
JP
Japan
Prior art keywords
temperature
absorbent
heat exchanger
low
discharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004118134A
Other languages
Japanese (ja)
Other versions
JP2005300047A (en
Inventor
秀樹 府内
春樹 西本
朗 畑山
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2004118134A priority Critical patent/JP4315854B2/en
Publication of JP2005300047A publication Critical patent/JP2005300047A/en
Application granted granted Critical
Publication of JP4315854B2 publication Critical patent/JP4315854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Description

本発明は、熱交換装置とそれを用いた吸収冷凍機に係わるものである。   The present invention relates to a heat exchange device and an absorption refrigerator using the heat exchange device.
近年、吸収冷凍機においても省エネルギー・地球温暖化防止などの観点から、熱効率の一層の向上が求められている。そのため、例えば図3に示したように、吸収液ポンプ11が介在して吸収器5から高温再生器1に至る吸収液管13に低温熱交換器6、高温熱交換器7を設けるだけでなく、排熱回収熱交換器8X、8Yを設けて、冷媒を吸収して吸収液濃度が低下した吸収器5の吸収液を吸収液ポンプ11を運転して高温再生器1に搬送する際に、コ・ジェネレーションシステムなどから供給される排熱と、バーナ1Aから出る排ガスによっても加熱し、バーナ1Aで燃焼させる燃料と、燃焼時に生成される二酸化炭素の両方を減らすように工夫した吸収冷凍機100Xが周知である(例えば、特許文献1参照。)。なお、図中2は低温再生器、3は凝縮器、4は蒸発器、10は冷媒ポンプである。
特開2000−257978号公報
In recent years, absorption refrigerators have been required to further improve thermal efficiency from the viewpoints of energy saving and prevention of global warming. Therefore, for example, as shown in FIG. 3, not only the low-temperature heat exchanger 6 and the high-temperature heat exchanger 7 are provided in the absorption liquid pipe 13 from the absorber 5 to the high-temperature regenerator 1 through the absorption liquid pump 11. When the exhaust heat recovery heat exchangers 8X and 8Y are provided to absorb the refrigerant and reduce the absorption liquid concentration in the absorber 5 to operate the absorption liquid pump 11 and transport it to the high temperature regenerator 1, Absorption chiller 100X devised to reduce both the exhaust heat supplied from the co-generation system and the exhaust gas from the burner 1A, and the fuel burned by the burner 1A and the carbon dioxide produced during combustion Is well known (see, for example, Patent Document 1). In the figure, 2 is a low-temperature regenerator, 3 is a condenser, 4 is an evaporator, and 10 is a refrigerant pump.
JP 2000-257978 A
特許文献1に提案された吸収冷凍機においては、低温再生器から吸収器に流入する高温の吸収液と低温熱交換器で熱交換して加熱され、低温熱交換器から吐出した吸収液をコ・ジェネレーションシステムなどから供給される排熱と、バーナから排出される排ガスによって加熱していたので、排熱回収熱交換器には低温熱交換器で加熱された吸収液より高温の熱流体を供給しなければならず、熱源が限定されると云った問題点があった。そのため、従来より温度の低い熱流体であっても、熱効率の改善に利用することができる吸収冷凍機を提供する必要があり、それが解決すべき課題となっていた。   In the absorption refrigerator proposed in Patent Document 1, the high-temperature absorption liquid flowing into the absorber from the low-temperature regenerator is heated by exchanging heat with the low-temperature heat exchanger, and the absorption liquid discharged from the low-temperature heat exchanger is combined with the absorption refrigerant.・ Since it was heated by exhaust heat supplied from the generation system and exhaust gas exhausted from the burner, the exhaust heat recovery heat exchanger is supplied with a hot fluid that is higher in temperature than the absorbent heated in the low-temperature heat exchanger. There is a problem that the heat source is limited. Therefore, it is necessary to provide an absorption refrigerator that can be used for improving thermal efficiency even with a thermal fluid having a lower temperature than before, and this has been a problem to be solved.
本発明は、上記の課題を解決するため、
吸収器から吸収液ポンプにより送出される希吸収液と、上記の希吸収液を加熱して濃縮再生する高温再生器を加熱して吐出される排熱流体とを熱交換する排熱回収熱交換器と、
上記の排熱回収熱交換器を経た希吸収液と、低温再生器から吐出して吸収器に送られる濃吸収液とを熱交換する低温熱交換器と、
上記の吸収液ポンプにより送出される希吸収液と、上記の高温再生器から吐出されて低温再生器に送られる中間吸収液とを熱交換する高温熱交換器とを順次に配列するとともに、
上記の排熱回収熱交換器の希吸収液の入口側と出口側とを流量制御弁(以下、バイパス制御弁という)を介在させたバイパス管によって接続し、
上記の低温熱交換器から吐出して上記の吸収器に送られている濃吸収液(以下、吐出濃吸収液という)の温度を検出して得られる上記の温度に基づいて、上記のバイパス制御弁を制御することにより、上記の吐出濃吸収液の温度を上記の吐出濃吸収液が結晶化しない温度に制御することを特徴とする第1の構成の吸収冷凍機と、
In order to solve the above problems , the present invention
Exhaust heat recovery heat exchange that exchanges heat between the diluted absorbent delivered from the absorber by the absorbent pump and the exhaust heat fluid discharged by heating the high-temperature regenerator that heats and concentrates the diluted absorbent. And
A low-temperature heat exchanger that exchanges heat between the diluted absorbent that has passed through the exhaust heat recovery heat exchanger and the concentrated absorbent that is discharged from the low-temperature regenerator and sent to the absorber;
While sequentially arranging a high temperature heat exchanger for exchanging heat between the diluted absorbent delivered by the absorbent pump and the intermediate absorbent discharged from the high temperature regenerator and sent to the low temperature regenerator,
The inlet side and the outlet side of the diluted absorbent of the above exhaust heat recovery heat exchanger are connected by a bypass pipe with a flow control valve (hereinafter referred to as a bypass control valve) interposed therebetween,
The bypass control based on the temperature obtained by detecting the temperature of the concentrated absorbent (hereinafter referred to as the discharged concentrated absorbent) discharged from the low-temperature heat exchanger and sent to the absorber. An absorption refrigerator having a first configuration, wherein the temperature of the discharged concentrated absorbent is controlled to a temperature at which the discharged concentrated absorbent is not crystallized by controlling a valve;
上記の第1の構成の吸収冷凍機における制御に代えて、Instead of the control in the absorption refrigerator of the first configuration,
上記の低温熱交換器から吐出して上記の吸収器に送られている濃吸収液(以下、吐出濃吸収液という)の温度を検出して得られる上記の温度に基づいて、上記のバイパス制御弁を制御することにより、上記の吐出濃吸収液の温度を上記の吐出濃吸収液が上記の吸収器での冷媒吸収作用に支障をきたさない温度に制御することを特徴とする第2の構成の吸収冷凍機とを提供するようにしたものである。The bypass control based on the temperature obtained by detecting the temperature of the concentrated absorbent (hereinafter referred to as the discharged concentrated absorbent) discharged from the low-temperature heat exchanger and sent to the absorber. By controlling the valve, the temperature of the concentrated concentrated absorbent is controlled to a temperature at which the concentrated concentrated absorbent does not interfere with the refrigerant absorbing action in the absorber. The absorption refrigerator is provided.
本発明の吸収冷凍機においては、冷媒を吸収して吸収器から吐出し、低温熱交換器に流入する前の吸収液を排熱回収熱交換器において加熱するので、排熱回収熱交換器が低温熱交換器の下流側に設置されていた従来の吸収冷凍機より、温度の低い熱流体であっても吸収液を加熱する熱源として利用することができる。   In the absorption refrigerator of the present invention, the refrigerant is absorbed and discharged from the absorber, and the absorption liquid before flowing into the low-temperature heat exchanger is heated in the exhaust heat recovery heat exchanger. Even a hot fluid having a lower temperature than the conventional absorption refrigerator installed downstream of the low-temperature heat exchanger can be used as a heat source for heating the absorbent.
しかも、低温再生器から吸収器に流入している吸収液の低温熱交換器出口側温度に基づいてバイパス路に流れる吸収液の流量が制御されるので、低温再生器から吸収器に流入している吸収液の温度が、イ)低下し過ぎて吸収液が結晶化する、ロ)上昇し過ぎて吸収器での冷媒吸収作用に支障をきたす、などと云った不都合が生じることもない。   Moreover, since the flow rate of the absorption liquid flowing in the bypass path is controlled based on the temperature of the absorption liquid at the outlet of the low temperature heat exchanger flowing into the absorber from the low temperature regenerator, it flows into the absorber from the low temperature regenerator. The temperature of the absorbed liquid does not cause inconveniences such as (a) the absorption liquid is crystallized due to a decrease, and (b) the refrigerant is absorbed by the absorber.
高温再生器、低温再生器、凝縮器、蒸発器、吸収器、低温熱交換器、高温熱交換器などを配管接続して構成される吸収冷凍機において、吸収液を加熱して濃縮再生する高温再生器から吐出した排熱流体と、冷媒を吸収して吸収器から吐出し、低温熱交換器に至る前の吸収液とが熱交換する排熱回収熱交換器を設け、吸収器から吐出した吸収液が排熱回収熱交換器を迂回して低温熱交換器に流入可能にバイパス路を設け、低温熱交換器を経由して低温再生器から吸収器に流入している吸収液の低温熱交換器出口側温度が結晶化温度より僅か、例えば3〜5℃だけ高い温度を維持するように、バイパス路に流れる吸収液の流量を制御する制御手段を設けるようにした吸収冷凍機。   High temperature that concentrates and regenerates the absorption liquid by heating the absorption refrigerating machine that consists of piping connection of high temperature regenerator, low temperature regenerator, condenser, evaporator, absorber, low temperature heat exchanger, high temperature heat exchanger, etc. An exhaust heat recovery heat exchanger that absorbs heat from the exhaust heat fluid discharged from the regenerator and absorbs the refrigerant and discharges it from the absorber and exchanges heat with the absorption liquid before reaching the low-temperature heat exchanger is provided and discharged from the absorber. A bypass path is provided so that the absorption liquid can bypass the exhaust heat recovery heat exchanger and flow into the low-temperature heat exchanger, and the low-temperature heat of the absorption liquid flowing into the absorber from the low-temperature regenerator via the low-temperature heat exchanger. An absorption refrigerator having a control means for controlling the flow rate of the absorption liquid flowing in the bypass passage so that the temperature at the outlet side of the exchanger is slightly higher than the crystallization temperature, for example, 3 to 5 ° C.
以下、本発明の一実施形態を図1と図2とに基づいて詳細に説明する。図面に例示した吸収冷凍機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用して、図示しない負荷に冷水の循環供給が可能な2重効用吸収式冷凍機である。
なお、理解を容易にするため、これらの図においても前記図3において説明した部分と同様の機能を有する部分には、同一の符号を付した。
Hereinafter, an embodiment of the present invention based on the Figures 1 and 2 will be described in detail. The absorption refrigerator 100 illustrated in the drawings is a double-effect absorption refrigerator that uses water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an absorption liquid and can circulate and supply cold water to a load (not shown). .
In order to facilitate understanding, in these drawings, the same reference numerals are given to the portions having the same functions as those described in FIG.
図中、1は高温再生器、2は低温再生器、3は凝縮器、4は蒸発器、5は吸収器、6は低温熱交換器、7は高温熱交換器、8は排熱回収熱交換器、9は流量制御弁、10は冷媒ポンプ、11と12は吸収液ポンプ、13〜15は吸収液管、16〜18は冷媒管、19は他の設備、例えばコ・ジェネレーションシステムなどから供給される排熱流体(例えば、高温・高圧の水蒸気、高温水など)が内部を流れる排熱流体供給管、20は冷水管、21は冷却水管であり、図1に示したように配管接続されている。   In the figure, 1 is a high temperature regenerator, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low temperature heat exchanger, 7 is a high temperature heat exchanger, and 8 is exhaust heat recovery heat. Exchanger, 9 is a flow control valve, 10 is a refrigerant pump, 11 and 12 are absorption liquid pumps, 13 to 15 are absorption liquid pipes, 16 to 18 are refrigerant pipes, and 19 is from other equipment such as a co-generation system. A waste heat fluid supply pipe through which the exhaust heat fluid to be supplied (for example, high-temperature / high-pressure steam, high-temperature water, etc.) flows, 20 is a cold water pipe, 21 is a cooling water pipe, and is connected as shown in FIG. Has been.
すなわち、排熱回収熱交換器8の吸収液の入口側と出口側とは流量制御弁9が介在するバイパス管13Aにより接続され、排熱流体供給管19は、コ・ジェネレーションシステムなどから供給される高温・高圧の水蒸気、高温水などの排熱流体が先ず高温再生器1の内部に供給され、高温再生器1内で吸収液を加熱して冷媒を蒸発分離し、吸収液を濃縮再生する過程で放熱した後に、排熱回収熱交換器8に至るように配管されている。   That is, the inlet side and the outlet side of the absorption liquid of the exhaust heat recovery heat exchanger 8 are connected by a bypass pipe 13A with a flow rate control valve 9 interposed therebetween, and the exhaust heat fluid supply pipe 19 is supplied from a cogeneration system or the like. First, exhaust heat fluid such as high-temperature and high-pressure steam or high-temperature water is supplied to the inside of the high-temperature regenerator 1, and the absorption liquid is heated and evaporated in the high-temperature regenerator 1 to concentrate and regenerate the absorption liquid. After radiating heat in the process, piping is provided so as to reach the exhaust heat recovery heat exchanger 8.
なお、22は、吸収液管15の低温熱交換器6出口側に設けられて、熱交換して低温熱交換器6から吐出した吸収液の温度を計測するための温度センサ、23は温度センサ22が計測した吸収液の温度に基づいて流量制御弁9を制御するための制御器である。   Reference numeral 22 denotes a temperature sensor provided on the outlet side of the low-temperature heat exchanger 6 of the absorption liquid tube 15 for measuring the temperature of the absorption liquid that has been heat-exchanged and discharged from the low-temperature heat exchanger 6, and 23 is a temperature sensor. 22 is a controller for controlling the flow rate control valve 9 based on the temperature of the absorption liquid measured.
上記構成の吸収冷凍機100においては、冷却水管21に冷却水を流し、排熱流体供給管19を介して高温再生器1に、コ・ジェネレーションシステムなどから供給される高温・高圧の水蒸気、高温水などの排熱流体を供給し、吸収液を加熱すると吸収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して吸収液の濃度が高くなった中間吸収液とが得られる。   In the absorption refrigerator 100 having the above-described configuration, the cooling water is supplied to the cooling water pipe 21 and supplied to the high temperature regenerator 1 through the exhaust heat fluid supply pipe 19 from a co-generation system or the like. When the exhaust heat fluid such as water is supplied and the absorption liquid is heated, the refrigerant vapor evaporated and separated from the absorption liquid and the intermediate absorption liquid in which the concentration of the absorption liquid is increased by separating the refrigerant vapor are obtained.
高温再生器1で生成された高温の冷媒蒸気は、冷媒管16を通って低温再生器2に入り、高温再生器1で生成され吸収液管14により高温熱交換器7を経由して低温再生器2に入った中間吸収液を加熱して放熱凝縮し、凝縮器3に入る。   The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the low-temperature regenerator 2 through the refrigerant pipe 16, and is generated in the high-temperature regenerator 1 through the high-temperature heat exchanger 7 via the high-temperature heat exchanger 7. The intermediate absorption liquid that has entered the condenser 2 is heated and condensed by heat dissipation, and enters the condenser 3.
また、低温再生器2で加熱されて中間吸収液から蒸発分離した冷媒は凝縮器3へ入り、冷却水管21内を流れる冷却水と熱交換して凝縮液化し、冷媒管16から凝縮して供給される冷媒と一緒になって冷媒管17を通って蒸発器4に入る。   Further, the refrigerant heated by the low temperature regenerator 2 and evaporated and separated from the intermediate absorption liquid enters the condenser 3, exchanges heat with the cooling water flowing in the cooling water pipe 21 to be condensed and liquefied, and is condensed and supplied from the refrigerant pipe 16. Together with the refrigerant to be passed, it enters the evaporator 4 through the refrigerant pipe 17.
蒸発器4に入って冷媒液溜りに溜った冷媒液は、冷水管20に接続された伝熱管20Aの上に冷媒ポンプ10によって散布され、冷水管20を介して供給される水と熱交換して蒸発し、伝熱管20Aの内部を流れる水を冷却する。   The refrigerant liquid that has entered the evaporator 4 and accumulated in the refrigerant liquid reservoir is sprayed by the refrigerant pump 10 on the heat transfer pipe 20 </ b> A connected to the cold water pipe 20 and exchanges heat with water supplied through the cold water pipe 20. The water flowing through the heat transfer tube 20A is cooled.
そして、蒸発器4で蒸発した冷媒は吸収器5に入り、低温再生器2で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち濃吸収液は吸収液管15により低温熱交換器6を経由して吸収器5に供給され、吸収器5の上方から散布され、冷媒を吸収する。 Then, the refrigerant evaporated by the evaporator 4 enters the absorber 5 and is heated by the low-temperature regenerator 2 to evaporate and separate the refrigerant. The absorption liquid whose concentration of the absorption liquid is further increased, that is, the concentrated absorption liquid is the absorption liquid pipe 15. Is supplied to the absorber 5 via the low-temperature heat exchanger 6 and sprayed from above the absorber 5 to absorb the refrigerant.
吸収器5で冷媒を吸収して濃度の薄くなった吸収液、すなわち稀吸収液は吸収液ポンプ11の運転により、排熱回収熱交換器8・低温熱交換器6・高温熱交換器7を経由して高温再生器1へ吸収液管13から送られる。   Absorbing liquid whose concentration has been reduced by absorbing the refrigerant in the absorber 5, that is, the rare absorbing liquid, is operated by operating the absorbing liquid pump 11 so that the exhaust heat recovery heat exchanger 8, the low temperature heat exchanger 6, and the high temperature heat exchanger 7 are changed. Via the absorption liquid pipe 13 to the high temperature regenerator 1 via.
上記のように運転が行われると、蒸発器4の内部に配管された伝熱管20Aにおいて冷媒の気化熱によって冷却された冷水が、冷水管20を介して図示しない熱負荷に循環供給できるので、冷房などの冷却運転が行える。   When the operation is performed as described above, the cold water cooled by the heat of vaporization of the refrigerant in the heat transfer pipe 20A piped inside the evaporator 4 can be circulated and supplied to a heat load (not shown) via the cold water pipe 20. Cooling operation such as cooling can be performed.
そして、本発明の吸収冷凍機100においては、図2に示すように温度センサ22が計測する吸収液の温度が、吸収液管15を流れている吸収液の結晶化温度より3〜5℃だけ高い所定の設定温度、例えば45℃を維持するように、計測温度が低いほど流量制御弁9を絞り、計測温度が高いほど流量制御弁9を開けるように制御器23により制御される。   And in the absorption refrigerator 100 of this invention, as shown in FIG. 2, the temperature of the absorption liquid which the temperature sensor 22 measures is only 3-5 degreeC from the crystallization temperature of the absorption liquid which is flowing through the absorption liquid pipe 15. The controller 23 controls the flow rate control valve 9 so that the flow rate control valve 9 is throttled as the measured temperature is lower and the flow rate control valve 9 is opened as the measured temperature is higher so as to maintain a high predetermined set temperature, for example, 45 ° C.
したがって、本発明の吸収冷凍機100においては、吸収器5から高温再生器1に搬送される吸収液の温度が低温熱交換器6と高温熱交換器7とで加熱されるだけでなく、排熱回収熱交換器8においても加熱されるので、排熱流体供給管19を介してコ・ジェネレーションシステムなどから供給される高温・高圧の水蒸気、高温水などの排熱流体による吸収液に対する加熱効率が良い。   Therefore, in the absorption refrigerator 100 of the present invention, the temperature of the absorption liquid conveyed from the absorber 5 to the high temperature regenerator 1 is not only heated by the low temperature heat exchanger 6 and the high temperature heat exchanger 7, but also discharged. Since the heat recovery heat exchanger 8 is also heated, the heating efficiency with respect to the absorbing liquid by the exhaust heat fluid such as high temperature / high pressure steam or high temperature water supplied from the co-generation system or the like via the exhaust heat fluid supply pipe 19 Is good.
しかも、低温再生器2で加熱濃縮され、低温熱交換器6で放熱して吸収器5に供給されている吸収液の温度が、所定の例えば45℃を維持するように流量制御弁9の開度が制御器23により制御されるので、温度が低下し過ぎて吸収液が結晶化することがないし、温度が上がり過ぎて吸収器5で冷媒を吸収する際に、吸収し難くなると云った不都合も起こらない。   Moreover, the flow control valve 9 is opened so that the temperature of the absorbing liquid that is heated and concentrated in the low-temperature regenerator 2, dissipates heat in the low-temperature heat exchanger 6, and is supplied to the absorber 5, for example, maintains a predetermined 45 ° C. Since the temperature is controlled by the controller 23, the temperature does not decrease too much and the absorption liquid does not crystallize, and when the temperature is excessively increased and the refrigerant is absorbed by the absorber 5, it is difficult to absorb the refrigerant. Also does not happen.
なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。   In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.
例えば、高温再生器1で吸収液を加熱し、濃縮再生するための熱源としては、図3に記載されているようなバーナが用いられても良い。高温再生器1の熱源をそのようにしたときには、排熱回収熱交換器8にはバーナから出る高温の燃焼排ガスが供給される。   For example, a burner as shown in FIG. 3 may be used as a heat source for heating and absorbing the absorption liquid with the high-temperature regenerator 1. When the heat source of the high-temperature regenerator 1 is set as such, the exhaust heat recovery heat exchanger 8 is supplied with high-temperature combustion exhaust gas from the burner.
その際、バーナから排出される高温の燃焼排ガスは、排熱回収熱交換器8に直接供給されても良いし、図3に示されているように低温熱交換器6と高温熱交換器7との間に別途設置する排熱回収熱交換器で吸収液を加熱して放熱した後で、排熱回収熱交換器8に供給されるように構成することも可能である。   At that time, the high-temperature combustion exhaust gas discharged from the burner may be directly supplied to the exhaust heat recovery heat exchanger 8, or the low-temperature heat exchanger 6 and the high-temperature heat exchanger 7 as shown in FIG. It is also possible to configure so that the absorption liquid is heated and dissipated by an exhaust heat recovery heat exchanger separately installed between the two and then supplied to the exhaust heat recovery heat exchanger 8.
本発明の吸収冷凍機の説明図である。It is explanatory drawing of the absorption refrigerator of this invention. 流量制御弁の制御例を示す説明図である。It is explanatory drawing which shows the example of control of a flow control valve. 従来技術の説明図である。It is explanatory drawing of a prior art.
符号の説明Explanation of symbols
1 高温再生器
2 低温再生器
3 凝縮器
4 蒸発器
5 吸収器
6 低温熱交換器
7 高温熱交換器
8 排熱回収熱交換器
9 流量制御弁
10 冷媒ポンプ
11、12 吸収液ポンプ
13〜15 吸収液管
16〜18 冷媒管
19 排熱流体供給管
20 冷水管
21 冷却水管
22 温度センサ
23 制御器
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Low temperature heat exchanger 7 High temperature heat exchanger 8 Waste heat recovery heat exchanger 9 Flow control valve 10 Refrigerant pump 11, 12 Absorption liquid pump 13-15 Absorption liquid pipe 16-18 Refrigerant pipe 19 Waste heat fluid supply pipe 20 Cold water pipe 21 Cooling water pipe 22 Temperature sensor 23 Controller

Claims (2)

  1. 吸収器から吸収液ポンプにより送出される希吸収液と、前記希吸収液を加熱して濃縮再生する高温再生器を加熱して吐出される排熱流体とを熱交換する排熱回収熱交換器と、
    前記排熱回収熱交換器を経た希吸収液と、低温再生器から吐出して吸収器に送られる濃吸収液とを熱交換する低温熱交換器と、
    前記吸収液ポンプにより送出される希吸収液と、前記高温再生器から吐出されて低温再生器に送られる中間吸収液とを熱交換する高温熱交換器とを順次に配列するとともに、
    前記排熱回収熱交換器の希吸収液の入口側と出口側とを流量制御弁(以下、バイパス制御弁という)を介在させたバイパス管によって接続し、
    前記低温熱交換器から吐出して前記吸収器に送られている濃吸収液(以下、吐出濃吸収液という)の温度を検出して得られる前記温度に基づいて、前記バイパス制御弁を制御することにより、前記吐出濃吸収液の温度を前記吐出濃吸収液が結晶化しない温度に制御することを特徴とする吸収冷凍機。
    An exhaust heat recovery heat exchanger for exchanging heat between the diluted absorbent delivered from the absorber by the absorbent pump and the high-temperature regenerator that heats and concentrates and regenerates the diluted absorbent. When,
    A low-temperature heat exchanger that exchanges heat between the diluted absorbent that has passed through the exhaust heat recovery heat exchanger and the concentrated absorbent that is discharged from the low-temperature regenerator and sent to the absorber;
    While sequentially arranging a high temperature heat exchanger that exchanges heat between the diluted absorbent delivered by the absorbent pump and the intermediate absorbent discharged from the high temperature regenerator and sent to the low temperature regenerator,
    Connecting the inlet side and the outlet side of the diluted absorbent of the exhaust heat recovery heat exchanger by a bypass pipe with a flow control valve (hereinafter referred to as a bypass control valve) interposed therebetween,
    The bypass control valve is controlled based on the temperature obtained by detecting the temperature of concentrated absorbent (hereinafter referred to as discharged concentrated absorbent) discharged from the low-temperature heat exchanger and sent to the absorber. Thereby, the temperature of the discharged concentrated absorbent is controlled to a temperature at which the discharged concentrated absorbent does not crystallize .
  2. 吸収器から吸収液ポンプにより送出される希吸収液と、前記希吸収液を加熱して濃縮再生する高温再生器を加熱して吐出される排熱流体とを熱交換する排熱回収熱交換器と、
    前記排熱回収熱交換器を経た希吸収液と、低温再生器から吐出して吸収器に送られる濃吸収液とを熱交換する低温熱交換器と、
    前記吸収液ポンプにより送出される希吸収液と、前記高温再生器から吐出されて低温再生器に送られる中間吸収液とを熱交換する高温熱交換器とを順次に配列するとともに、
    前記排熱回収熱交換器の希吸収液の入口側と出口側とを流量制御弁(以下、バイパス制御弁という)を介在させたバイパス管によって接続し、
    前記低温熱交換器から吐出して前記吸収器に送られている濃吸収液(以下、吐出濃吸収液という)の温度を検出して得られる前記温度に基づいて、前記バイパス制御弁を制御することにより、前記吐出濃吸収液の温度を前記吐出濃吸収液が前記吸収器での冷媒吸収作用に支障をきたさない温度に制御することを特徴とする吸収冷凍機。
    An exhaust heat recovery heat exchanger for exchanging heat between the diluted absorbent delivered from the absorber by the absorbent pump and the high-temperature regenerator that heats and concentrates and regenerates the diluted absorbent. When,
    A low-temperature heat exchanger that exchanges heat between the diluted absorbent that has passed through the exhaust heat recovery heat exchanger and the concentrated absorbent that is discharged from the low-temperature regenerator and sent to the absorber;
    While sequentially arranging a high temperature heat exchanger that exchanges heat between the diluted absorbent delivered by the absorbent pump and the intermediate absorbent discharged from the high temperature regenerator and sent to the low temperature regenerator,
    Connecting the inlet side and the outlet side of the diluted absorbent of the exhaust heat recovery heat exchanger by a bypass pipe with a flow control valve (hereinafter referred to as a bypass control valve) interposed therebetween,
    The bypass control valve is controlled based on the temperature obtained by detecting the temperature of concentrated absorbent (hereinafter referred to as discharged concentrated absorbent) discharged from the low-temperature heat exchanger and sent to the absorber. Accordingly, the temperature of the concentrated concentrated absorbent is controlled to a temperature at which the concentrated concentrated absorbent does not interfere with the refrigerant absorbing action in the absorber.
JP2004118134A 2004-04-13 2004-04-13 Absorption refrigerator Expired - Fee Related JP4315854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004118134A JP4315854B2 (en) 2004-04-13 2004-04-13 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118134A JP4315854B2 (en) 2004-04-13 2004-04-13 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2005300047A JP2005300047A (en) 2005-10-27
JP4315854B2 true JP4315854B2 (en) 2009-08-19

Family

ID=35331790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118134A Expired - Fee Related JP4315854B2 (en) 2004-04-13 2004-04-13 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4315854B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685485B2 (en) 2011-05-13 2015-03-18 日立アプライアンス株式会社 Solar heat-utilized steam absorption refrigerator and solar heat utilization system
KR101136723B1 (en) 2011-12-05 2012-04-17 주식회사 수성이엔지 Apparatus and method of absorption chiller heater that has a intermediate heat exchanger for summer operation

Also Published As

Publication number Publication date
JP2005300047A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2011075180A (en) Absorption type refrigerating machine
JP2002147885A (en) Absorption refrigerating machine
WO2002018849A1 (en) Absorption refrigerating machine
JP5384072B2 (en) Absorption type water heater
JP4315854B2 (en) Absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
JP5261111B2 (en) Absorption refrigerator
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP5390426B2 (en) Absorption heat pump device
JP2005300126A (en) Absorption type refrigerating machine
JP4308076B2 (en) Absorption refrigerator
JP4090262B2 (en) Absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JP2010276252A (en) Absorption type refrigerating machine
JP3883894B2 (en) Absorption refrigerator
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP4260099B2 (en) Absorption refrigerator
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JP2003343939A (en) Absorption refrigerating machine
JP3851204B2 (en) Absorption refrigerator
WO2002018850A1 (en) Absorption refrigerating machine
JP6698297B2 (en) Absorption refrigerator
JP4330522B2 (en) Absorption refrigerator operation control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees