JP2005009754A - Single/double effect absorption refrigerating machine, and its operation control method - Google Patents

Single/double effect absorption refrigerating machine, and its operation control method Download PDF

Info

Publication number
JP2005009754A
JP2005009754A JP2003173599A JP2003173599A JP2005009754A JP 2005009754 A JP2005009754 A JP 2005009754A JP 2003173599 A JP2003173599 A JP 2003173599A JP 2003173599 A JP2003173599 A JP 2003173599A JP 2005009754 A JP2005009754 A JP 2005009754A
Authority
JP
Japan
Prior art keywords
heat source
regenerator
temperature
low
low heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003173599A
Other languages
Japanese (ja)
Other versions
JP4287705B2 (en
Inventor
Hirotsugu Ishino
裕嗣 石野
Keita Enjoji
慶太 円城寺
Shinichi Uekago
伸一 上篭
Toshiyuki Hoshino
俊之 星野
Kazutaka Irakai
数恭 伊良皆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Sanyo Commercial Service Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Sanyo Commercial Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tokyo Gas Co Ltd, Sanyo Commercial Service Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003173599A priority Critical patent/JP4287705B2/en
Priority to CNB2004100597080A priority patent/CN100343600C/en
Priority to KR1020040045596A priority patent/KR101046059B1/en
Publication of JP2005009754A publication Critical patent/JP2005009754A/en
Application granted granted Critical
Publication of JP4287705B2 publication Critical patent/JP4287705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/12Sorption machines, plants or systems, operating continuously, e.g. absorption type with resorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent heat loss by preventing self-flash of dilute absorbent flowing into a low heat source regenerator even when a heat source is not supplied to the low heat source regenerator. <P>SOLUTION: The single/double effect absorption refrigerating machine is composed so that a low heat source regenerator 9 side of a dilute absorbent pipe 15 connecting an absorber 2 and the low heat source regenerator 9 via a dilute absorbent pump P1, a low temperature heat exchanger 12, and a refrigerant drain heat recoverer 14, and a low heat source regenerator 9 side of an intermediate absorbent pipe 16 connecting the heat source regenerator 9 and a high temperature regenerator 5 via an intermediate absorbent pump P2 and a high temperature heat exchanger 13 are connected by a bypass pipe 17 interposed with a selector valve V1. In the absorption refrigerating machine, opening and closing of the selector valve V1 are controlled on the basis of a temperature of a heat source flowing into the low heat source regenerator 9 or discharged from the low heat source regenerator 9, and opening of the selector valve V1 is controlled on the basis of a temperature of brine flowing out of the evaporator 1 or discharged from the evaporator 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷凍機(吸収冷温水機を含む)に係わるものである。
【0002】
【従来の技術】
この種の吸収冷凍機としては、例えば図3に示したようにガスバーナ4で生成する燃焼熱を熱源として吸収液を加熱し冷媒を蒸発分離する高温再生器5、その高温再生器5から供給される冷媒蒸気を熱源として吸収液を加熱し冷媒を蒸発分離する二重効用再生器の低温再生器6、その低温再生器6に並設され、低温再生器6から供給される冷媒蒸気を凝縮する二重効用凝縮器の凝縮器7、コージェネレーション装置などから低熱源供給管28を介して供給される、例えば80℃程度の比較的低温度の温排水を熱源として吸収液を加熱し冷媒を蒸発分離する一重効用再生器の低熱源再生器9、その低熱源再生器9に並設され、低熱源再生器9から供給される冷媒蒸気を凝縮する一重効用凝縮器の凝縮器10、凝縮器7および凝縮器10から供給される冷媒液を蒸発させる蒸発器1、その蒸発器1で蒸発した冷媒蒸気を低温再生器6から供給される濃吸収液に吸収させる吸収器2、稀吸収液ポンプP1、中間吸収液ポンプP2、冷媒ポンプP4などを備えて構成される一重二重効用吸収冷凍機100Xが周知である(例えば特許文献1参照)。
【0003】
なお、図中12は低温熱交換器、13は高温熱交換器、26は図示しない熱負荷に冷熱または温熱を循環供給して冷暖房などを行うためのブライン管、27は冷却水管、28Aは低熱源供給管28に設けられたバイパス管、28Bは低熱源供給管28に設けられた三方弁である。
【0004】
【特許文献1】
特開平06−341729号公報(図1)
【0005】
【発明が解決しようとする課題】
上記一重二重効用吸収冷凍機においては、冷却水により冷却されている凝縮器に並設されて内部が低温度に保たれている低熱源再生器には、熱源の温排水が供給されていないときにも吸収器から稀吸収液が稀吸収液ポンプにより供給される。そして、低熱源再生器に流入する稀吸収液の温度は低熱源再生器内の飽和温度より高いため、自己フラッシュして温度が下がり、熱ロスが発生すると云った問題点があり、その解決が課題となっていた。
【0006】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するため、蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、冷媒ポンプ、稀吸収液ポンプ、中間吸収液ポンプなどを配管接続して構成する一重二重効用吸収冷凍機において、稀吸収液ポンプと低温熱交換器とが介在して吸収器と低熱源再生器とを接続した吸収液管の低熱源再生器側と、中間吸収液ポンプと高温熱交換器とが介在して低熱源再生器と高温再生器とを接続した吸収液管の低熱源再生器側とを、切替弁が介在する吸収液管により接続するようにした構成の一重二重効用吸収冷凍機と、
【0007】
前記構成の一重二重効用吸収冷凍機において、吸収液管に介在する切替弁の開閉を低熱源再生器に流入もしくは低熱源再生器から吐出した熱源の温度に基づいて制御するようにした第1の構成の運転制御方法と、吸収液管に介在する切替弁の弁開度を蒸発器に流入もしくは蒸発器から吐出したブラインの温度に基づいて制御するようにした第2の構成の運転制御方法とを、
提供するものである。
【0008】
【発明の実施の形態】
以下、本発明の一実施形態を図1、図2に基づいて詳細に説明する。なお、理解を容易にするため、図1、図2においても前記図3において説明した部分と同様の機能を有する部分には、同一の符号を付した。
【0009】
図1に例示した一重二重効用吸収冷凍機100は、蒸発器1、蒸発器1に並設された吸収器2、蒸発器1と吸収器2とを収納した蒸発器吸収器胴3、ガスバーナ4を備えた高温再生器5、高温再生器5から供給される冷媒蒸気を熱源とする低温再生器6、低温再生器6に並設された凝縮器7、低温再生器6と凝縮器7とを収納した低温再生器凝縮器胴8、温排水などを熱源とする低熱源再生器9、低熱源再生器9に並設された凝縮器10、低熱源再生器9と凝縮器10とを収納した低熱源再生器凝縮器胴11、低温熱交換器12、高温熱交換器13、冷媒ドレン熱回収器14、ブライン(例えば水)が流れるブライン管26、冷却水管27、低熱源供給管28、稀吸収液ポンプP1、中間吸収液ポンプP2、濃吸収液ポンプP3、冷媒ポンプP4、切替弁V1などを備えており、それらは図示したように配管接続されている。また、符号Cは、一重二重効用吸収冷凍機100の制御器である。
【0010】
すなわち、本発明の一重二重効用吸収冷凍機100においては、吸収器2の下部に形成された稀吸収液溜りと低熱源再生器9の気相部とを接続している稀吸収液管15には稀吸収液ポンプP1と、低温熱交換器12と、冷媒ドレン熱回収器14とが介在している。
【0011】
この場合の稀吸収液管15は、稀吸収液ポンプP1の吐出側、すなわち下流側は吸収器2の上部側に設けられた溶液冷却吸収器2Aを経由した後、低温熱交換器12が介在する稀吸収液管15Aと、冷媒ドレン熱回収器14が介在する稀吸収液管15Bとに分岐し、その後合流して低熱源再生器9に接続されている。
【0012】
また、低熱源再生器9の下部に形成された中間吸収液溜りと高温再生器5の気相部とを接続している中間吸収液管16には中間吸収液ポンプP2と高温熱交換器13とが介在し、中間吸収液管16の低熱源再生器9側、すなわち中間吸収液ポンプP2の上流側と、前記稀吸収液管15の低熱源再生器9側とは切替弁V1が介在するバイパス管17により接続されている。
【0013】
また、低温再生器6の下部に形成された吸収液溜りと溶液冷却吸収器2Aの気相部とを接続する濃吸収液管18には濃吸収液ポンプP3と低温熱交換器12とが介在し、濃吸収液ポンプP3の上流側と低温熱交換器12下流側とがバイパス管19により接続されている。
【0014】
また、冷媒ドレン熱回収器14には、高温再生器5で熱生成された冷媒蒸気が低温再生器6で吸収液を加熱再生して凝縮し、凝縮器7に導入される冷媒ドレンが冷媒ドレン管20を介して供給されるように設けられている。
【0015】
また、凝縮器7の下部側と蒸発器1、凝縮器10の下部側と蒸発器1とは、それぞれ冷媒管21、22により接続され、凝縮器7、10の冷媒液が重力の作用により流下して蒸発器1に流入するように設けられている。
【0016】
そして、バイパス管17に設けられた切替弁V1は、例えば低熱源供給管28の低熱源再生器9出口側に設けた温度センサS1が検出する温排水出口温度T1に基づいて、制御器Cにより例えば図2(A)に示すように制御される。
【0017】
すなわち、温度センサS1が検出する温排水出口温度T1が、例えば設定温度70℃より低いときには切替弁V1を開弁し、切替弁V1の開弁中に例えば設定温度75℃以上になると切替弁V1を閉弁するように制御器Cにより制御される。
【0018】
また、切替弁V1の弁開度は、制御器Cにより例えば図2(B)に示したようにも制御される。すなわち、ブライン管26の蒸発器1出口側に設けた温度センサS2が検出するブライン出口温度T2が、設定温度SP(例えば7℃)より例えば1℃以上低いときには切替弁V1を全開、すなわち弁開度100%とし、設定温度SPより例えば1℃以上高いときには切替弁V1を全閉、すなわち弁開度0%とし、温度センサS2がその間の温度を示したときには温度に比例する弁開度に制御してバイパス管17を通過する吸収液の量が制御される。
【0019】
したがって、本発明の一重二重効用吸収冷凍機100においては、低熱源再生器凝縮器胴11の低熱源再生器9には低熱源供給管28を介してコージェネレーションシステムなどから、通常は例えば80℃程度の温排水が常時流入するが、コージェネレーションシステムなどの立ち上げ時や停止時など、低熱源供給管28を介して低熱源再生器9に流入する温排水の温度が低く、あるいは温排水の流入がなく、したがって温度センサS1が検出する温排水の温度が設定温度70℃以下に低下すると、切替弁V1は開弁される。
【0020】
そのため、吸収器2から稀吸収液管15に吐出した稀吸収液は、一部は低温熱交換器12において濃吸収液と熱交換して温度上昇し、残部は冷媒ドレン熱回収器14において冷媒ドレンと熱交換して温度上昇し、その後は低熱源再生器凝縮器胴11内で凝縮器10に並設されているために冷却水管27を介して凝縮器10に流入する冷却水により冷却される低熱源再生器9を迂回し、高温再生器5に直接流入するので、低熱源供給管28を介して低熱源再生器9に供給する温排水の温度が低いときにも低熱源再生器9において自己フラッシュすることはなく、前記図3に示した従来の一重二重効用吸収冷凍機100Xのときのような熱ロスがなくなる。また、低熱源供給管28を介してコージェネレーションシステムなどに還流する温排水の温度が低下し過ぎることもない。
【0021】
また、本発明の一重二重効用吸収冷凍機100においては、切替弁V1の弁開度を温度センサS2が検出するブライン出口温度T2に基づいて制御器Cが制御するので、安定した冷熱提供が可能になる。
【0022】
さらに、本発明の一重二重効用吸収冷凍機100においては、切替弁V1の開閉制御、弁開度制御により、吸収器2から吐出した稀吸収液を低熱源再生器9に送液するか否かの選択を可能にするために、切替弁V1を備えたバイパス管17を設ける必要があったが、従来の一重二重効用吸収冷凍機100Xで低熱源供給管28に設けていたバイパス管28Aと、高価な三方弁28Bを省略することができたので、コストの削減も図れる。
【0023】
なお、本発明の一重二重効用吸収冷凍機100においては、ガスバーナ4で生成される燃焼排ガスが第1、第2の排熱回収器23、24を経由して排気されるように構成し、第1の排熱回収器23においては高温再生器5に流入する中間吸収液により燃焼排ガスが保有する排熱を回収し、第2の排熱回収器24においてガスバーナ4に供給される燃焼用空気により燃焼排ガスが保有する排熱を回収して、高温再生器5に流入する中間吸収液とガスバーナ4に供給される燃焼用空気の温度が上昇するので、ガスバーナ4で燃焼する燃料の消費量が抑えられる。
【0024】
本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0025】
例えば、吸収器2に設けた溶液冷却吸収器2Aは必ずしも設ける必要はない。また、冷却水管27は、冷却水が吸収器2、凝縮器7、10に分岐して流れるように構成することも可能である。
【0026】
また、温度センサS1は低熱源供給管28の低熱源再生器9入口側に設け、低熱源供給管28を介して低熱源再生器9に流入する温排水の温度を温度センサS1により検出し、その温度に基づいて制御器Cが切替弁V1の開閉を制御するように構成することも可能である。
【0027】
また、温度センサS2はブライン管26の蒸発器1入口側に設け、ブライン管26を介して蒸発器1に流入するブラインの温度を温度センサS2により検出し、その温度に基づいて制御器Cが切替弁V1の弁開度を制御するように構成することも可能である。
【0028】
【発明の効果】
以上説明したように本発明装置によれば、低熱源再生器の内部が低温度になっているときには、吸収器から吐出する稀吸収液は低熱源再生器を迂回し、高温再生器に直接流入させることができるので、稀吸収液が低熱源再生器において自己フラッシュすることがない。そのため、従来装置で問題となっていた熱ロスの発生が防止できるようになった。
【図面の簡単な説明】
【図1】本発明の実施形態を示す説明図である。
【図2】切替弁の制御例を示す説明図であり、(A)は低熱源再生器に供給する熱源の温度に基づいて開閉を制御する際の説明図、(B)は蒸発器で冷却して熱負荷に供給するブラインの温度に基づいて弁の開度を制御する際の説明図である。
【図3】従来技術を示す説明図である。
【符号の説明】
1 蒸発器
2 吸収器
2A 溶液冷却吸収器
3 蒸発器吸収器胴
4 ガスバーナ
5 高温再生器
6 低温再生器
7 凝縮器
8 低温再生器凝縮器胴
9 低熱源再生器
10 凝縮器
11 低熱源再生器凝縮器胴
12 低温熱交換器
13 高温熱交換器
14 冷媒ドレン熱回収器
15、15A、15B 稀吸収液管
16 中間吸収液管
17 バイパス管
18 濃吸収液管
19 バイパス管
20 冷媒ドレン管
21、22 冷媒管
23 第1の排熱回収器
24 第2の排熱回収器
26 ブライン管
27 冷却水管
28 低熱源供給管
28A バイパス管
28B 三方弁
C 制御器
P1 稀吸収液ポンプ
P2 中間吸収液ポンプ
P3 濃吸収液ポンプ
P4 冷媒ポンプ
V1 切替弁
S1、S2 温度センサ
100、100X 一重二重効用吸収冷凍機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigerator (including an absorption chiller / heater).
[0002]
[Prior art]
As this type of absorption refrigerator, for example, as shown in FIG. 3, a high-temperature regenerator 5 that heats the absorption liquid by using combustion heat generated by the gas burner 4 as a heat source and evaporates and separates the refrigerant is supplied from the high-temperature regenerator 5. The low-temperature regenerator 6 is a double-effect regenerator that heats the absorption liquid by using the refrigerant vapor as a heat source and evaporates and separates the refrigerant, and the refrigerant vapor supplied from the low-temperature regenerator 6 is condensed in parallel with the low-temperature regenerator 6. The absorption liquid is heated by using a relatively low temperature hot waste water of, for example, about 80 ° C. supplied from the condenser 7 of the double effect condenser, the cogeneration device, etc. via the low heat source supply pipe 28, and the refrigerant is evaporated. A low heat source regenerator 9 of a single effect regenerator to be separated, a condenser 10 of a single effect condenser which is provided in parallel to the low heat source regenerator 9 and condenses the refrigerant vapor supplied from the low heat source regenerator 9, a condenser 7 And supplied from condenser 10 An evaporator 1 for evaporating the refrigerant liquid to be evaporated, an absorber 2 for absorbing the refrigerant vapor evaporated in the evaporator 1 by the concentrated absorbent supplied from the low temperature regenerator 6, a rare absorbent pump P1, an intermediate absorbent pump P2, A single-double-effect absorption refrigerator 100X configured with a refrigerant pump P4 and the like is well known (see, for example, Patent Document 1).
[0003]
In the figure, 12 is a low-temperature heat exchanger, 13 is a high-temperature heat exchanger, 26 is a brine pipe for circulating and supplying cooling or heating to a heat load (not shown), 27 is a cooling water pipe, and 28A is low. A bypass pipe 28 </ b> B provided in the heat source supply pipe 28 is a three-way valve provided in the low heat source supply pipe 28.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 06-341729 (FIG. 1)
[0005]
[Problems to be solved by the invention]
In the single double-effect absorption refrigerator, the low temperature heat source regenerator that is arranged in parallel with the condenser cooled by the cooling water and is maintained at a low temperature is not supplied with hot waste water of the heat source. Sometimes, the rare absorbent is supplied from the absorber by the rare absorbent pump. And since the temperature of the rare absorbent flowing into the low heat source regenerator is higher than the saturation temperature in the low heat source regenerator, there is a problem that the temperature is reduced by self-flashing and heat loss occurs, and the solution is It was an issue.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems of the prior art, the present invention provides an evaporator absorber cylinder containing an evaporator and an absorber, a low-temperature regenerator condenser cylinder containing a low-temperature regenerator and a condenser, a hot waste water, etc. The low heat source regenerator and the condenser housing the low heat source regenerator and the condenser, the high temperature regenerator, the low temperature heat exchanger, the high temperature heat exchanger, the refrigerant pump, the rare absorption liquid pump, the intermediate absorption liquid pump, etc. In the single double effect absorption refrigerator configured to be connected, the low heat source regenerator side of the absorption liquid pipe connecting the absorber and the low heat source regenerator with the rare absorption liquid pump and the low temperature heat exchanger interposed therebetween, Connect the low heat source regenerator side of the absorption liquid pipe connecting the low heat source regenerator and the high temperature regenerator via the intermediate absorption liquid pump and the high temperature heat exchanger with the absorption liquid pipe interposing the switching valve. A single-double-effect absorption chiller with a configured structure;
[0007]
In the single double-effect absorption refrigerator having the above-described configuration, the opening and closing of the switching valve interposed in the absorption liquid pipe is controlled based on the temperature of the heat source flowing into the low heat source regenerator or discharged from the low heat source regenerator. And an operation control method of the second configuration in which the opening degree of the switching valve interposed in the absorption liquid pipe is controlled based on the temperature of the brine flowing into or discharged from the evaporator. And
It is to provide.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. In order to facilitate understanding, in FIGS. 1 and 2, parts having the same functions as those described in FIG.
[0009]
A single double-effect absorption refrigerator 100 illustrated in FIG. 1 includes an evaporator 1, an absorber 2 provided in parallel with the evaporator 1, an evaporator absorber barrel 3 containing the evaporator 1 and the absorber 2, and a gas burner. 4, a low-temperature regenerator 6 using the refrigerant vapor supplied from the high-temperature regenerator 5 as a heat source, a condenser 7 arranged in parallel with the low-temperature regenerator 6, the low-temperature regenerator 6 and the condenser 7, The low-temperature regenerator condenser body 8 containing the heat source, the low heat source regenerator 9 that uses hot wastewater or the like as a heat source, the condenser 10 arranged in parallel with the low heat source regenerator 9, and the low heat source regenerator 9 and the condenser 10 are accommodated. The low heat source regenerator condenser body 11, the low temperature heat exchanger 12, the high temperature heat exchanger 13, the refrigerant drain heat recovery unit 14, the brine pipe 26 through which brine (for example, water) flows, the cooling water pipe 27, the low heat source supply pipe 28, Rare absorbent pump P1, intermediate absorbent pump P2, concentrated absorbent pump P3, refrigerant pump 4, has a like switching valve V1, which is connected by piping as shown. Moreover, the code | symbol C is a controller of the single double effect absorption refrigerator 100. FIG.
[0010]
That is, in the single double effect absorption refrigerator 100 of the present invention, the rare absorption liquid pipe 15 connecting the rare absorption liquid reservoir formed at the lower part of the absorber 2 and the gas phase part of the low heat source regenerator 9. A rare absorbing liquid pump P1, a low-temperature heat exchanger 12, and a refrigerant drain heat recovery unit 14 are interposed.
[0011]
In this case, the rare absorption liquid pipe 15 is connected to the discharge side of the rare absorption liquid pump P1, that is, the downstream side via the solution cooling absorber 2A provided on the upper side of the absorber 2, and then the low temperature heat exchanger 12 is interposed. Branching into a rare absorption liquid pipe 15A and a rare absorption liquid pipe 15B in which the refrigerant drain heat recovery unit 14 is interposed, and then merged and connected to the low heat source regenerator 9.
[0012]
An intermediate absorption liquid pipe 16 connecting the intermediate absorption liquid reservoir formed in the lower part of the low heat source regenerator 9 and the gas phase part of the high temperature regenerator 5 is connected to the intermediate absorption liquid pump P2 and the high temperature heat exchanger 13. A switching valve V1 is interposed between the intermediate absorption liquid pipe 16 on the low heat source regenerator 9 side, that is, on the upstream side of the intermediate absorption liquid pump P2 and the rare absorption liquid pipe 15 on the low heat source regenerator 9 side. They are connected by a bypass pipe 17.
[0013]
Further, a concentrated absorbent pump P3 and a low-temperature heat exchanger 12 are interposed in the concentrated absorbent pipe 18 that connects the absorbent pool formed in the lower part of the low temperature regenerator 6 and the gas phase portion of the solution cooled absorber 2A. The upstream side of the concentrated absorbent pump P3 and the downstream side of the low-temperature heat exchanger 12 are connected by a bypass pipe 19.
[0014]
Further, in the refrigerant drain heat recovery unit 14, the refrigerant vapor generated by the high temperature regenerator 5 condenses by heating and regenerating the absorption liquid in the low temperature regenerator 6, and the refrigerant drain introduced into the condenser 7 is the refrigerant drain. It is provided to be supplied via the pipe 20.
[0015]
The lower side of the condenser 7 and the evaporator 1, and the lower side of the condenser 10 and the evaporator 1 are connected by refrigerant pipes 21 and 22, respectively, and the refrigerant liquid in the condensers 7 and 10 flows down by the action of gravity. Then, it is provided to flow into the evaporator 1.
[0016]
And the switching valve V1 provided in the bypass pipe 17 is controlled by the controller C based on the temperature drain outlet temperature T1 detected by the temperature sensor S1 provided on the outlet side of the low heat source regenerator 9 of the low heat source supply pipe 28, for example. For example, the control is performed as shown in FIG.
[0017]
That is, when the temperature drainage outlet temperature T1 detected by the temperature sensor S1 is lower than, for example, a set temperature of 70 ° C., the switching valve V1 is opened, and when the switching valve V1 is opened, for example, when the set temperature is 75 ° C. or higher, the switching valve V1 is opened. Is controlled by the controller C so as to close the valve.
[0018]
Further, the opening degree of the switching valve V1 is also controlled by the controller C as shown in FIG. That is, when the brine outlet temperature T2 detected by the temperature sensor S2 provided on the outlet side of the evaporator 1 of the brine pipe 26 is lower than the set temperature SP (eg, 7 ° C.) by 1 ° C. or more, for example, the switching valve V1 is fully opened. When the temperature is 100%, the switching valve V1 is fully closed when the temperature is higher than the set temperature SP by, for example, 1 ° C., that is, the valve opening is 0%, and when the temperature sensor S2 indicates the temperature in between, the valve opening is proportional to the temperature. Thus, the amount of absorption liquid passing through the bypass pipe 17 is controlled.
[0019]
Therefore, in the single double effect absorption refrigerator 100 of the present invention, the low heat source regenerator 9 of the low heat source regenerator condenser body 11 is usually supplied from the cogeneration system or the like via the low heat source supply pipe 28, for example, 80 Although warm wastewater of about 0 ° C always flows in, the temperature of the warm wastewater flowing into the low heat source regenerator 9 through the low heat source supply pipe 28 is low or the warm wastewater, such as when the cogeneration system is started up or stopped. Therefore, when the temperature of the warm waste water detected by the temperature sensor S1 falls below the set temperature of 70 ° C., the switching valve V1 is opened.
[0020]
Therefore, a part of the rare absorbent discharged from the absorber 2 to the rare absorbent pipe 15 is heat-exchanged with the concentrated absorbent in the low-temperature heat exchanger 12 and the temperature rises, and the remainder is refrigerant in the refrigerant drain heat recovery unit 14. The temperature is increased by exchanging heat with the drain, and thereafter, since it is arranged in parallel with the condenser 10 in the low heat source regenerator condenser body 11, it is cooled by the cooling water flowing into the condenser 10 through the cooling water pipe 27. The low heat source regenerator 9 is bypassed and directly flows into the high temperature regenerator 5, so that the low heat source regenerator 9 can be used even when the temperature of the hot wastewater supplied to the low heat source regenerator 9 through the low heat source supply pipe 28 is low. In FIG. 3, the self-flash does not occur, and the heat loss as in the conventional single-double-effect absorption refrigerator 100X shown in FIG. 3 is eliminated. In addition, the temperature of the warm waste water that returns to the cogeneration system or the like via the low heat source supply pipe 28 does not drop too much.
[0021]
Further, in the single double-effect absorption refrigerator 100 of the present invention, the controller C controls the valve opening degree of the switching valve V1 based on the brine outlet temperature T2 detected by the temperature sensor S2, so that stable cooling can be provided. It becomes possible.
[0022]
Further, in the single double-effect absorption refrigerator 100 of the present invention, whether or not the rare absorbent discharged from the absorber 2 is sent to the low heat source regenerator 9 by opening / closing control and valve opening control of the switching valve V1. In order to make it possible to select the bypass pipe 17 provided with the switching valve V1, the bypass pipe 28A provided in the low heat source supply pipe 28 in the conventional single double effect absorption refrigerator 100X. Since the expensive three-way valve 28B can be omitted, the cost can be reduced.
[0023]
In the single double-effect absorption refrigerator 100 of the present invention, the combustion exhaust gas generated by the gas burner 4 is configured to be exhausted via the first and second exhaust heat recovery units 23 and 24. In the first exhaust heat recovery unit 23, the exhaust heat retained in the combustion exhaust gas is recovered by the intermediate absorption liquid flowing into the high temperature regenerator 5, and the combustion air supplied to the gas burner 4 in the second exhaust heat recovery unit 24. The exhaust heat held by the combustion exhaust gas is recovered by this, and the temperature of the intermediate absorption liquid flowing into the high-temperature regenerator 5 and the combustion air supplied to the gas burner 4 rise, so that the amount of fuel consumed by the gas burner 4 is reduced. It can be suppressed.
[0024]
Since the present invention is not limited to the above-described embodiment, various modifications can be made without departing from the spirit described in the claims.
[0025]
For example, the solution cooling absorber 2A provided in the absorber 2 is not necessarily provided. The cooling water pipe 27 can also be configured such that the cooling water branches and flows to the absorber 2 and the condensers 7 and 10.
[0026]
The temperature sensor S1 is provided on the low heat source regenerator 9 inlet side of the low heat source supply pipe 28, and the temperature sensor S1 detects the temperature of the hot wastewater flowing into the low heat source regenerator 9 through the low heat source supply pipe 28. It is also possible to configure the controller C to control the opening / closing of the switching valve V1 based on the temperature.
[0027]
The temperature sensor S2 is provided on the inlet side of the evaporator 1 of the brine pipe 26, the temperature of the brine flowing into the evaporator 1 through the brine pipe 26 is detected by the temperature sensor S2, and the controller C is based on the temperature. It is also possible to control the valve opening degree of the switching valve V1.
[0028]
【The invention's effect】
As described above, according to the apparatus of the present invention, when the inside of the low heat source regenerator is at a low temperature, the rare absorbent discharged from the absorber bypasses the low heat source regenerator and flows directly into the high temperature regenerator. Therefore, the rare absorption liquid does not self-flash in the low heat source regenerator. As a result, it has become possible to prevent the occurrence of heat loss, which has been a problem with conventional devices.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an embodiment of the present invention.
FIGS. 2A and 2B are explanatory diagrams showing a control example of a switching valve, where FIG. 2A is an explanatory diagram when opening and closing is controlled based on the temperature of a heat source supplied to a low heat source regenerator, and FIG. It is explanatory drawing at the time of controlling the opening degree of a valve based on the temperature of the brine supplied to a heat load.
FIG. 3 is an explanatory diagram showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 2A Solution cooling absorber 3 Evaporator absorber cylinder 4 Gas burner 5 High temperature regenerator 6 Low temperature regenerator 7 Condenser 8 Low temperature regenerator condenser cylinder 9 Low heat source regenerator 10 Condenser 11 Low heat source regenerator Condenser body 12 Low temperature heat exchanger 13 High temperature heat exchanger 14 Refrigerant drain heat recovery unit 15, 15A, 15B Rare absorption liquid pipe 16 Intermediate absorption liquid pipe 17 Bypass pipe 18 Concentrated absorption liquid pipe 19 Bypass pipe 20 Refrigerant drain pipe 21, 22 refrigerant pipe 23 first exhaust heat recovery unit 24 second exhaust heat recovery unit 26 brine pipe 27 cooling water pipe 28 low heat source supply pipe 28A bypass pipe 28B three-way valve C controller P1 rare absorption liquid pump P2 intermediate absorption liquid pump P3 Concentrated liquid pump P4 Refrigerant pump V1 Switching valve S1, S2 Temperature sensor 100, 100X Single double effect absorption refrigerator

Claims (3)

蒸発器と吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮器とを収納した低温再生器凝縮器胴、温排水などを熱源とする低熱源再生器と凝縮器とを収納した低熱源再生器凝縮器胴、高温再生器、低温熱交換器、高温熱交換器、冷媒ポンプ、稀吸収液ポンプ、中間吸収液ポンプなどを配管接続して構成する一重二重効用吸収冷凍機において、稀吸収液ポンプと低温熱交換器とが介在して吸収器と低熱源再生器とを接続した吸収液管の低熱源再生器側と、中間吸収液ポンプと高温熱交換器とが介在して低熱源再生器と高温再生器とを接続した吸収液管の低熱源再生器側とを、切替弁が介在する吸収液管により接続したことを特徴とする一重二重効用吸収冷凍機。Evaporator absorber cylinder containing the evaporator and absorber, low temperature regenerator condenser cylinder containing the low temperature regenerator and condenser, low heat source regenerator and condenser using the hot drain as a heat source. Low heat source regenerator Condenser body, high temperature regenerator, low temperature heat exchanger, high temperature heat exchanger, refrigerant pump, rare absorption liquid pump, intermediate absorption liquid pump, etc. The low heat source regenerator side of the absorption liquid pipe connecting the absorber and the low heat source regenerator with the rare absorption liquid pump and the low temperature heat exchanger interposed, and the intermediate absorption liquid pump and the high temperature heat exchanger intervening. A single double-effect absorption refrigerator characterized by connecting an absorption liquid pipe connecting a low heat source regenerator and a high temperature regenerator to the low heat source regenerator side by an absorption liquid pipe interposing a switching valve. 請求項1記載の一重二重効用吸収冷凍機において、吸収液管に介在する切替弁の開閉を、低熱源再生器に流入もしくは低熱源再生器から吐出した熱源の温度に基づいて制御することを特徴とする運転制御方法。The single double effect absorption refrigerator according to claim 1, wherein opening and closing of the switching valve interposed in the absorption liquid pipe is controlled based on the temperature of the heat source flowing into the low heat source regenerator or discharged from the low heat source regenerator. A characteristic operation control method. 請求項1記載の一重二重効用吸収冷凍機において、吸収液管に介在する切替弁の弁開度を、蒸発器に流入もしくは蒸発器から吐出したブラインの温度に基づいて制御することを特徴とする運転制御方法。The single double-effect absorption refrigerator according to claim 1, wherein the opening degree of the switching valve interposed in the absorption liquid pipe is controlled based on the temperature of the brine flowing into or discharged from the evaporator. Operation control method to do.
JP2003173599A 2003-06-18 2003-06-18 Single double effect absorption refrigerator and operation control method thereof Expired - Fee Related JP4287705B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003173599A JP4287705B2 (en) 2003-06-18 2003-06-18 Single double effect absorption refrigerator and operation control method thereof
CNB2004100597080A CN100343600C (en) 2003-06-18 2004-06-17 Single/double effect absorption refrigerating machine, and its operation control method
KR1020040045596A KR101046059B1 (en) 2003-06-18 2004-06-18 Dual-effect Absorption Chiller in Japan and Its Operation Control Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173599A JP4287705B2 (en) 2003-06-18 2003-06-18 Single double effect absorption refrigerator and operation control method thereof

Publications (2)

Publication Number Publication Date
JP2005009754A true JP2005009754A (en) 2005-01-13
JP4287705B2 JP4287705B2 (en) 2009-07-01

Family

ID=34097374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173599A Expired - Fee Related JP4287705B2 (en) 2003-06-18 2003-06-18 Single double effect absorption refrigerator and operation control method thereof

Country Status (3)

Country Link
JP (1) JP4287705B2 (en)
KR (1) KR101046059B1 (en)
CN (1) CN100343600C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032706A (en) * 2009-09-30 2011-04-27 三洋电机株式会社 Absorbing type refrigerator
CN102563953A (en) * 2012-02-03 2012-07-11 李华玉 Three-generation-three-absorption system and class III absorption heat pump

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606255B2 (en) * 2005-06-09 2011-01-05 三洋電機株式会社 Operation method of single double effect absorption refrigerator
KR100821072B1 (en) * 2007-01-17 2008-04-08 엘에스전선 주식회사 Absorption chiller
US8978397B2 (en) * 2009-04-24 2015-03-17 Thermax Limited Absorption heat pump employing a high/low pressure evaporator/absorber unit a heat recovery unit
JP2010276252A (en) * 2009-05-28 2010-12-09 Sanyo Electric Co Ltd Absorption type refrigerating machine
CN101825370A (en) * 2009-09-19 2010-09-08 李华玉 Backheating type double-effect and multi-effect second-class absorption heat pump
CN102287961B (en) * 2011-04-29 2013-09-18 李华玉 Three-generating-three-absorbing system and third-kind absorption-type heat pump
CN102425878B (en) * 2011-11-01 2013-11-20 李华玉 Third type absorption-generation system and regenerative third type absorption heat pump
KR101377690B1 (en) 2012-11-14 2014-03-26 (주) 월드에너지 High efficiency low temperature hot water driven two-lift type absorbtion refrigerator using heat exchanger of absorbed heat
US10018383B2 (en) 2016-05-13 2018-07-10 Samjung Tech Co., Ltd. Triple effect absorption chiller
KR101690303B1 (en) * 2016-05-13 2016-12-27 삼중테크 주식회사 Triple effect absorption chiller
CN109269150B (en) * 2017-07-17 2021-09-28 荏原冷热系统株式会社 Absorption heat pump

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474350U (en) * 1977-11-05 1979-05-26
JPS5847972A (en) * 1981-09-17 1983-03-19 三洋電機株式会社 Single and double effect absorption refrigerator
JP3363518B2 (en) * 1993-06-01 2003-01-08 三洋電機株式会社 Operation control method of single double effect absorption refrigerator
JPH07324839A (en) * 1994-05-30 1995-12-12 Sanyo Electric Co Ltd Single and double effect absorption hot and chilled water generator
JP2000241039A (en) * 1999-02-19 2000-09-08 Sanyo Electric Co Ltd Controller for absorption refrigerating machine
JP2001133067A (en) * 1999-11-01 2001-05-18 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine
JP2001311569A (en) * 2000-04-28 2001-11-09 Sanyo Electric Co Ltd Absorption type freezer
JP3832191B2 (en) * 2000-05-10 2006-10-11 株式会社日立製作所 Absorption refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032706A (en) * 2009-09-30 2011-04-27 三洋电机株式会社 Absorbing type refrigerator
CN102563953A (en) * 2012-02-03 2012-07-11 李华玉 Three-generation-three-absorption system and class III absorption heat pump
CN102563953B (en) * 2012-02-03 2014-07-30 李华玉 Three-generation-three-absorption system and class III absorption heat pump

Also Published As

Publication number Publication date
CN1624400A (en) 2005-06-08
JP4287705B2 (en) 2009-07-01
KR20040111171A (en) 2004-12-31
CN100343600C (en) 2007-10-17
KR101046059B1 (en) 2011-07-01

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP2006343042A (en) Operating method for single/double effect absorption refrigerating machine
JP4148830B2 (en) Single double effect absorption refrigerator
JP4390267B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP3883894B2 (en) Absorption refrigerator
JP4107582B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP6364238B2 (en) Absorption type water heater
JP3851204B2 (en) Absorption refrigerator
JP4308076B2 (en) Absorption refrigerator
JP4326478B2 (en) Single double-effect absorption refrigerator
JP3754206B2 (en) Single double-effect absorption chiller / heater
JP2005121332A (en) Double effect absorption type water cooling and heating machine with exhaust heat recovery device
JP7054855B2 (en) Absorption chiller
JP4260095B2 (en) Single double effect absorption refrigerator
JP2005282968A (en) Absorption type refrigerating machine
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP2895974B2 (en) Absorption refrigerator
JP3735745B2 (en) Cooling operation control method for absorption air conditioner
JPH0443264A (en) Absorption type heat source device
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JP2005326089A (en) Absorption refrigerating machine
JP2004270968A (en) Absorption type heat source machine
JP2002349993A (en) Absorption water cooling and heating system
JPH0577947B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees