JP4260099B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4260099B2
JP4260099B2 JP2004323568A JP2004323568A JP4260099B2 JP 4260099 B2 JP4260099 B2 JP 4260099B2 JP 2004323568 A JP2004323568 A JP 2004323568A JP 2004323568 A JP2004323568 A JP 2004323568A JP 4260099 B2 JP4260099 B2 JP 4260099B2
Authority
JP
Japan
Prior art keywords
absorption liquid
refrigerant
regenerator
exhaust heat
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004323568A
Other languages
Japanese (ja)
Other versions
JP2006132866A (en
Inventor
秀樹 府内
伸一 上篭
洋介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004323568A priority Critical patent/JP4260099B2/en
Publication of JP2006132866A publication Critical patent/JP2006132866A/en
Application granted granted Critical
Publication of JP4260099B2 publication Critical patent/JP4260099B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Description

本発明は、吸収液を加熱して冷媒を蒸発分離する再生器の熱源として、他の設備から供給される排熱なども利用する吸収冷凍機に係わるものである。   The present invention relates to an absorption refrigerator that uses exhaust heat supplied from other equipment as a heat source of a regenerator that evaporates and separates a refrigerant by heating an absorption liquid.

この種の吸収冷凍機としては、例えば図4などに示したように吸収液を加熱して沸騰させ、蒸発器6に送る冷媒を吸収液から分離生成すると共に、吸収液を濃縮再生する再生器として、ガスバーナ1Aにおいて発生する燃焼熱を吸収液の加熱源とする高温再生器1と、高温再生器1から供給される冷媒蒸気を吸収液の加熱源とする低温再生器2と、コ・ジェネレーションシステムなどの他の設備から供給される排熱流体を加熱源とする排熱再生器3とを備えて構成さる吸収冷凍機100Xが周知である(例えば、特許文献1参照。)。   As this type of absorption refrigerator, for example, as shown in FIG. 4 and the like, a regenerator that heats and boils the absorbing liquid, separates and generates the refrigerant sent to the evaporator 6 from the absorbing liquid, and concentrates and regenerates the absorbing liquid. As described above, a high-temperature regenerator 1 that uses the combustion heat generated in the gas burner 1A as a heating source for the absorption liquid, a low-temperature regenerator 2 that uses the refrigerant vapor supplied from the high-temperature regenerator 1 as a heating source for the absorption liquid, and cogeneration An absorption refrigerator 100X including a waste heat regenerator 3 using a waste heat fluid supplied from another facility such as a system as a heating source is well known (for example, see Patent Document 1).

なお、図中4は低温再生器2内で吸収液から蒸発分離された冷媒蒸気が流入可能に低温再生器2に並設された凝縮器、5は排熱再生器3内で吸収液から蒸発分離された冷媒蒸気が流入可能に排熱再生器3に並設された排熱凝縮器、7は蒸発器6内で蒸発した冷媒蒸気が流入可能に蒸発器6に並設された吸収器、8は低温熱交換器、9は高温熱交換器、10は冷媒ポンプ、11〜13は吸収液ポンプ、14は三方弁からなる流量制御弁、15〜17は開閉弁、18〜23は吸収液管、24〜29は冷媒管、30は排熱流体供給管、31はバイパス管、32は冷温水管、33は冷却水管であり、図示したように配管接続されて、蒸発器6内に設置された伝熱管6Aの管壁を介して所定温度に冷却/または加熱された水が、冷温水管32を介して図示しない熱負荷に循環供給可能に構成されている。   In the figure, 4 is a condenser arranged in parallel with the low-temperature regenerator 2 so that refrigerant vapor evaporated and separated from the absorbent in the low-temperature regenerator 2 can flow in, and 5 is evaporated from the absorbent in the exhaust heat regenerator 3. An exhaust heat condenser arranged in parallel with the exhaust heat regenerator 3 so that the separated refrigerant vapor can flow in; an absorber arranged in parallel with the evaporator 6 so that the refrigerant vapor evaporated in the evaporator 6 can flow in; 8 is a low-temperature heat exchanger, 9 is a high-temperature heat exchanger, 10 is a refrigerant pump, 11 to 13 is an absorption liquid pump, 14 is a flow control valve composed of a three-way valve, 15 to 17 are on-off valves, and 18 to 23 are absorption liquids. Pipes 24 to 29 are refrigerant pipes, 30 is a waste heat fluid supply pipe, 31 is a bypass pipe, 32 is a cold / hot water pipe, and 33 is a cooling water pipe. The pipes are connected as shown in the figure and installed in the evaporator 6. Water that has been cooled / heated to a predetermined temperature via the pipe wall of the heat transfer pipe 6 </ b> A passes through the cold / hot water pipe 32. Is circulated and supplied can be configured to the heat load does not.

そして、上記構成の吸収冷凍機100Xにおいては、伝熱管6Aで冷却した冷水を、伝熱管6Aに接続された冷温水管32を介して熱負荷に循環供給して冷房などの冷却運転を行う際に、排熱流体供給管30を介して排熱再生器3内の伝熱管3Aに熱源として他の設備から供給する排熱流体の温度が、例えば所定の温度の70℃より低く、排熱再生器3における冷媒生成と吸収液の濃縮再生に利用できないときには、排熱流体供給管30から供給される排熱流体の全量がバイパス管31に流れて伝熱管3Aを迂回するように流量制御弁14が制御されて、排熱再生器3を機能させない一般的な二重効用運転が行われる。   In the absorption refrigerator 100X having the above-described configuration, when the cold water cooled by the heat transfer pipe 6A is circulated and supplied to the heat load via the cold / hot water pipe 32 connected to the heat transfer pipe 6A, a cooling operation such as cooling is performed. The temperature of the exhaust heat fluid supplied from other equipment as a heat source to the heat transfer tube 3A in the exhaust heat regenerator 3 via the exhaust heat fluid supply pipe 30 is lower than, for example, a predetermined temperature of 70 ° C., and the exhaust heat regenerator When the flow control valve 14 cannot be used for the refrigerant generation and the concentration regeneration of the absorption liquid in FIG. 3, the entire amount of the exhaust heat fluid supplied from the exhaust heat fluid supply pipe 30 flows into the bypass pipe 31 and bypasses the heat transfer pipe 3A. It is controlled and a general double effect operation is performed in which the exhaust heat regenerator 3 does not function.

すなわち、この場合は吸収液ポンプ11〜13が運転され、ガスバーナ1Aにおいては天然ガスなどを燃焼して所定の熱量が高温再生器1に投入される。したがって、吸収器7で冷媒を吸収し、濃度が低下して吸収液溜りに溜った吸収液は、低温熱交換器8、排熱再生器3、および高温熱交換器9を経由して高温再生器1に送られ、高温再生器1においてガスバーナ1Aにより加熱されて沸騰し、冷媒を蒸発分離して濃縮される。   That is, in this case, the absorption liquid pumps 11 to 13 are operated, and the gas burner 1 </ b> A burns natural gas or the like and a predetermined amount of heat is input to the high-temperature regenerator 1. Therefore, the refrigerant that has been absorbed by the absorber 7 and reduced in concentration and accumulated in the absorption liquid reservoir is regenerated at a high temperature via the low-temperature heat exchanger 8, the exhaust heat regenerator 3, and the high-temperature heat exchanger 9. In the high-temperature regenerator 1, it is heated by the gas burner 1A and boiled, and the refrigerant is evaporated and separated to be concentrated.

高温再生器1で吸収液から分離生成された冷媒蒸気は、冷媒管24を通って低温再生器2に入り、高温再生器1から高温熱交換器9を経由して流入した吸収液を加熱して凝縮し、凝縮器4に入る。また、低温再生器2で吸収液から分離生成された冷媒蒸気は凝縮器4に入り、冷却水管33内を流れる冷却水により冷却されて凝縮液化し、凝縮して低温再生器2から流入する冷媒液と一緒になって冷媒管26を通り蒸発器6に入る。   The refrigerant vapor separated and generated from the absorption liquid in the high temperature regenerator 1 enters the low temperature regenerator 2 through the refrigerant pipe 24 and heats the absorption liquid flowing in from the high temperature regenerator 1 via the high temperature heat exchanger 9. Condenses and enters condenser 4. The refrigerant vapor separated and generated from the absorption liquid in the low-temperature regenerator 2 enters the condenser 4, is cooled by the cooling water flowing in the cooling water pipe 33, is condensed and liquefied, and is condensed and flows into the low-temperature regenerator 2. Together with the liquid, it passes through the refrigerant pipe 26 and enters the evaporator 6.

蒸発器6に入った冷媒液は、冷媒ポンプ10の運転により伝熱管6Aの上に散布され、伝熱管6Aの内部を流れる水と熱交換して蒸発する。そして、冷媒が蒸発する際の気化熱により伝熱管6A内を流れる水が冷却され、その冷水が冷温水管32を介して熱負荷に循環供給される。   The refrigerant liquid that has entered the evaporator 6 is dispersed on the heat transfer pipe 6A by the operation of the refrigerant pump 10, and is evaporated by exchanging heat with water flowing inside the heat transfer pipe 6A. The water flowing in the heat transfer pipe 6A is cooled by the heat of vaporization when the refrigerant evaporates, and the cold water is circulated and supplied to the heat load via the cold / hot water pipe 32.

蒸発器6で蒸発した冷媒は吸収器7に入り、上方から散布される吸収液、すなわち低温再生器2における加熱により冷媒が分離生成され、濃度が一層高くなって吸収液管21を経由して低温再生器2から流入する吸収液に吸収される。そして、冷媒を吸収して濃度が薄くなった吸収液は、前記したように低温熱交換器8、排熱再生器3、および高温熱交換器9を経由して高温再生器1に戻される。すなわち、機内の吸収液は、図4における各吸収液管内に示した矢印の方向に循環する。   The refrigerant evaporated in the evaporator 6 enters the absorber 7 and is absorbed and dispersed from above, that is, the refrigerant is separated and generated by heating in the low-temperature regenerator 2, and the concentration becomes higher via the absorption liquid pipe 21. It is absorbed by the absorption liquid flowing in from the low temperature regenerator 2. Then, the absorbing liquid whose concentration is reduced by absorbing the refrigerant is returned to the high temperature regenerator 1 via the low temperature heat exchanger 8, the exhaust heat regenerator 3, and the high temperature heat exchanger 9 as described above. That is, the absorption liquid in the machine circulates in the direction of the arrow shown in each absorption liquid pipe in FIG.

一方、冷房などの冷却運転時に、熱源として排熱流体供給管30を介して伝熱管3Aに供給する排熱流体の温度が、例えば所定温度の70℃より高く、しかも熱負荷が小さいために、排熱流体供給管30を介して伝熱管3Aに供給する排熱流体だけで十分な量の冷媒が生成可能なときには、排熱流体による吸収液の加熱だけで冷媒を分離生成し、ガスバーナ1Aによる冷媒の分離生成、吸収液の濃縮再生は行わない。   On the other hand, at the time of cooling operation such as cooling, the temperature of the exhaust heat fluid supplied to the heat transfer tube 3A as the heat source via the exhaust heat fluid supply tube 30 is higher than, for example, a predetermined temperature of 70 ° C. and the heat load is small. When a sufficient amount of refrigerant can be generated with only the exhaust heat fluid supplied to the heat transfer pipe 3A via the exhaust heat fluid supply pipe 30, the refrigerant is separated and generated only by heating the absorbing liquid with the exhaust heat fluid, and the gas burner 1A Refrigerant separation / generation and absorption / concentration regeneration are not performed.

したがって、吸収液ポンプ11、13は運転するが、吸収液ポンプ12の運転は停止する。そして、吸収器7で冷媒を吸収し、濃度が低下して吸収液溜りに溜った吸収液は、低温熱交換器8を経由して排熱再生器3に送られ、排熱流体供給管30から伝熱管3Aに供給される排熱流体により加熱され、吸収液から冷媒が分離生成される。排熱再生器3で分離生成された冷媒蒸気は排熱凝縮器5に入り、冷却水管33内を流れる冷却水により冷却されて凝縮液化した後、冷媒管27、26を通って蒸発器6に入る。   Therefore, the absorption liquid pumps 11 and 13 are operated, but the operation of the absorption liquid pump 12 is stopped. Then, the refrigerant is absorbed by the absorber 7, and the absorption liquid that has been reduced in concentration and accumulated in the absorption liquid reservoir is sent to the exhaust heat regenerator 3 via the low-temperature heat exchanger 8, and the exhaust heat fluid supply pipe 30. Is heated by the exhaust heat fluid supplied to the heat transfer tube 3A, and the refrigerant is separated and generated from the absorption liquid. The refrigerant vapor separated and generated in the exhaust heat regenerator 3 enters the exhaust heat condenser 5 and is cooled by the cooling water flowing in the cooling water pipe 33 to be condensed and liquefied. Then, the refrigerant vapor passes through the refrigerant pipes 27 and 26 to the evaporator 6. enter.

蒸発器6では二重効用運転時と同様に、冷媒ポンプ10の運転により冷媒液が伝熱管6Aの上に散布される。そして、冷媒が伝熱管6A内を流れる水と熱交換して蒸発し、伝熱管6Aの内部を流れる水が冷媒の気化熱により冷却され、その冷水が冷温水管32を介して熱負荷に循環供給される。   In the evaporator 6, the refrigerant liquid is sprayed on the heat transfer pipe 6 </ b> A by the operation of the refrigerant pump 10 as in the double effect operation. Then, the refrigerant exchanges heat with the water flowing in the heat transfer pipe 6A and evaporates, the water flowing in the heat transfer pipe 6A is cooled by the heat of vaporization of the refrigerant, and the cold water is circulated and supplied to the heat load via the cold / hot water pipe 32. Is done.

蒸発器6で蒸発した冷媒は吸収器7に入り、上方から散布される吸収液、すなわち排熱再生器3における加熱により冷媒が分離生成され、濃度が高くなって吸収液管19、22、21を通り、低温熱交換器8を経由して低温再生器2から流入する吸収液に吸収される。そして、冷媒を吸収して濃度が薄くなった吸収液は、前記したように吸収液ポンプ11の運転により低温熱交換器8を経由して排熱再生器3に送られる。すなわち、機内の吸収液は、図5における各吸収液管内に示した矢印の方向に循環する。   The refrigerant evaporated in the evaporator 6 enters the absorber 7 and is absorbed and dispersed from above, that is, the refrigerant is separated and generated by heating in the exhaust heat regenerator 3, and the concentration becomes high, and the absorbing liquid tubes 19, 22, 21. And is absorbed by the absorption liquid flowing from the low-temperature regenerator 2 through the low-temperature heat exchanger 8. Then, the absorption liquid whose concentration is reduced by absorbing the refrigerant is sent to the exhaust heat regenerator 3 via the low-temperature heat exchanger 8 by the operation of the absorption liquid pump 11 as described above. That is, the absorption liquid in the machine circulates in the direction of the arrow shown in each absorption liquid pipe in FIG.

さらに、冷房などの冷却運転時に、熱源として排熱流体供給管30を介して伝熱管3Aに供給する排熱流体の温度が、例えば所定の70℃以上あるが、熱負荷が大きいために排熱流体供給管30を介して伝熱管3Aに供給する排熱流体だけでは十分な量の冷媒が生成できないときには、排熱流体とガスバーナ1Aによる燃焼熱の両方を利用して吸収液を加熱し、冷媒を分離生成すると共に、吸収液を濃縮再生する。   Further, during cooling operation such as cooling, the temperature of the exhaust heat fluid supplied to the heat transfer pipe 3A as the heat source via the exhaust heat fluid supply pipe 30 is, for example, a predetermined 70 ° C. or more, but the exhaust heat is exhausted due to a large heat load. When a sufficient amount of refrigerant cannot be generated with only the exhaust heat fluid supplied to the heat transfer pipe 3A via the fluid supply pipe 30, the absorption liquid is heated using both the exhaust heat fluid and the combustion heat generated by the gas burner 1A. Is separated and produced, and the absorbent is concentrated and regenerated.

この場合は、吸収液ポンプ11〜13が運転される。したがって、吸収器7で冷媒を吸収し、濃度が低下して吸収液溜りに溜った吸収液は、低温熱交換器8を経由して排熱再生器3に送られて加熱され、吸収液から冷媒が分離生成される。そして、排熱再生器3で生成された冷媒蒸気は排熱凝縮器5に入り、冷却水管33内を流れる冷却水により冷却されて凝縮液化した後、冷媒管27、26を経由して蒸発器6に入る。   In this case, the absorption liquid pumps 11 to 13 are operated. Therefore, the absorbing liquid that has absorbed the refrigerant in the absorber 7 and has been reduced in concentration and accumulated in the absorbing liquid reservoir is sent to the exhaust heat regenerator 3 via the low-temperature heat exchanger 8 and heated, and from the absorbing liquid. A refrigerant is separated and generated. Then, the refrigerant vapor generated in the exhaust heat regenerator 3 enters the exhaust heat condenser 5 and is cooled by the cooling water flowing in the cooling water pipe 33 to be condensed and liquefied, and then the evaporator via the refrigerant pipes 27 and 26. Enter 6.

排熱再生器3で冷媒の一部を分離して濃度が上昇した吸収液は、吸収液ポンプ12の運転により高温熱交換器9を経由して高温再生器1に送られる。高温再生器1においても吸収液は加熱されて冷媒が蒸発し、分離生成された冷媒と濃縮された吸収液は二重効用単独運転時と同様に循環し、蒸発器6では凝縮器4、5から流入する冷媒液が冷媒ポンプ10の運転により伝熱管6Aの上に散布され、冷媒液が蒸発する際の気化熱により伝熱管6A内を流れる水が冷却され、その冷水が冷温水管32を介して熱負荷に循環供給される。   The absorption liquid whose concentration has been increased by separating a part of the refrigerant in the exhaust heat regenerator 3 is sent to the high temperature regenerator 1 via the high temperature heat exchanger 9 by the operation of the absorption liquid pump 12. Also in the high temperature regenerator 1, the absorption liquid is heated and the refrigerant evaporates, and the separated refrigerant and the concentrated absorption liquid circulate in the same manner as in the double effect single operation. The refrigerant liquid flowing in from above is sprayed on the heat transfer pipe 6A by the operation of the refrigerant pump 10, the water flowing in the heat transfer pipe 6A is cooled by the heat of vaporization when the refrigerant liquid evaporates, and the cold water passes through the cold / hot water pipe 32. Circulated to the heat load.

蒸発器6で蒸発した冷媒は吸収器7に入り、上方から散布される吸収液、すなわち低温再生器2における加熱により冷媒が分離生成され、濃度が一層高くなって吸収液管21を経由して低温再生器2から流入する吸収液に吸収される。そして、冷媒を吸収して濃度が薄くなった吸収液は、前記したように吸収液ポンプ11の運転により低温熱交換器8を経由して排熱再生器3に送られる。すなわち、機内の吸収液は、図6における各吸収液管内に示した矢印の方向に循環する。
特開平6−341728号公報
The refrigerant evaporated in the evaporator 6 enters the absorber 7 and is absorbed and dispersed from above, that is, the refrigerant is separated and generated by heating in the low-temperature regenerator 2, and the concentration becomes higher via the absorption liquid pipe 21. It is absorbed by the absorbing liquid flowing from the low temperature regenerator 2. Then, the absorption liquid whose concentration is reduced by absorbing the refrigerant is sent to the exhaust heat regenerator 3 via the low-temperature heat exchanger 8 by the operation of the absorption liquid pump 11 as described above. That is, the absorption liquid in the machine circulates in the direction of the arrow shown in each absorption liquid pipe in FIG.
JP-A-6-341728

特許文献1に開示された吸収冷凍機においては、吸収液を加熱して冷媒を吸収液から分離生成し、吸収液の濃縮再生を行う熱源として、バーナにより天然ガスなどを燃やした際に発生する燃焼熱と、コ・ジェネレーションシステムなどから供給される高温・高圧の水蒸気、高温水などの排熱流体が用いられるので、熱効率が高い。したがって、省資源であり、また、二酸化炭素の排出量を削減することができる、と云ったメリットもある。   In the absorption refrigerator disclosed in Patent Document 1, it is generated when natural gas or the like is burned by a burner as a heat source that heats the absorption liquid, separates and generates the refrigerant from the absorption liquid, and concentrates and regenerates the absorption liquid. The use of combustion heat and exhaust heat fluid such as high-temperature and high-pressure steam and high-temperature water supplied from a co-generation system, etc. results in high thermal efficiency. Therefore, there is a merit that it is resource saving and the amount of carbon dioxide emission can be reduced.

しかし、特許文献1に開示された吸収冷凍機においては、天然ガスなどを燃やした際に出る燃焼熱を利用して冷媒を吸収液から分離生成し、吸収液の濃縮再生を図る運転では、排熱を利用した冷媒の分離生成と吸収液の濃縮再生を行う場合も、行わない場合も、所定の熱効率を確保するためには排熱再生器を経由した吸収液の全てが高温再生器に流入し、低温再生器を経由した吸収液の全てが吸収器に流入する必要があるが、排熱再生器の吸収液吐出口と高温再生器とを接続した吸収液管と、低温再生器の吸収液吐出口と吸収器とを接続した吸収液管とが連通されているので、機内の圧力状態によっては、排熱再生器を経由した吸収液の一部が高温再生器と低温再生器における濃縮がないまま吸収器に流入して吸収液による冷媒の吸収作用を弱めたり、低温再生器で濃縮再生された吸収液の一部が吸収器にではなく高温再生器に流入して吸収器の吸収液が不足し、それによる冷媒吸収作用が不足して所定の能力が発揮されないことがある、と云った問題点があった。そのため、排熱再生器を備えた吸収冷凍機において、吸収液が所定の機器を確実に経由して循環するように構成する必要があり、それが解決すべき課題となっていた。   However, in the absorption refrigerator disclosed in Patent Document 1, in the operation of separating and generating the refrigerant from the absorbing liquid by using the combustion heat generated when natural gas or the like is burned and concentrating and regenerating the absorbing liquid, Regardless of whether or not the refrigerant is separated and generated using heat and the concentration and regeneration of the absorption liquid are performed, all of the absorption liquid that has passed through the exhaust heat regenerator flows into the high-temperature regenerator to ensure the specified thermal efficiency. However, all of the absorption liquid that has passed through the low temperature regenerator needs to flow into the absorber, but the absorption liquid pipe connecting the absorption liquid discharge port of the exhaust heat regenerator and the high temperature regenerator and the absorption of the low temperature regenerator Since the absorption liquid pipe connecting the liquid discharge port and the absorber is connected, depending on the internal pressure state, a part of the absorption liquid via the exhaust heat regenerator is concentrated in the high temperature regenerator and the low temperature regenerator. The refrigerant is absorbed into the absorber without absorption. Part of the absorption liquid concentrated or regenerated in the low-temperature regenerator flows into the high-temperature regenerator instead of into the absorber, and the absorption liquid in the absorber is insufficient. There was a problem that there was a case that was not exhibited. For this reason, in an absorption refrigerator equipped with an exhaust heat regenerator, it is necessary to configure the absorption liquid so as to circulate through a predetermined device without fail, which has been a problem to be solved.

本発明は上記従来技術の課題を解決するため、冷媒を吸収した吸収液を加熱し、冷媒を蒸発分離して吸収液を濃縮再生する再生器として、吸収液が冷凍サイクル内で最高温度に加熱される高温再生器と、高温再生器から供給される冷媒蒸気により吸収液が加熱される低温再生器と、他の設備から供給される排熱流体により吸収液が加熱される排熱再生器とを備えた吸収冷凍機において、排熱再生器には濃縮再生された吸収液の吐出口を上下に離間して2箇開設し、下側の吸収液吐出口と高温再生器とを吸収液ポンプが介在する第1の吸収液管により接続し、上側の吸収液吐出口と吸収器とを第2の吸収液管により接続することを主要な特徴とするものである。   In order to solve the above-described problems of the prior art, the present invention heats the absorbing liquid that has absorbed the refrigerant, evaporates and separates the refrigerant, and concentrates and regenerates the absorbing liquid, so that the absorbing liquid is heated to the maximum temperature in the refrigeration cycle. A high-temperature regenerator, a low-temperature regenerator in which the absorption liquid is heated by the refrigerant vapor supplied from the high-temperature regenerator, and an exhaust heat regenerator in which the absorption liquid is heated by the exhaust heat fluid supplied from other equipment In the absorption refrigerator equipped with the above, the exhaust heat regenerator has two outlets for the concentrated and regenerated absorption liquid, which are separated from each other in the vertical direction, and the lower absorption liquid outlet and the high temperature regenerator are connected to the absorption liquid pump. The main feature is that the first absorption liquid pipe is interposed and the upper absorption liquid discharge port and the absorber are connected by the second absorption liquid pipe.

本発明の吸収冷凍機においては、排熱再生器の下側の吸収液吐出口と高温再生器とが吸収液ポンプが介在する第1の吸収液管により接続され、上側の吸収液吐出口と吸収器とが第2の吸収液管により接続されているので、高温再生器に設けたバーナにより天然ガスなどを燃やして発生させる燃焼熱を利用して冷媒を吸収液から分離生成し、吸収液の濃縮再生を図る運転では、排熱利用による冷媒の分離生成と吸収液の濃縮再生を行う場合も、行わない場合も、第1の吸収液管に介在する吸収液ポンプを運転することにより、排熱再生器に入った吸収液の全てが下側の吸収液吐出口から高温再生器に送られる。   In the absorption refrigerator of the present invention, the lower absorption liquid discharge port of the exhaust heat regenerator and the high temperature regenerator are connected by a first absorption liquid pipe with an absorption liquid pump interposed therebetween, and the upper absorption liquid discharge port Since the absorber is connected with the second absorbing liquid pipe, the refrigerant is separated from the absorbing liquid by using the combustion heat generated by burning natural gas or the like by the burner provided in the high temperature regenerator, and the absorbing liquid In the operation of concentrating and regenerating the refrigerant, whether or not the refrigerant is separated and generated by using exhaust heat and the absorption liquid is concentrated and regenerated, by operating the absorption liquid pump interposed in the first absorption liquid pipe, All of the absorbent that has entered the exhaust heat regenerator is sent to the high-temperature regenerator from the lower absorbent discharge port.

すなわち、冷媒を吸収し、吸収液濃度が低下して吸収器から排熱再生器に送られた吸収液が、高温再生器と低温再生器における濃縮作用を受けないまま吸収器に戻されることはないので、吸収器における冷媒の吸収作用が弱められることがない。   In other words, the absorption liquid that absorbs the refrigerant and the concentration of the absorption liquid decreases and is sent from the absorber to the exhaust heat regenerator is returned to the absorber without being concentrated in the high temperature regenerator and the low temperature regenerator. Therefore, the refrigerant absorbing action in the absorber is not weakened.

また、高温再生器に設けたバーナにより天然ガスなどを燃やして発生させる燃焼熱は利用せず、他の設備から供給される排熱のみを利用して冷媒を吸収液から分離生成し、吸収液の濃縮再生を図る運転では、第1の吸収液管に介在する吸収液ポンプの運転を行わないようにすることにより、吸収器から排熱再生器に送られ、排熱再生器で冷媒を蒸発分離して濃縮された吸収液の全てが上側の吸収液吐出口から吸収器に戻される。   In addition, the combustion heat generated by burning natural gas or the like with the burner provided in the high-temperature regenerator is not used, but only the exhaust heat supplied from other equipment is used to separate and generate the refrigerant from the absorbing liquid. In the operation to concentrate and regenerate the refrigerant, by not operating the absorption liquid pump interposed in the first absorption liquid pipe, the refrigerant is sent from the absorber to the exhaust heat regenerator, and the refrigerant is evaporated in the exhaust heat regenerator. All of the separated and concentrated absorbent is returned to the absorber from the upper absorbent outlet.

すなわち、冷媒を吸収し、吸収液濃度が低下して吸収器から排熱再生器に送られた吸収液は、排熱により加熱されて冷媒を蒸発分離し、濃縮再生され、その全てが上側の吸収液吐出口から吸収器に戻されるので、排熱再生器で濃縮再生された吸収液の一部が高温再生器に送られて、吸収器で散布する吸収液が不足し、それによる冷媒吸収作用が不足して所定の能力が発揮されない、などと云った不都合は起こらない。   That is, the absorption liquid that absorbs the refrigerant and the concentration of the absorption liquid decreases and is sent from the absorber to the exhaust heat regenerator is heated by the exhaust heat to evaporate and separate the refrigerant, and is concentrated and regenerated. Since it is returned to the absorber from the absorption liquid discharge port, a part of the absorption liquid concentrated and regenerated by the exhaust heat regenerator is sent to the high-temperature regenerator, and the absorption liquid sprayed by the absorber is insufficient, thereby absorbing the refrigerant. There is no inconvenience that the predetermined ability cannot be exhibited due to insufficient action.

冷媒を吸収した吸収液を加熱し、冷媒を蒸発分離して吸収液を濃縮再生する再生器として、吸収液が冷凍サイクル内で最高温度に加熱される高温再生器と、高温再生器から供給される冷媒蒸気により吸収液が加熱される低温再生器と、他の設備から供給される排熱流体により吸収液が加熱される排熱再生器とを備えた吸収冷凍機において、排熱再生器には濃縮再生された吸収液の吐出口を上下に離間して2箇開設し、下側の吸収液吐出口と高温再生器とを吸収液ポンプが介在する第1の吸収液管により接続し、上側の吸収液吐出口と吸収器とを第2の吸収液管により接続し、第1吸収液管と、低温再生器の吸収液吐出口と吸収器の吸収器とを接続する吸収液管とは連通しないようにした吸収冷凍機。   As a regenerator that heats the absorption liquid that has absorbed the refrigerant, evaporates and separates the refrigerant, and concentrates and regenerates the absorption liquid, the high-temperature regenerator in which the absorption liquid is heated to the maximum temperature in the refrigeration cycle and the high-temperature regenerator In an absorption refrigerator having a low-temperature regenerator in which the absorption liquid is heated by the refrigerant vapor and an exhaust heat regenerator in which the absorption liquid is heated by the exhaust heat fluid supplied from other equipment, the exhaust heat regenerator Opens two outlets for concentrated and regenerated absorption liquid, and connects the lower absorption liquid outlet and the high-temperature regenerator by a first absorption liquid pipe with an absorption liquid pump interposed between them. An upper absorption liquid outlet and an absorber are connected by a second absorption liquid pipe, and a first absorption liquid pipe, and an absorption liquid pipe connecting the absorption liquid outlet of the low temperature regenerator and the absorber of the absorber, Is an absorption refrigerator that prevents communication.

以下、本発明の一実施形態を図1〜図3に基づいて詳細に説明する。図面に例示した本発明の吸収冷凍機100は、冷媒に水、吸収液に臭化リチウム(LiBr)水溶液を使用して、図示しない熱負荷に冷水または温水を循環供給することが可能な吸収冷凍機である。なお、理解を容易にするため、これらの図面においても前記図4〜図6において説明した部分と同様の機能を有する部分には、同一の符号を付した。   Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. The absorption refrigerator 100 of the present invention illustrated in the drawings is an absorption refrigeration capable of circulating and supplying cold water or hot water to a heat load (not shown) using water as a refrigerant and an aqueous lithium bromide (LiBr) solution as an absorption liquid. Machine. In order to facilitate understanding, in these drawings, parts having the same functions as those explained in FIGS. 4 to 6 are denoted by the same reference numerals.

図1〜図3に例示した本発明の吸収冷凍機100が、前記図4〜図6に示した吸収冷凍機100Xと相違する主な点は、排熱再生器3において加熱し、冷媒を蒸発分離して濃縮した吸収液の搬送先が選択できる点にある。   The absorption chiller 100 of the present invention illustrated in FIGS. 1 to 3 is different from the absorption chiller 100X shown in FIGS. 4 to 6 in that the heat is evaporated in the exhaust heat regenerator 3 to evaporate the refrigerant. The transport destination of the separated and concentrated absorption liquid can be selected.

すなわち、図4〜図6に示した吸収冷凍機100Xにおいては、排熱再生器3の側壁の中段部分に吸収液の吐出口3Bが設けられ、その吐出口3Bに吸収液管19の一端が接続されて、吐出口3Bより高い位置にある排熱再生器3の吸収液が吸収液管19に介在する吸収液ポンプ12の運転により高温再生器1に搬送可能に、また、吸収液ポンプ12の運転を停止し、吸収液ポンプ13を運転したときには、吐出口3Bより高い位置にある排熱再生器3の吸収液が高温再生器1にではなく、吸収液管19、22、21を経由して吸収器7に搬送可能に設けられている。   That is, in the absorption refrigerator 100X shown in FIG. 4 to FIG. 6, the absorbent outlet 3B is provided in the middle part of the side wall of the exhaust heat regenerator 3, and one end of the absorbent pipe 19 is provided in the outlet 3B. The absorption liquid of the exhaust heat regenerator 3 that is connected and higher than the discharge port 3B can be transported to the high temperature regenerator 1 by the operation of the absorption liquid pump 12 interposed in the absorption liquid pipe 19, and the absorption liquid pump 12 Is stopped and the absorption liquid pump 13 is operated, the absorption liquid in the exhaust heat regenerator 3 at a position higher than the discharge port 3B does not go through the high temperature regenerator 1 but through the absorption liquid pipes 19, 22, and 21. And it is provided in the absorber 7 so that conveyance is possible.

一方、図1〜図3に例示した本発明の吸収冷凍機100においては、排熱再生器3に吸収液の二つの吐出口3B、3Cが伝熱管3Aより下側に位置して、且つ、上下に離間して設けられ、上側の吐出口3Bには一端が吸収液管21の低温再生器2側に接続された吸収液管19Aの他端が接続され、下側の吐出口3Cには吸収液ポンプ12が介在し、他端が高温再生器1に接続された吸収液管19の一端が接続されている。   On the other hand, in the absorption refrigerator 100 of the present invention illustrated in FIGS. 1 to 3, the two discharge ports 3 </ b> B and 3 </ b> C of the absorption liquid are positioned below the heat transfer tube 3 </ b> A in the exhaust heat regenerator 3, and The upper discharge port 3B is connected to the other end of the absorption liquid pipe 19A, one end of which is connected to the low temperature regenerator 2 side of the absorption liquid pipe 21, and the lower discharge port 3C. An absorption liquid pump 19 is interposed, and one end of an absorption liquid pipe 19 having the other end connected to the high-temperature regenerator 1 is connected.

そして、上記構成の本発明の吸収冷凍機100においても、伝熱管6Aで冷却した冷水を冷温水管32を介して熱負荷に循環供給して冷房などの冷却運転を行う際に、排熱流体供給管30を介して排熱再生器3内の伝熱管3Aに熱源として他の設備から供給する排熱流体の温度が、例えば所定の温度の70℃より低く、排熱再生器3における冷媒生成と吸収液の濃縮再生に利用できないときには、排熱流体供給管30から供給される排熱流体の全量がバイパス管31に流れて伝熱管3Aを迂回するように流量制御弁14が制御されて、排熱再生器3を機能させない一般的な二重効用運転が行われる。   In the absorption refrigerator 100 of the present invention having the above-described configuration, the exhaust heat fluid supply is performed when the cold water cooled by the heat transfer pipe 6A is circulated and supplied to the heat load through the cold / hot water pipe 32 to perform cooling operation such as cooling. The temperature of the exhaust heat fluid supplied from other equipment as a heat source to the heat transfer tube 3A in the exhaust heat regenerator 3 via the tube 30 is lower than, for example, a predetermined temperature of 70 ° C., and refrigerant generation in the exhaust heat regenerator 3 When the absorption liquid cannot be used for concentration regeneration, the flow control valve 14 is controlled so that the entire amount of the exhaust heat fluid supplied from the exhaust heat fluid supply pipe 30 flows into the bypass pipe 31 and bypasses the heat transfer pipe 3A. A general double-effect operation in which the heat regenerator 3 does not function is performed.

すなわち、この場合は吸収液ポンプ11〜13が運転され、ガスバーナ1Aにおいては天然ガスなどを燃焼して所定の熱量が高温再生器1に投入される。したがって、吸収器7で冷媒を吸収し、濃度が低下して吸収液溜りに溜った吸収液は、低温熱交換器8、排熱再生器3、および高温熱交換器9を経由して高温再生器1に送られ、高温再生器1においてガスバーナ1Aにより加熱されて沸騰し、冷媒を蒸発分離して濃縮される。   That is, in this case, the absorption liquid pumps 11 to 13 are operated, and the gas burner 1 </ b> A burns natural gas or the like and a predetermined amount of heat is input to the high-temperature regenerator 1. Therefore, the refrigerant that has been absorbed by the absorber 7 and reduced in concentration and accumulated in the absorption liquid reservoir is regenerated at a high temperature via the low-temperature heat exchanger 8, the exhaust heat regenerator 3, and the high-temperature heat exchanger 9. In the high-temperature regenerator 1, it is heated by the gas burner 1A and boiled, and the refrigerant is evaporated and separated to be concentrated.

なお、冷媒の作用および循環する経路は、前記従来の吸収冷凍機100Xの場合と同じであるので、以下においては主に吸収液の循環について記載する。   In addition, since the effect | action of a refrigerant | coolant and the path | route through which it circulates are the same as the case of the said conventional absorption refrigerator 100X, below, it mainly describes the circulation of absorption liquid.

吸収器7から低温熱交換器8を経由して排熱再生器3に送られた吸収液は、吸収液ポンプ12の運転により、下側の吐出口3Cから高温熱交換器9を経由して高温再生器1に送られ、ガスバーナ1Aにより加熱されて沸騰し、冷媒を蒸発分離して濃縮される。   The absorbing liquid sent from the absorber 7 to the exhaust heat regenerator 3 via the low-temperature heat exchanger 8 is operated from the lower discharge port 3C via the high-temperature heat exchanger 9 by the operation of the absorbing liquid pump 12. It is sent to the high-temperature regenerator 1, heated by the gas burner 1A and boiled, and concentrated by evaporating and separating the refrigerant.

低温再生器2においては、高温再生器1から高温熱交換器9を経由して流入した吸収液が、冷媒管24を経由して高温再生器1から供給される冷媒蒸気により加熱されて濃縮再生され、その再生された吸収液が吸収液ポンプ13の運転により低温熱交換器8を経由して吸収器7に送られ、上方から散布される。   In the low temperature regenerator 2, the absorption liquid that has flowed in from the high temperature regenerator 1 via the high temperature heat exchanger 9 is heated by the refrigerant vapor supplied from the high temperature regenerator 1 via the refrigerant pipe 24 to be concentrated and regenerated. Then, the regenerated absorption liquid is sent to the absorber 7 via the low-temperature heat exchanger 8 by the operation of the absorption liquid pump 13 and sprayed from above.

そして、蒸発器6で伝熱管6Aの内部を流れる水と熱交換して蒸発し、吸収器7に入った冷媒を吸収して吸収液濃度が低下した吸収液が、吸収液ポンプ11の運転により排熱再生器3に送られる。すなわち、機内の吸収液は、図1における各吸収液管内に示した矢印の方向に循環する。   Then, the evaporator 6 evaporates by exchanging heat with the water flowing inside the heat transfer tube 6 </ b> A, absorbs the refrigerant that has entered the absorber 7, and the absorption liquid concentration is reduced by the operation of the absorption liquid pump 11. It is sent to the exhaust heat regenerator 3. That is, the absorption liquid in the machine circulates in the direction of the arrow shown in each absorption liquid pipe in FIG.

しかも、排熱再生器3の吸収液吐出口と高温再生器1とを接続した吸収液管19と、低温再生器2の吸収液吐出口と吸収器7とを接続した吸収液管21とは連通していないので、排熱再生器3を経由した吸収液の一部が高温再生器1と低温再生器2とを経由しないで、すなわち高温再生器1と低温再生器2とで濃縮なされないで吸収器7に流入して、吸収液による冷媒の吸収作用を弱めたり、低温再生器2で濃縮再生された吸収液の一部が吸収器7にではなく高温再生器1に流入して吸収器7で散布する吸収液が不足し、それによる冷媒吸収作用が不足して所定の能力が発揮されない、などと云った不都合は起こらない。   Moreover, the absorption liquid pipe 19 connecting the absorption liquid discharge port of the exhaust heat regenerator 3 and the high temperature regenerator 1 and the absorption liquid pipe 21 connecting the absorption liquid discharge port of the low temperature regenerator 2 and the absorber 7 are as follows. Since there is no communication, a part of the absorption liquid that has passed through the exhaust heat regenerator 3 does not pass through the high temperature regenerator 1 and the low temperature regenerator 2, that is, is not concentrated between the high temperature regenerator 1 and the low temperature regenerator 2. In the absorber 7, the absorption of the refrigerant by the absorbing liquid is weakened, or a part of the absorbing liquid concentrated and regenerated in the low temperature regenerator 2 flows into the high temperature regenerator 1 instead of the absorber 7, and is absorbed. There is no inconvenience that the absorbing liquid sprayed by the vessel 7 is insufficient, the refrigerant absorbing action is insufficient, and the predetermined ability is not exhibited.

また、冷房などの冷却運転時に、熱源として排熱流体供給管30を介して伝熱管3Aに供給する排熱流体の温度が、例えば所定温度の70℃より高く、しかも熱負荷が小さいために、排熱流体供給管30を介して伝熱管3Aに供給する排熱流体だけで十分な量の冷媒が生成可能なときには、排熱流体による吸収液の加熱だけで冷媒を分離生成し、ガスバーナ1Aによる冷媒の分離生成、吸収液の濃縮再生は行わない。   Further, at the time of cooling operation such as cooling, the temperature of the exhaust heat fluid supplied to the heat transfer tube 3A via the exhaust heat fluid supply tube 30 as a heat source is higher than a predetermined temperature of 70 ° C., for example, and the heat load is small. When a sufficient amount of refrigerant can be generated with only the exhaust heat fluid supplied to the heat transfer pipe 3A via the exhaust heat fluid supply pipe 30, the refrigerant is separated and generated only by heating the absorbing liquid with the exhaust heat fluid, and the gas burner 1A Refrigerant separation / generation and absorption / concentration regeneration are not performed.

そのため、吸収液ポンプ11、13は運転するが、吸収液ポンプ12の運転は停止する。そして、吸収器7で冷媒を吸収し、濃度が低下して吸収液溜りに溜った吸収液は、低温熱交換器8を経由して排熱再生器3に送られ、排熱流体供給管30から伝熱管3Aに供給される排熱流体により加熱され、吸収液から冷媒が分離生成される。   Therefore, the absorption liquid pumps 11 and 13 are operated, but the operation of the absorption liquid pump 12 is stopped. Then, the refrigerant is absorbed by the absorber 7, and the absorption liquid that has been reduced in concentration and accumulated in the absorption liquid reservoir is sent to the exhaust heat regenerator 3 via the low-temperature heat exchanger 8, and the exhaust heat fluid supply pipe 30. Is heated by the exhaust heat fluid supplied to the heat transfer tube 3A, and the refrigerant is separated and generated from the absorption liquid.

排熱再生器3において排熱流体により加熱されて濃縮再生された吸収液は、上側の吐出口3Bから吸収液管19A、21を通り、低温熱交換器8を経由して吸収器7に送られ、上方から散布される。そして、蒸発器6で伝熱管6Aの内部を流れる水と熱交換して蒸発し、吸収器7に入った冷媒を吸収して吸収液濃度が低下した吸収液が、吸収液ポンプ11の運転により排熱再生器3に送られる。すなわち、機内の吸収液は、図2における各吸収液管内に示した矢印の方向に循環する。   The absorption liquid heated and condensed and regenerated by the exhaust heat regenerator 3 in the exhaust heat regenerator 3 passes through the absorption liquid pipes 19A and 21 from the upper discharge port 3B and is sent to the absorber 7 via the low-temperature heat exchanger 8. And sprayed from above. Then, the evaporator 6 evaporates by exchanging heat with the water flowing inside the heat transfer tube 6 </ b> A, absorbs the refrigerant that has entered the absorber 7, and the absorption liquid concentration is reduced by the operation of the absorption liquid pump 11. It is sent to the exhaust heat regenerator 3. That is, the absorption liquid in the machine circulates in the direction of the arrow shown in each absorption liquid pipe in FIG.

しかも、排熱再生器3の吸収液吐出口と高温再生器1とを接続した吸収液管19と、低温再生器2の吸収液吐出口と吸収器7とを接続した吸収液管21とは連通していないので、排熱再生器3で濃縮再生された吸収液の全てが吸収器7に送られる。そのため、吸収器7で散布する吸収液が不足し、それによる冷媒吸収作用が不足して所定の能力が発揮されない、などと云った不都合は起こらない。   Moreover, the absorption liquid pipe 19 connecting the absorption liquid discharge port of the exhaust heat regenerator 3 and the high temperature regenerator 1 and the absorption liquid pipe 21 connecting the absorption liquid discharge port of the low temperature regenerator 2 and the absorber 7 are as follows. Since it is not in communication, all of the absorption liquid concentrated and regenerated by the exhaust heat regenerator 3 is sent to the absorber 7. Therefore, there is no inconvenience that the absorbing liquid sprayed by the absorber 7 is insufficient, the refrigerant absorbing action is insufficient, and the predetermined ability is not exhibited.

さらに、冷房などの冷却運転時に、熱源として排熱流体供給管30を介して伝熱管3Aに供給する排熱流体の温度が、例えば所定の70℃以上あるが、熱負荷が大きいために排熱流体供給管30を介して伝熱管3Aに供給する排熱流体だけでは十分な量の冷媒が生成できないときには、排熱流体とガスバーナ1Aによる燃焼熱の両方を利用して吸収液を加熱し、冷媒を分離生成すると共に、吸収液を濃縮再生する。   Further, during cooling operation such as cooling, the temperature of the exhaust heat fluid supplied to the heat transfer pipe 3A as the heat source via the exhaust heat fluid supply pipe 30 is, for example, a predetermined 70 ° C. or more, but the exhaust heat is exhausted due to a large heat load. When a sufficient amount of refrigerant cannot be generated with only the exhaust heat fluid supplied to the heat transfer pipe 3A via the fluid supply pipe 30, the absorption liquid is heated using both the exhaust heat fluid and the combustion heat generated by the gas burner 1A. Is separated and produced, and the absorbent is concentrated and regenerated.

この場合は、吸収液ポンプ11〜13が運転される。したがって、吸収器7で冷媒を吸収し、濃度が低下して吸収液溜りに溜った吸収液は、低温熱交換器8を経由して排熱再生器3に送られて加熱され、吸収液から冷媒が分離生成される。   In this case, the absorption liquid pumps 11 to 13 are operated. Therefore, the absorbing liquid that has absorbed the refrigerant in the absorber 7 and has been reduced in concentration and accumulated in the absorbing liquid reservoir is sent to the exhaust heat regenerator 3 via the low-temperature heat exchanger 8 and heated, and from the absorbing liquid. A refrigerant is separated and generated.

排熱再生器3で冷媒の一部を分離して濃度が上昇した吸収液は、吸収液ポンプ12の運転により下側の吐出口3Cから高温熱交換器9を経由して高温再生器1に送られる。高温再生器1においても吸収液は加熱されて冷媒が蒸発し、分離生成された冷媒と濃縮された吸収液は二重効用単独運転時と同様に循環する。   The absorption liquid whose concentration has been increased by separating a part of the refrigerant in the exhaust heat regenerator 3 passes from the lower discharge port 3C to the high temperature regenerator 1 via the high temperature heat exchanger 9 by the operation of the absorption liquid pump 12. Sent. Also in the high-temperature regenerator 1, the absorption liquid is heated and the refrigerant evaporates, and the separated refrigerant and the concentrated absorption liquid circulate in the same manner as in the double effect single operation.

すなわち、高温再生器1で濃縮された吸収液は、高温熱交換器9を経由して低温再生器2に入り、高温再生器1から供給される冷媒蒸気による加熱により濃縮再生されて、低温熱交換器8を経由して吸収器7に送られ、上方から散布される。   That is, the absorption liquid concentrated in the high-temperature regenerator 1 enters the low-temperature regenerator 2 via the high-temperature heat exchanger 9 and is concentrated and regenerated by heating with the refrigerant vapor supplied from the high-temperature regenerator 1, It is sent to the absorber 7 via the exchanger 8 and sprayed from above.

そして、蒸発器6で伝熱管6Aの内部を流れる水と熱交換して蒸発し、吸収器7に入った冷媒を吸収して吸収液濃度が低下した吸収液が、吸収液ポンプ11の運転により排熱再生器3に送られる。すなわち、機内の吸収液は、図3における各吸収液管内に示した矢印の方向に循環する。   Then, the evaporator 6 evaporates by exchanging heat with the water flowing inside the heat transfer tube 6 </ b> A, absorbs the refrigerant that has entered the absorber 7, and the absorption liquid concentration is reduced by the operation of the absorption liquid pump 11. It is sent to the exhaust heat regenerator 3. That is, the absorption liquid in the machine circulates in the direction of the arrow shown in each absorption liquid pipe in FIG.

しかも、排熱再生器3の吸収液吐出口と高温再生器1とを接続した吸収液管19と、低温再生器2の吸収液吐出口と吸収器7とを接続した吸収液管21とは連通していないので、排熱再生器3を経由した吸収液の一部が高温再生器1と低温再生器2とを経由しないで、すなわち高温再生器1と低温再生器2とで濃縮なされないで吸収器7に流入して、吸収液による冷媒の吸収作用を弱めたり、低温再生器2で濃縮再生された吸収液の一部が吸収器7にではなく高温再生器1に流入して吸収器7で散布する吸収液が不足し、それによる冷媒吸収作用が不足して所定の能力が発揮されない、などと云った不都合は起こらない。   Moreover, the absorption liquid pipe 19 connecting the absorption liquid discharge port of the exhaust heat regenerator 3 and the high temperature regenerator 1 and the absorption liquid pipe 21 connecting the absorption liquid discharge port of the low temperature regenerator 2 and the absorber 7 are as follows. Since there is no communication, a part of the absorption liquid that has passed through the exhaust heat regenerator 3 does not pass through the high temperature regenerator 1 and the low temperature regenerator 2, that is, is not concentrated between the high temperature regenerator 1 and the low temperature regenerator 2. In the absorber 7, the absorption of the refrigerant by the absorbing liquid is weakened, or a part of the absorbing liquid concentrated and regenerated in the low temperature regenerator 2 flows into the high temperature regenerator 1 instead of the absorber 7, and is absorbed. There is no inconvenience that the absorbing liquid sprayed by the vessel 7 is insufficient, the refrigerant absorbing action is insufficient, and the predetermined ability is not exhibited.

なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。   In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.

例えば、開閉弁17が介在する冷媒管29は、冷媒ポンプ10の下流側と吸収器7との間に設けられても良い。   For example, the refrigerant pipe 29 in which the on-off valve 17 is interposed may be provided between the downstream side of the refrigerant pump 10 and the absorber 7.

また、排熱再生器3内に設置される伝熱管3Aは、図4などに示した従来の吸収冷凍機100Xと同様に、すなわち吸収器7から供給される吸収液の中に埋もれるように吐出口3B、3Cの下側に設けられても良い。   Further, the heat transfer tube 3A installed in the exhaust heat regenerator 3 is discharged similarly to the conventional absorption refrigerator 100X shown in FIG. 4 and the like, that is, buried in the absorption liquid supplied from the absorber 7. It may be provided below the outlets 3B and 3C.

本発明の吸収冷凍機の説明図であり、燃焼熱による単独加熱運転時の吸収液の循環経路を示した説明図である。It is explanatory drawing of the absorption refrigerator of this invention, and is explanatory drawing which showed the circulation path of the absorption liquid at the time of the independent heating operation by combustion heat. 本発明の吸収冷凍機の説明図であり、排熱による単独加熱運転時の吸収液の循環経路を示した説明図である。It is explanatory drawing of the absorption refrigerator of this invention, and is explanatory drawing which showed the circulation path of the absorption liquid at the time of the independent heating operation by waste heat. 本発明の吸収冷凍機の説明図であり、燃焼熱と排熱との併用加熱運転時の吸収液の循環経路を示した説明図である。It is explanatory drawing of the absorption refrigerator of this invention, and is explanatory drawing which showed the circulation path of the absorption liquid at the time of the combined heating operation of combustion heat and exhaust heat. 従来の吸収冷凍機の説明図であり、燃焼熱による単独加熱運転時の吸収液の循環経路を示した説明図である。It is explanatory drawing of the conventional absorption refrigerator, and is explanatory drawing which showed the circulation path of the absorption liquid at the time of the independent heating operation by combustion heat. 従来の吸収冷凍機の説明図であり、排熱による単独加熱運転時の吸収液の循環経路を示した説明図である。It is explanatory drawing of the conventional absorption refrigerator, and is explanatory drawing which showed the circulation path of the absorption liquid at the time of the independent heating operation by waste heat. 従来の吸収冷凍機の説明図であり、燃焼熱と排熱との併用加熱運転時の吸収液の循環経路を示した説明図である。It is explanatory drawing of the conventional absorption refrigerator, and is explanatory drawing which showed the circulation path of the absorption liquid at the time of combined heating operation of combustion heat and exhaust heat.

符号の説明Explanation of symbols

1 高温再生器
1A ガスバーナ
2 低温再生器
3 排熱再生器
3A 伝熱管
3B、3C 吐出口
4 凝縮器
5 排熱凝縮器
6 蒸発器
6A 伝熱管
7 吸収器
8 低温熱交換器
9 高温熱交換器
10 冷媒ポンプ
11〜13 吸収液ポンプ
14 流量制御弁(三方弁)
15〜17 開閉弁
18〜23 吸収液管
24〜29 冷媒管
30 排熱流体供給管
31 バイパス管
32 冷温水管
33 冷却水管
100、100X 吸収冷凍機
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 1A Gas burner 2 Low temperature regenerator 3 Exhaust heat regenerator 3A Heat transfer tube 3B, 3C Discharge port 4 Condenser 5 Exhaust heat condenser 6 Evaporator 6A Heat transfer tube 7 Absorber 8 Low temperature heat exchanger 9 High temperature heat exchanger 10 Refrigerant pump 11-13 Absorption liquid pump 14 Flow control valve (three-way valve)
15-17 On-off valve 18-23 Absorption liquid pipe 24-29 Refrigerant pipe 30 Waste heat fluid supply pipe 31 Bypass pipe 32 Cold / hot water pipe 33 Cooling water pipe 100, 100X Absorption refrigerator

Claims (1)

冷媒を吸収した吸収液を加熱し、冷媒を蒸発分離して吸収液を濃縮再生する再生器として、吸収液が冷凍サイクル内で最高温度に加熱される高温再生器と、高温再生器から供給される冷媒蒸気により吸収液が加熱される低温再生器と、他の設備から供給される排熱流体により吸収液が加熱される排熱再生器とを備えた吸収冷凍機において、排熱再生器には濃縮再生された吸収液の吐出口を上下に離間して2箇開設し、下側の吸収液吐出口と高温再生器とを吸収液ポンプが介在する第1の吸収液管により接続し、上側の吸収液吐出口と吸収器とを第2の吸収液管により接続したことを特徴とする吸収冷凍機。   As a regenerator that heats the absorption liquid that has absorbed the refrigerant, evaporates and separates the refrigerant, and concentrates and regenerates the absorption liquid, the high-temperature regenerator in which the absorption liquid is heated to the maximum temperature in the refrigeration cycle and the high-temperature regenerator In an absorption refrigerator having a low-temperature regenerator in which the absorption liquid is heated by the refrigerant vapor and an exhaust heat regenerator in which the absorption liquid is heated by the exhaust heat fluid supplied from other equipment, the exhaust heat regenerator Opens two outlets for concentrated and regenerated absorption liquid, and connects the lower absorption liquid outlet and the high-temperature regenerator by a first absorption liquid pipe with an absorption liquid pump interposed between them. An absorption refrigerator comprising an upper absorption liquid discharge port and an absorber connected by a second absorption liquid pipe.
JP2004323568A 2004-11-08 2004-11-08 Absorption refrigerator Expired - Fee Related JP4260099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004323568A JP4260099B2 (en) 2004-11-08 2004-11-08 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004323568A JP4260099B2 (en) 2004-11-08 2004-11-08 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2006132866A JP2006132866A (en) 2006-05-25
JP4260099B2 true JP4260099B2 (en) 2009-04-30

Family

ID=36726559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323568A Expired - Fee Related JP4260099B2 (en) 2004-11-08 2004-11-08 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4260099B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627754C1 (en) * 2016-09-20 2017-08-11 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Method of hydrocarbon gas treatment for transportation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627754C1 (en) * 2016-09-20 2017-08-11 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Method of hydrocarbon gas treatment for transportation

Also Published As

Publication number Publication date
JP2006132866A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP5210896B2 (en) Single double-effect absorption chiller / heater
JP2004257705A (en) Concentration device using absorption heat pump
JP3883838B2 (en) Absorption refrigerator
JP2011075180A (en) Absorption type refrigerating machine
WO2002018849A1 (en) Absorption refrigerating machine
JP2005009754A (en) Single/double effect absorption refrigerating machine, and its operation control method
JP5384072B2 (en) Absorption type water heater
KR102165443B1 (en) Absoption chiller
JP2002162131A (en) Absorptive waste heat recovering facility
JP4260099B2 (en) Absorption refrigerator
JP4148830B2 (en) Single double effect absorption refrigerator
KR101690303B1 (en) Triple effect absorption chiller
JP4553523B2 (en) Absorption refrigerator
JP3883894B2 (en) Absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
JP2000205691A (en) Absorption refrigerating machine
JP4315855B2 (en) Absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JP4241089B2 (en) Absorption heat pump device
JP3331363B2 (en) Absorption refrigerator
JP2002098435A (en) Absorption freezer
CN115371285B (en) Absorption heat exchange system
JP2003343939A (en) Absorption refrigerating machine
JP2010276252A (en) Absorption type refrigerating machine
JP4308076B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees