JP4330522B2 - Absorption refrigerator operation control method - Google Patents

Absorption refrigerator operation control method Download PDF

Info

Publication number
JP4330522B2
JP4330522B2 JP2004366373A JP2004366373A JP4330522B2 JP 4330522 B2 JP4330522 B2 JP 4330522B2 JP 2004366373 A JP2004366373 A JP 2004366373A JP 2004366373 A JP2004366373 A JP 2004366373A JP 4330522 B2 JP4330522 B2 JP 4330522B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
low
condenser
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004366373A
Other languages
Japanese (ja)
Other versions
JP2006170569A (en
Inventor
春樹 西本
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2004366373A priority Critical patent/JP4330522B2/en
Publication of JP2006170569A publication Critical patent/JP2006170569A/en
Application granted granted Critical
Publication of JP4330522B2 publication Critical patent/JP4330522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

本発明は、吸収式冷凍機(吸収冷温水機を含む)に係わるものである。   The present invention relates to an absorption refrigerator (including an absorption chiller / heater).
この種の装置が冷暖房を行う空調装置の室外機として用いられるときには、最低気温、最高気温のときにも快適な空調が実現できる能力を備えた状態で設置されるので、運転の大半は部分負荷状態の運転となる。   When this type of equipment is used as an outdoor unit for an air conditioner that performs cooling or heating, it is installed with the ability to realize comfortable air conditioning even at the lowest and highest temperatures, so the majority of operation is part load It becomes the driving of the state.
そして、その部分負荷運転時の効率改善を図るために、部分負荷運転時には冷却水ポンプや冷温水ポンプの回転数を減らして、付帯設備の動力費を削減し効率改善を図るようにした技術が周知である(例えば、特許文献1、2参照。)。
特開2000−161812号公報 特開2000−274864号公報
And in order to improve the efficiency during the partial load operation, there is a technology that reduces the number of rotations of the cooling water pump and the cold / hot water pump during the partial load operation, thereby reducing the power cost of the incidental equipment and improving the efficiency. It is well known (for example, see Patent Documents 1 and 2).
JP 2000-161812 A JP 2000-274864 A
部分負荷運転時の効率改善を図るためには、付帯設備の動力費を削減するだけでなく、吸収式冷凍機自体においても部分負荷運転時の特性を考慮して各構成機器の熱効率を改善する必要があり、それが課題となっていた。   In order to improve efficiency during partial load operation, not only reduce the power cost of incidental equipment, but also improve the thermal efficiency of each component device in the absorption chiller itself taking into account the characteristics during partial load operation There was a need, and that was the challenge.
高温再生器、低温再生器、凝縮器、蒸発器、吸収器、高温熱交換器、低温熱交換器、冷媒ポンプ、吸収液ポンプ等を配管接続して構成する吸収式冷凍機において、高温再生器から低温再生器を経由して凝縮器に至る冷媒管の低温再生器と凝縮器との間に可変抵抗弁が設けられ、低温再生器出口側ヘッダ内の冷媒の飽和温度T1と、低温再生器から凝縮器に至る冷媒管内を流れる冷媒の温度T2との温度差T1−T2に基づいて可変抵抗弁の開度を制御することを特徴とする運転制御方法である。 High-temperature regenerator, low-temperature regenerator, condenser, evaporator, absorber, high-temperature heat exchanger, low-temperature heat exchanger, refrigerant pump, absorption liquid pump, etc. A variable resistance valve is provided between the low-temperature regenerator and the condenser of the refrigerant pipe that reaches the condenser via the low-temperature regenerator , the refrigerant saturation temperature T1 in the low-temperature regenerator outlet side header, and the low-temperature regenerator The operation control method is characterized in that the opening of the variable resistance valve is controlled on the basis of a temperature difference T1-T2 with respect to the temperature T2 of the refrigerant flowing in the refrigerant pipe leading to the condenser.
本発明によれば、高温再生器から低温再生器を経由して凝縮器に至る冷媒管の流路抵抗を可変抵抗弁により調節することができる。そのため、冷媒の循環量が減少し、低温再生器を通過する時間が短縮されて低温再生器の吸収液に放熱する時間が不足する部分負荷運転時には流路抵抗を増やして低温再生器を通過する時間を延ばし、低温再生器の吸収液に放熱する時間を延ばすことができるので、部分負荷運転時の熱効率の改善が図れる。 According to the present invention, the flow resistance of the refrigerant pipe from the high temperature regenerator to the condenser via the low temperature regenerator can be adjusted by the variable resistance valve . Therefore, the circulation amount of the refrigerant is reduced, the time for passing through the low temperature regenerator is shortened, and the time for releasing heat to the absorption liquid of the low temperature regenerator is insufficient. Since it is possible to extend the time and to extend the time for releasing heat to the absorption liquid of the low temperature regenerator, it is possible to improve the thermal efficiency during partial load operation.
高温再生器、低温再生器、凝縮器、蒸発器、吸収器、高温熱交換器、低温熱交換器、冷媒ポンプ、吸収液ポンプ等を配管接続して構成する吸収式冷凍機において、高温再生器から低温再生器を経由して凝縮器に至る冷媒管の低温再生器と凝縮器との間に可変抵抗弁が設けられ、可変抵抗弁の上流側に冷媒が吸収液に放熱する冷媒ドレン熱回収器が設けられ、低温再生器出口側ヘッダ内の冷媒の飽和温度T1と、低温再生器から凝縮器に至る冷媒管内を流れる冷媒の温度T2との温度差T1−T2が所定の温度Taより低いときには可変抵抗弁の開度を減らし、温度差T1−T2が所定の温度Tb(但し、Ta<Tb)より高いときには可変抵抗弁の開度を増すようにした。 High-temperature regenerator, low-temperature regenerator, condenser, evaporator, absorber, high-temperature heat exchanger, low-temperature heat exchanger, refrigerant pump, absorption liquid pump, etc. A variable resistance valve is provided between the low-temperature regenerator and the condenser in the refrigerant pipe that reaches the condenser via the low-temperature regenerator, and the refrigerant drain heat recovery is performed so that the refrigerant dissipates heat to the absorbent upstream of the variable resistance valve. A temperature difference T1-T2 between the saturation temperature T1 of the refrigerant in the low-temperature regenerator outlet header and the temperature T2 of the refrigerant flowing in the refrigerant pipe from the low-temperature regenerator to the condenser is lower than a predetermined temperature Ta. Sometimes the opening of the variable resistance valve is decreased , and when the temperature difference T1-T2 is higher than a predetermined temperature Tb (where Ta <Tb) , the opening of the variable resistance valve is increased .
以下、本発明の一実施例を図面に基づいて詳細に説明する。図1に例示した本発明の吸収式冷凍機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用する二重効用の吸収式冷温水機であり、ガスバーナ1Bを備えた高温再生器1、低温再生器2、凝縮器3、蒸発器4、吸収器5、低温熱交換器6、高温熱交換器7、冷媒ドレン熱回収器8、冷媒ポンプP1、吸収液ポンプP2、可変抵抗弁V1等を備えており、それらは図示したように吸収液管9〜12、冷媒管13〜18により接続されている。また、20はブライン管、21は冷却水管、22は均圧管、V2〜V4は開閉弁、Cは制御器である。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The absorption refrigerator 100 of the present invention illustrated in FIG. 1 is a double-effect absorption chiller / heater using water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an absorbent, and includes a gas burner 1B. High temperature regenerator 1, low temperature regenerator 2, condenser 3, evaporator 4, absorber 5, low temperature heat exchanger 6, high temperature heat exchanger 7, refrigerant drain heat recovery unit 8, refrigerant pump P1, absorption liquid pump P2, A variable resistance valve V1 and the like are provided, which are connected by absorption liquid pipes 9 to 12 and refrigerant pipes 13 to 18 as shown. Further, 20 is a brine pipe, 21 is a cooling water pipe, 22 is a pressure equalizing pipe, V2 to V4 are on-off valves, and C is a controller.
上記構成の吸収式冷凍機100においては、開閉弁V2・V3・V4を閉じ、冷却水管21に冷却水を流し、ガスバーナ1Bに点火して高温再生器1で吸収液を加熱すると、吸収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して吸収液の濃度が高くなった中間吸収液とが得られる。   In the absorption refrigerator 100 having the above-described configuration, when the on-off valves V2, V3, and V4 are closed, the cooling water is supplied to the cooling water pipe 21, the gas burner 1B is ignited, and the high-temperature regenerator 1 heats the absorption liquid. Evaporated and separated refrigerant vapor and an intermediate absorption liquid in which the concentration of the absorption liquid is increased by separating the refrigerant vapor are obtained.
高温再生器1で生成された高温の冷媒蒸気は冷媒管13から低温再生器2内の入口側ヘッダH1を経由して複数本の伝熱管2Aに分岐して入り、高温再生器1で生成され吸収液管10により高温熱交換器7を経由して低温再生器2に入った中間吸収液を伝熱管2Aの管壁を介して加熱する。そして、中間吸収液に放熱して凝縮した冷媒は出口側ヘッダH2から冷媒管14に吐出し、冷媒ドレン熱回収器8を経由して凝縮器3に入る。   The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 branches into the plurality of heat transfer tubes 2A from the refrigerant tube 13 via the inlet-side header H1 in the low-temperature regenerator 2, and is generated in the high-temperature regenerator 1. The intermediate absorption liquid that has entered the low-temperature regenerator 2 via the high-temperature heat exchanger 7 is heated by the absorption liquid pipe 10 through the pipe wall of the heat transfer pipe 2A. Then, the refrigerant that has dissipated heat and condensed to the intermediate absorption liquid is discharged from the outlet header H 2 to the refrigerant pipe 14 and enters the condenser 3 via the refrigerant drain heat recovery unit 8.
低温再生器2で加熱されて中間吸収液から蒸発分離した冷媒は凝縮器3へ入り、冷却水管21内を流れる水と熱交換して凝縮液化し、冷媒管14から凝縮して供給される冷媒と一緒になって冷媒管16を通って蒸発器4に入る。   The refrigerant heated by the low-temperature regenerator 2 and evaporated and separated from the intermediate absorption liquid enters the condenser 3, exchanges heat with water flowing in the cooling water pipe 21 to be condensed and liquefied, and is condensed and supplied from the refrigerant pipe 14. And enters the evaporator 4 through the refrigerant pipe 16.
蒸発器4に入って冷媒液溜りに溜まった冷媒液は、冷媒管17に介在する冷媒ポンプP1によって伝熱管20Aの上に散布され、ブライン管20を介して供給されるブライン(例えば水)と熱交換して蒸発し、伝熱管20Aの内部を流れるブラインを冷却する。   The refrigerant liquid that has entered the evaporator 4 and accumulated in the refrigerant liquid reservoir is sprayed onto the heat transfer pipe 20A by the refrigerant pump P1 interposed in the refrigerant pipe 17 and supplied with the brine (for example, water) via the brine pipe 20. The brine is evaporated by heat exchange, and the brine flowing inside the heat transfer tube 20A is cooled.
そして、蒸発器4で蒸発した冷媒は吸収器5に入り、低温再生器2で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち吸収液管11により低温熱交換器6を経由して供給され、上方から散布される濃吸収液に吸収される。   Then, the refrigerant evaporated in the evaporator 4 enters the absorber 5 and is heated in the low-temperature regenerator 2 to evaporate and separate the refrigerant, so that the absorption liquid having a further increased concentration of the absorption liquid, that is, the low-temperature heat exchange by the absorption liquid pipe 11. It is supplied via the vessel 6 and absorbed by the concentrated absorbent dispersed from above.
吸収器5で冷媒を吸収して濃度の薄くなった吸収液、すなわち稀吸収液は吸収液管9の上流部分に介在する吸収液ポンプP2の運転により、吸収液管9Aと9Bに分岐して流れて一部は低温熱交換器6を経由し、残部は冷媒ドレン熱回収器8を経由し、その後は合流して高温熱交換器7を経由して高温再生器1へ吸収液管9から送られる。   Absorbing liquid having a reduced concentration due to absorption of the refrigerant by the absorber 5, that is, the rare absorbing liquid, is branched into the absorbing liquid pipes 9A and 9B by the operation of the absorbing liquid pump P2 interposed in the upstream portion of the absorbing liquid pipe 9. A part flows through the low-temperature heat exchanger 6, the remaining part passes through the refrigerant drain heat recovery unit 8, and then joins and passes through the high-temperature heat exchanger 7 to the high-temperature regenerator 1 from the absorption liquid pipe 9. Sent.
吸収式冷凍機100が上記のように運転されると、蒸発器4の内部に配管された伝熱管20Aにおいて冷媒の気化熱によって冷却されたブラインが、ブライン管20を介して図示しない熱負荷に循環供給できるので、冷房等の冷却運転が行える。   When the absorption refrigeration machine 100 is operated as described above, the brine cooled by the heat of vaporization of the refrigerant in the heat transfer pipe 20A piped inside the evaporator 4 becomes a heat load (not shown) via the brine pipe 20. Since it can be circulated, cooling operation such as cooling can be performed.
一方、開閉弁V2・V3・V4を開け、冷却水管21に冷却水を流さないでガスバーナ1Bに点火して高温再生器1で稀吸収液を加熱すると、高温再生器1で稀吸収液から蒸発した冷媒は主に流路抵抗の小さい冷媒管13・15を通って吸収器5・蒸発器4に入り、ブライン管20から供給されるブラインと伝熱管20Aを介して熱交換して凝縮し、主にこのときの凝縮熱によって伝熱管20Aの内部を流れるブラインが加熱される。   On the other hand, when the on-off valves V2, V3, and V4 are opened, and the rare absorbent is heated by the high temperature regenerator 1 by igniting the gas burner 1B without flowing the cooling water to the cooling water pipe 21, the high temperature regenerator 1 evaporates from the rare absorbent. The refrigerant mainly enters the absorber 5 and the evaporator 4 through the refrigerant pipes 13 and 15 having a low flow resistance, condenses by heat exchange through the brine supplied from the brine pipe 20 and the heat transfer pipe 20A, The brine flowing inside the heat transfer tube 20A is mainly heated by the heat of condensation at this time.
蒸発器4で加熱作用を行って凝縮した冷媒は、冷媒管17・18を通って吸収器5に入り、高温再生器1で冷媒を蒸発分離して吸収液管12から流入する吸収液と混合され、吸収液ポンプP2の運転により高温再生器1へ戻される。   The refrigerant condensed by the heating operation in the evaporator 4 enters the absorber 5 through the refrigerant pipes 17 and 18 and mixes with the absorbing liquid flowing in from the absorbing liquid pipe 12 by evaporating and separating the refrigerant in the high temperature regenerator 1. Then, it is returned to the high temperature regenerator 1 by the operation of the absorption liquid pump P2.
そして、蒸発器4の伝熱管20Aで加熱されたブラインをブライン管20を介して図示しない熱負荷に循環供給することにより、暖房等の加熱運転が行なわれる。   The brine heated by the heat transfer tube 20A of the evaporator 4 is circulated and supplied to a heat load (not shown) through the brine tube 20 so that heating operation such as heating is performed.
マイクロコンピュータ・入力手段等から成る制御器Cは、ブライン管20を介して図示しない熱負荷に循環供給するブラインの蒸発器4出口側温度、例えば冷房等の冷却運転時には蒸発器4の冷媒液溜りに溜り、冷媒ポンプP1により揚液されて伝熱管20Aの上に散布された冷媒液が蒸発する際の気化熱により、伝熱管20A内を流れる際に冷却され、蒸発器4から吐出して温度センサS3により計測されたブラインの蒸発器4出口側温度が所定の設定温度、例えば7℃になるようにガスバーナ4の火力を制御し、暖房等の加熱運転時には高温再生器1から冷媒管13、15を介して供給される高温の冷媒蒸気の凝縮熱によって主に加熱され、蒸発器4から吐出して温度センサS3により計測されたブラインの蒸発器4出口側温度が所定の設定温度、例えば55℃になるようにガスバーナ4の火力を制御する従来周知の容量制御機能を備えている。   A controller C comprising a microcomputer, input means, etc. is provided with a temperature of the outlet side of the evaporator 4 for the brine to be circulated through the brine pipe 20 to a heat load (not shown). The refrigerant liquid collected by the refrigerant pump P1 and sprayed on the heat transfer tube 20A is cooled when flowing through the heat transfer tube 20A due to the evaporation heat, and discharged from the evaporator 4 to the temperature. The heating power of the gas burner 4 is controlled so that the brine outlet 4 temperature of the brine measured by the sensor S3 becomes a predetermined set temperature, for example, 7 ° C., and during the heating operation such as heating, from the high temperature regenerator 1 to the refrigerant pipe 13, 15 is mainly heated by the condensation heat of the high-temperature refrigerant vapor supplied via the temperature 15, and the temperature at the outlet side of the evaporator 4 of the brine discharged from the evaporator 4 and measured by the temperature sensor S3 is a predetermined value. It has a constant temperature, a well-known capacity control function prior to controlling the heating power of the gas burner 4 so for example, as 55 ° C..
さらに、制御器Cには冷房等の冷却運転時に、低温再生器2内に設置された出口側ヘッダH2内の上部に設けられた温度センサS1が計測する出口側ヘッダH2内の冷媒蒸気の(飽和)温度T1と、温度センサS2が計測する冷媒ドレン熱回収器8上流側の冷媒管14内を流れる冷媒(液)の温度T2との温度差ΔT(=T1−T2)が第1の所定値、例えば5℃より低い時には可変抵抗弁V1の開度を減らし、前記温度差ΔTが前記第1の所定値より大きい第2の所定値、例えば7℃より高いときには、可変抵抗弁V1の開度を増やす機能が設けられている。なお、冷媒は伝熱管2A内を通過する際に周囲の吸収液により冷却されて凝縮するので、温度センサS1が計測する温度は冷媒の飽和温度である。   Furthermore, the controller C has a refrigerant vapor (in the outlet header H2) measured by the temperature sensor S1 provided in the upper part of the outlet header H2 installed in the low temperature regenerator 2 during cooling operation such as cooling. The temperature difference ΔT (= T1−T2) between the saturation T) temperature T1 and the temperature T2 of the refrigerant (liquid) flowing in the refrigerant pipe 14 upstream of the refrigerant drain heat recovery device 8 measured by the temperature sensor S2 is the first predetermined value. When the temperature difference ΔT is higher than the first predetermined value, for example, 7 ° C., the opening of the variable resistance valve V1 is decreased. A function to increase the degree is provided. Since the refrigerant is cooled and condensed by the surrounding absorbing liquid when passing through the heat transfer tube 2A, the temperature measured by the temperature sensor S1 is the saturation temperature of the refrigerant.
上記構成の本発明の吸収式冷凍機100においては、蒸発器4内の伝熱管20Aで所定の7℃に冷却したブラインを、ブライン管20を介して循環供給する熱負荷が小さく、したがって機内を循環する冷媒の量が減少する部分負荷運転時には、高温再生器1から供給されて低温再生器2内の伝熱管2A内を流れる冷媒の量が少ないために流路抵抗は減少し、冷媒は伝熱管2Aの部分を短時間で通過する。   In the absorption refrigerator 100 of the present invention having the above-described configuration, the heat load for circulating the brine cooled to a predetermined 7 ° C. by the heat transfer pipe 20A in the evaporator 4 through the brine pipe 20 is small, and therefore the inside of the machine is reduced. During partial load operation in which the amount of circulating refrigerant decreases, the flow resistance decreases because the amount of refrigerant supplied from the high temperature regenerator 1 and flowing through the heat transfer pipe 2A in the low temperature regenerator 2 is small, and the refrigerant is transferred. It passes through the portion of the heat pipe 2A in a short time.
しかし、冷媒が伝熱管2A内を短時間で通過し、管壁を介して吸収液を加熱して放熱する度合、換言すれば吸収液により冷却される度合が減少すると、温度センサS2が計測している冷媒(液)の温度T2が十分には低下しなくなって温度差ΔTの値が第1の所定温度5℃より小さくなるので、制御器Cにより可変抵抗弁V1の開度が絞られる。   However, when the refrigerant passes through the heat transfer tube 2A in a short time and heats the absorbing liquid through the tube wall to dissipate heat, in other words, the degree of cooling by the absorbing liquid decreases, the temperature sensor S2 measures. Since the temperature T2 of the refrigerant (liquid) that has been stopped does not decrease sufficiently and the value of the temperature difference ΔT becomes smaller than the first predetermined temperature 5 ° C., the controller C throttles the opening of the variable resistance valve V1.
そのため、冷媒管14の流路抵抗は増大して冷媒が伝熱管2Aを通過する時間は延び、伝熱管2Aの管壁を介して冷媒が吸収液を加熱して放熱する度合、すなわち吸収液により冷却される度合は増加に転じて温度センサS2が計測している冷媒の温度T2は低下するので、温度差ΔTの値は次第に大きくなって第1の所定温度5℃を超える。   Therefore, the flow resistance of the refrigerant pipe 14 increases and the time for the refrigerant to pass through the heat transfer pipe 2A is extended, and the degree to which the refrigerant heats and absorbs heat through the tube wall of the heat transfer pipe 2A, that is, the absorption liquid Since the degree of cooling starts to increase and the refrigerant temperature T2 measured by the temperature sensor S2 decreases, the value of the temperature difference ΔT gradually increases and exceeds the first predetermined temperature of 5 ° C.
すなわち、本発明の吸収式冷凍機100においては、機内を循環する冷媒の量が減少する部分負荷運転時においても、冷媒は低温再生器2内の伝熱管2Aを通過する際に吸収液を十分加熱することができるので、部分負荷運転時においても熱効率に優れている。   That is, in the absorption refrigeration machine 100 of the present invention, the refrigerant sufficiently absorbs the absorption liquid when passing through the heat transfer tube 2A in the low temperature regenerator 2 even during partial load operation in which the amount of refrigerant circulating in the machine decreases. Since it can be heated, it is excellent in thermal efficiency even during partial load operation.
また、部分負荷運転時に熱負荷が増大し、機内を循環する冷媒の量が増加して低温再生器2内の伝熱管2Aを流れる冷媒の量が増加すると、流路抵抗が増大し冷媒が伝熱管2Aの部分を通過する時間は延び始めるが、冷媒が伝熱管2Aの管壁を介して吸収液を加熱して放熱する度合、すなわち吸収液により冷却される度合が増加するので、温度センサS2が計測している冷媒の温度T2は低下する。   Further, when the heat load increases during partial load operation, the amount of refrigerant circulating in the machine increases, and the amount of refrigerant flowing through the heat transfer pipe 2A in the low temperature regenerator 2 increases, the flow path resistance increases and the refrigerant is transmitted. Although the time for passing through the portion of the heat pipe 2A starts to increase, the degree to which the refrigerant heats and absorbs heat through the tube wall of the heat transfer pipe 2A, that is, the degree to which the refrigerant cools, increases the temperature sensor S2. The temperature T2 of the refrigerant being measured decreases.
そのため、温度差ΔTの値が大きくなって第2の所定温度7℃を超えるようになるが、そのような状態になった時には制御器Cにより可変抵抗弁V1の開度が増やされて冷媒管14の流路抵抗が減少するので、冷媒は伝熱管2Aを通過し易くなり、伝熱管2Aの管壁を介して冷媒が吸収液を加熱して放熱する度合、すなわち吸収液により冷却される度合は減少し、温度センサS2が計測している冷媒の温度T2は上昇する。したがって、温度差ΔTの値は次第に小さくなり、第2の所定温度7℃以下に収まる。   Therefore, the value of the temperature difference ΔT increases and exceeds the second predetermined temperature of 7 ° C. When such a state is reached, the opening of the variable resistance valve V1 is increased by the controller C and the refrigerant pipe is increased. 14 is reduced, the refrigerant easily passes through the heat transfer tube 2A, and the degree to which the refrigerant heats and absorbs heat through the tube wall of the heat transfer pipe 2A, that is, the degree to which the refrigerant cools. Decreases and the refrigerant temperature T2 measured by the temperature sensor S2 increases. Therefore, the value of the temperature difference ΔT gradually decreases and falls within the second predetermined temperature of 7 ° C. or less.
すなわち、開度制御可能な可変抵抗弁V1を冷媒管14に備えると共に、可変抵抗弁V1を前記のように制御する本発明の吸収式冷凍機100においては、機内を循環する冷媒の量が減少する部分負荷運転時においても熱効率が良好であるし、部分負荷運転時に熱負荷が増大して機内を循環する冷媒の量が増加しても、冷媒は低温再生器2に滞留することなく冷媒管14を介して凝縮器8にスムースに流入する。   That is, in the absorption refrigerator 100 of the present invention in which the variable resistance valve V1 whose opening degree can be controlled is provided in the refrigerant pipe 14 and the variable resistance valve V1 is controlled as described above, the amount of refrigerant circulating in the machine is reduced. Even when the partial load operation is performed, the heat efficiency is good, and the refrigerant pipe does not stay in the low temperature regenerator 2 even if the heat load increases during the partial load operation and the amount of refrigerant circulating in the apparatus increases. 14 smoothly flows into the condenser 8.
そのため、熱負荷が変動しても冷媒の滞留に起因する冷媒流速のハンチングが起こらないので、伝熱管20A内を通過する際に冷媒の気化熱により冷却して熱負荷にブライン管20を介して循環供給するブラインの温度が大きく変動することもない。   For this reason, even if the heat load fluctuates, hunting of the refrigerant flow rate due to refrigerant stagnation does not occur. Therefore, when passing through the heat transfer pipe 20A, the refrigerant is cooled by the heat of vaporization of the refrigerant, and the heat load is passed through the brine pipe 20. The temperature of the brine to be circulated does not fluctuate greatly.
なお、本発明は上記実施例に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit described in the claims.
例えば、温度センサS1に代えて、出口側ヘッダH2内にある冷媒の圧力が計測可能に圧力センサS4を図2に仮想線で示したように設け、その圧力センサS4が計測した冷媒圧力から求めた冷媒の飽和温度を前記の飽和温度T1として、可変抵抗弁V1の開度を制御器Cにより前記のように制御することも可能である。   For example, instead of the temperature sensor S1, the pressure sensor S4 is provided as shown by the phantom line in FIG. 2 so that the pressure of the refrigerant in the outlet header H2 can be measured, and the pressure is obtained from the refrigerant pressure measured by the pressure sensor S4. It is also possible to control the opening degree of the variable resistance valve V1 by the controller C as described above with the saturation temperature of the refrigerant as the saturation temperature T1.
また、冷媒ドレン熱回収器14は必ずしも設ける必要はない。また、吸収液管12と冷媒管15の設置を省略した冷房等の冷却運転専用の吸収式冷凍機であっても良い。   Further, the refrigerant drain heat recovery unit 14 is not necessarily provided. Alternatively, an absorption refrigerator dedicated to a cooling operation such as cooling without installing the absorption liquid pipe 12 and the refrigerant pipe 15 may be used.
本発明の吸収式冷凍機の構成を示す説明図である。It is explanatory drawing which shows the structure of the absorption refrigerator of this invention. 本発明の吸収式冷凍機の要部を示す説明図である。It is explanatory drawing which shows the principal part of the absorption refrigerator of this invention.
符号の説明Explanation of symbols
1 高温再生器
2 低温再生器
3 凝縮器
4 蒸発器
5 吸収器
6 低温熱交換器
7 高温熱交換器
8 冷媒ドレン熱回収器
9〜12 吸収液管
13〜18 冷媒管
20 ブライン管
21 冷却水管
C 制御器
P1 冷媒ポンプ
P2 吸収液ポンプ
V1 可変抵抗弁
V2〜V4 開閉弁
S1、S2、S3 温度センサ
S4 圧力センサ
100 吸収式冷凍機
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Low temperature heat exchanger 7 High temperature heat exchanger 8 Refrigerant drain heat recovery device 9-12 Absorption liquid pipe 13-18 Refrigerant pipe 20 Brine pipe 21 Cooling water pipe C Controller P1 Refrigerant pump P2 Absorption liquid pump V1 Variable resistance valve V2 to V4 On-off valve S1, S2, S3 Temperature sensor S4 Pressure sensor 100 Absorption type refrigerator

Claims (3)

  1. 高温再生器、低温再生器、凝縮器、蒸発器、吸収器、高温熱交換器、低温熱交換器、冷媒ポンプ、吸収液ポンプ等を配管接続して構成する吸収式冷凍機において、高温再生器から低温再生器を経由して凝縮器に至る冷媒管の低温再生器と凝縮器との間に可変抵抗弁が設けられ、低温再生器出口側ヘッダ内の冷媒の飽和温度T1と、低温再生器から凝縮器に至る冷媒管内を流れる冷媒の温度T2との温度差T1−T2に基づいて可変抵抗弁の開度を制御することを特徴とする運転制御方法。 High-temperature regenerator, low-temperature regenerator, condenser, evaporator, absorber, high-temperature heat exchanger, low-temperature heat exchanger, refrigerant pump, absorption liquid pump, etc. A variable resistance valve is provided between the low-temperature regenerator and the condenser of the refrigerant pipe that reaches the condenser via the low-temperature regenerator , the refrigerant saturation temperature T1 in the low-temperature regenerator outlet side header, and the low-temperature regenerator A control method for controlling the opening of the variable resistance valve based on a temperature difference T1-T2 with respect to a temperature T2 of the refrigerant flowing in the refrigerant pipe extending from the condenser to the condenser.
  2. 高温再生器、低温再生器、凝縮器、蒸発器、吸収器、高温熱交換器、低温熱交換器、冷媒ポンプ、吸収液ポンプ等を配管接続して構成する吸収式冷凍機において、高温再生器から低温再生器を経由して凝縮器に至る冷媒管の低温再生器と凝縮器との間に可変抵抗弁が設けられ、可変抵抗弁の上流側に冷媒が吸収液に放熱する冷媒ドレン熱回収器が設けられ、低温再生器出口側ヘッダ内の冷媒の飽和温度T1と、低温再生器から凝縮器に至る冷媒管内を流れる冷媒の温度T2との温度差T1−T2に基づいて可変抵抗弁の開度を制御することを特徴とする運転制御方法。High-temperature regenerator, low-temperature regenerator, condenser, evaporator, absorber, high-temperature heat exchanger, low-temperature heat exchanger, refrigerant pump, absorption liquid pump, etc. A variable resistance valve is provided between the low-temperature regenerator and the condenser in the refrigerant pipe that reaches the condenser via the low-temperature regenerator, and the refrigerant drain heat recovery is performed so that the refrigerant dissipates heat to the absorbent upstream of the variable resistance valve. A variable resistance valve based on a temperature difference T1-T2 between the saturation temperature T1 of the refrigerant in the outlet of the low temperature regenerator and the temperature T2 of the refrigerant flowing in the refrigerant pipe from the low temperature regenerator to the condenser. An operation control method characterized by controlling an opening degree.
  3. 温度差T1−T2が所定の温度Taより小さいときには可変抵抗弁の開度を増大し、温度差T1−T2が所定の温度Tb(但し、Ta<Tb)より大きいときには可変抵抗弁の開度を減少させることを特徴とする請求項1または2に記載の運転制御方法。 When the temperature difference T1-T2 is smaller than the predetermined temperature Ta, the opening degree of the variable resistance valve is increased. When the temperature difference T1-T2 is larger than the predetermined temperature Tb (however, Ta <Tb), the opening degree of the variable resistance valve is increased. The operation control method according to claim 1, wherein the operation control method is decreased .
JP2004366373A 2004-12-17 2004-12-17 Absorption refrigerator operation control method Expired - Fee Related JP4330522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004366373A JP4330522B2 (en) 2004-12-17 2004-12-17 Absorption refrigerator operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366373A JP4330522B2 (en) 2004-12-17 2004-12-17 Absorption refrigerator operation control method

Publications (2)

Publication Number Publication Date
JP2006170569A JP2006170569A (en) 2006-06-29
JP4330522B2 true JP4330522B2 (en) 2009-09-16

Family

ID=36671517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366373A Expired - Fee Related JP4330522B2 (en) 2004-12-17 2004-12-17 Absorption refrigerator operation control method

Country Status (1)

Country Link
JP (1) JP4330522B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225843B1 (en) * 2011-01-05 2013-01-23 엘지전자 주식회사 Absorption Type Cooler and Heater

Also Published As

Publication number Publication date
JP2006170569A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2011089722A (en) Method and device for refrigeration/air conditioning
KR20020035770A (en) Absorbed refrigerator
JP4390267B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP5261111B2 (en) Absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
JP4330522B2 (en) Absorption refrigerator operation control method
KR100441923B1 (en) Control method for absorption refrigerator
JP2000018762A (en) Absorption refrigerating machine
JP2001099474A (en) Air conditioner
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP4315854B2 (en) Absorption refrigerator
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP2005326089A (en) Absorption refrigerating machine
JP4090262B2 (en) Absorption refrigerator
JP3889655B2 (en) Absorption refrigerator
JP4315697B2 (en) Absorption chiller / heater
JP3883894B2 (en) Absorption refrigerator
JP3813348B2 (en) Absorption refrigerator
JPWO2004046622A1 (en) Absorption refrigerator
JP2020046128A (en) Absorption refrigerator
JP3851204B2 (en) Absorption refrigerator
JP2001208443A (en) Absorption freezer
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP3832191B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees