JP2000241039A - Controller for absorption refrigerating machine - Google Patents

Controller for absorption refrigerating machine

Info

Publication number
JP2000241039A
JP2000241039A JP11042391A JP4239199A JP2000241039A JP 2000241039 A JP2000241039 A JP 2000241039A JP 11042391 A JP11042391 A JP 11042391A JP 4239199 A JP4239199 A JP 4239199A JP 2000241039 A JP2000241039 A JP 2000241039A
Authority
JP
Japan
Prior art keywords
solution
concentration
heat exchanger
low
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11042391A
Other languages
Japanese (ja)
Inventor
Yasuharu Kuroki
靖治 黒木
Naoki Ko
直樹 広
Yoshio Ozawa
芳男 小澤
Masahiro Furukawa
雅裕 古川
Toshihiro Yamada
敏宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11042391A priority Critical patent/JP2000241039A/en
Publication of JP2000241039A publication Critical patent/JP2000241039A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a parallel solution circulation system double effect absorption refrigerating machine in which a coefficient of performance can be increased as high as possible while avoiding crystallization. SOLUTION: The controller for absorption refrigerating machine has a mechanism for regulating the ratio of flow rate between a solution being distributed from a low temperature heat exchanger 5 to a high temperature heat exchanger 4 and a solution being distributed from the low temperature heat exchanger 5 to a low temperature regenerator 12. Circulation of solution is controlled such that the concentration of a high concentration solution flowing from the low temperature heat exchanger 5 toward an absorber 22 has a specified crystal margin for the crystallization concentration corresponding to the solution temperature and the distribution ratio of solution is regulated depending on the refrigeration load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二重効用型吸収冷凍
機に関し、特に、吸収器から供給される低濃度の溶液
を、低温熱交換器及び高温熱交換器を経て高温再生器へ
流入させると共に、低温熱交換器から流出する溶液の一
部を低温再生器へ流入させる並列溶液循環方式の二重効
用型吸収冷凍機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-effect absorption refrigerator, and more particularly to a low-concentration solution supplied from an absorber which flows into a high-temperature regenerator through a low-temperature heat exchanger and a high-temperature heat exchanger. Also, the present invention relates to a parallel solution circulation type double effect absorption refrigerator in which a part of a solution flowing out of a low temperature heat exchanger flows into a low temperature regenerator.

【0002】[0002]

【従来の技術】二重効用型吸収冷凍機は、図1に示す如
く、凝縮器(11)及び低温再生器(12)からなる上胴、蒸発
器(21)及び吸収器(22)からなる下胴、バーナ(31)を内蔵
した高温再生器(3)、高温熱交換器(4)、低温熱交換器
(5)等を相互に配管接続し、溶液ポンプ(6)によって、
溶液(吸収液)を高温再生器(3)、低温再生器(12)及び吸
収器(22)の間で循環させ、冷凍サイクルを実現するもの
である。
2. Description of the Related Art As shown in FIG. 1, a double effect absorption refrigerator comprises an upper body comprising a condenser (11) and a low temperature regenerator (12), an evaporator (21) and an absorber (22). Lower body, high temperature regenerator (3) with built-in burner (31), high temperature heat exchanger (4), low temperature heat exchanger
(5), etc. are connected to each other by piping, and the solution pump (6)
The solution (absorbent) is circulated between the high temperature regenerator (3), the low temperature regenerator (12) and the absorber (22) to realize a refrigeration cycle.

【0003】ここで、図示の如く、吸収器(22)から供給
される低濃度の溶液を、低温熱交換器(5)及び高温熱交
換器(4)を経て高温再生器(3)へ流入させると共に、低
温熱交換器(5)から流出する溶液の一部を低温再生器(1
2)へ流入させる一方、高温再生器(3)から高温熱交換器
(4)を経て供給される高濃度の溶液は、低温再生器(12)
から流出する溶液と共に、低温熱交換器(5)を経て吸収
器(22)へ流入させる並列溶液循環方式の二重効用型吸収
冷凍機が知られている。
Here, as shown in the figure, a low-concentration solution supplied from an absorber (22) flows into a high-temperature regenerator (3) through a low-temperature heat exchanger (5) and a high-temperature heat exchanger (4). At the same time, a part of the solution flowing out of the low-temperature heat exchanger (5) is
While flowing into 2), high-temperature heat exchanger (3)
The high-concentration solution supplied via (4) is supplied to the low-temperature regenerator (12)
There is known a double solution absorption refrigerator of a parallel solution circulation type in which a solution flowing out of a chiller flows into an absorber (22) through a low-temperature heat exchanger (5).

【0004】ところで、吸収冷凍機は、一般に、冷凍機
内を循環する溶液の濃度が高い方が成績係数が良くなる
が、溶液濃度が高くなると晶析の危険性が増大すること
になる。そこで、晶析を回避すると共に、出来るだけ高
い成績係数を確保するために、最も晶析の危険性が高い
箇所において溶液濃度及び温度を監視し、この溶液濃度
及び温度が、結晶曲線に対して常にある程度の余裕を保
つように、溶液循環量の制御を行なう必要がある。
The absorption chiller generally has a higher coefficient of performance when the concentration of the solution circulating in the refrigerator is higher. However, as the solution concentration increases, the risk of crystallization increases. Therefore, in order to avoid crystallization and to secure the highest possible coefficient of performance, the solution concentration and temperature are monitored at the places where the risk of crystallization is highest. It is necessary to control the amount of circulating solution so as to always keep a certain margin.

【0005】[0005]

【発明が解決しようとする課題】並列溶液循環方式の二
重効用型吸収冷凍機においては、低温熱交換器(5)から
吸収器(22)へ向けて流出する溶液が晶析する虞れが高い
ため、該低温熱交換器(5)の出口(以下、低温熱交換器
管外出口という)の溶液の濃度及び温度を監視し、この
溶液濃度及び温度が、結晶曲線に対して常にある程度の
余裕を保つように、溶液循環量の制御を行なう必要があ
る。
In the double-effect absorption refrigerator of the parallel solution circulation system, there is a possibility that the solution flowing out from the low-temperature heat exchanger (5) to the absorber (22) is crystallized. Since the temperature is high, the concentration and temperature of the solution at the outlet of the low-temperature heat exchanger (5) (hereinafter referred to as the low-temperature heat exchanger outer tube outlet) are monitored. It is necessary to control the solution circulation amount so as to keep a margin.

【0006】このとき、並列溶液循環方式の吸収冷凍機
においては、高温熱交換器(4)から低温熱交換器(5)へ
向けて流出する溶液、即ち、高温熱交換器管外出口の溶
液の晶析についても、注意を払う必要がある。晶析の危
険性を小さくするためには、低温熱交換器(5)から高温
熱交換器(4)へ分配される溶液の流量に対し、低温熱交
換器(5)から低温再生器(12)へ分配される溶液の流量の
比(以下、溶液分配比という)を小さく設定すれば良い
が、これによって成績係数が小さくなる。逆に、溶液分
配比を大きく設定すると、成績係数は大きくなるが、晶
析の危険性が増大する。このように、成績係数と晶析の
関係において、溶液分配比を如何に設定するかが問題と
なる。
At this time, in the absorption refrigerator of the parallel solution circulation system, the solution flowing out of the high-temperature heat exchanger (4) to the low-temperature heat exchanger (5), that is, the solution at the outlet of the high-temperature heat exchanger tube. Attention must also be paid to the crystallization of. In order to reduce the risk of crystallization, the flow rate of the solution distributed from the low-temperature heat exchanger (5) to the high-temperature heat exchanger (4) should not be changed from the low-temperature heat exchanger (5) to the low-temperature regenerator (12). ) May be set to a small ratio (hereinafter, referred to as a solution distribution ratio) of the solution to be distributed, but this will lower the coefficient of performance. Conversely, when the solution distribution ratio is set large, the coefficient of performance increases, but the risk of crystallization increases. Thus, in the relationship between the coefficient of performance and the crystallization, how to set the solution distribution ratio becomes a problem.

【0007】又、晶析の危険性を小さくするためには、
低温熱交換器管外出口の溶液の濃度余裕値を大きくすれ
ば良いが、これによって成績係数が小さくなる。逆に、
低温熱交換器管外出口溶液の濃度余裕値を小さくする
と、成績係数は大きくなるが、晶析の危険性が増大す
る。このように、成績係数と晶析との関係において、濃
度余裕値を如何に設定するかが問題となる。
In order to reduce the risk of crystallization,
It is sufficient to increase the margin of solution concentration at the outlet of the low-temperature heat exchanger tube, but this reduces the coefficient of performance. vice versa,
When the concentration margin value of the solution outside the low temperature heat exchanger tube is reduced, the coefficient of performance increases, but the risk of crystallization increases. Thus, in the relationship between the coefficient of performance and crystallization, how to set the concentration margin value becomes a problem.

【0008】本発明の目的は、並列溶液循環方式の二重
効用型吸収冷凍機において、晶析を回避しつつ、高い成
績係数を得ることが出来る制御装置を提供することであ
る。
It is an object of the present invention to provide a control device capable of obtaining a high coefficient of performance while avoiding crystallization in a double-effect absorption refrigerator of a parallel solution circulation system.

【0009】[0009]

【課題を解決する為の手段】図4は、並列溶液循環方式
の二重効用型吸収冷凍機において、低温熱交換器管外出
口の溶液の濃度余裕値が冷凍負荷に拘わらず一定となる
ように溶液循環量制御を行なったときの、冷凍負荷と成
績係数との関係を、溶液分配比をパラメータとして表わ
したものである。図示の如く、溶液分配比が大きい方が
全般的に成績係数が高くなっているが、冷凍負荷の小さ
な範囲では、溶液分配比による成績係数の差は非常に小
さくなっている。
FIG. 4 shows a parallel solution circulation type double effect absorption refrigerating machine in which the concentration margin value of the solution at the outlet of the low temperature heat exchanger tube is constant irrespective of the refrigeration load. The relationship between the refrigeration load and the coefficient of performance when the solution circulation amount is controlled is expressed using the solution distribution ratio as a parameter. As shown in the drawing, the coefficient of performance generally increases as the solution distribution ratio increases, but the difference in the coefficient of performance due to the solution distribution ratio is very small in a small range of the refrigeration load.

【0010】これは次の理由による。即ち、成績係数
は、高温再生器に流入する溶液を飽和温度まで温める顕
熱として消費される熱量の影響が大きい。従って、冷凍
負荷が同じであれば、通常、高温再生器への溶液流入量
が少ない方が成績係数は大きくなる。溶液分配比が異な
れば、当然、高温再生器への溶液流入量が違ってくるの
で、成績係数にも差が生じてくる。但し、冷凍負荷が小
さいとき、全体の溶液循環量が少なくなるので、溶液分
配比の違いによる高温再生器への流入量の差は、冷凍負
荷が大きいときのそれに比べて小さくなる。これによっ
て、成績係数の差も小さくなってくるのである。
This is for the following reason. That is, the coefficient of performance is greatly affected by the amount of heat consumed as sensible heat for warming the solution flowing into the high-temperature regenerator to the saturation temperature. Therefore, if the refrigeration load is the same, the coefficient of performance generally increases as the amount of solution flowing into the high-temperature regenerator decreases. If the solution distribution ratio is different, the amount of the solution flowing into the high-temperature regenerator naturally differs, so that the coefficient of performance also differs. However, when the refrigeration load is small, the entire solution circulation amount is small, so that the difference in the amount of inflow into the high-temperature regenerator due to the difference in the solution distribution ratio is smaller than that when the refrigeration load is large. As a result, the difference in the coefficient of performance becomes smaller.

【0011】又図5は、図4と同じ制御を行なったとき
の低温熱交換器管外出口及び高温熱交換器出口の濃度及
び温度をプロットしたものである。低温再生器側の溶液
分配比が小さいとき、高温熱交換器管外出口の溶液の濃
度及び温度は、結晶線から安全側へ移動し、晶析の危険
性が小さくなっている。
FIG. 5 is a plot of the concentration and the temperature at the outlet of the low-temperature heat exchanger and at the outlet of the high-temperature heat exchanger when the same control as in FIG. 4 is performed. When the solution distribution ratio on the low-temperature regenerator side is small, the concentration and temperature of the solution at the outlet of the high-temperature heat exchanger tube move from the crystal line to the safe side, and the risk of crystallization is reduced.

【0012】以上のことから、低温再生器側の溶液分配
比を、冷凍負荷の大きいときは大きく、冷凍負荷の小さ
いときは小さく設定する。即ち、負荷の変化に伴って、
図6に太線で示すように溶液の濃度及び温度が推移する
ようにする。これによって、図7に太線で示すように、
冷凍負荷全般に高い成績係数を確保することが出来ると
共に、低負荷時には、晶析の危険性を抑えることが可能
となる。
From the above, the solution distribution ratio on the low-temperature regenerator side is set to be large when the refrigeration load is large, and to be small when the refrigeration load is small. That is, as the load changes,
As shown by the thick line in FIG. 6, the concentration and the temperature of the solution are changed. As a result, as shown by the thick line in FIG.
A high coefficient of performance can be ensured over the entire refrigeration load, and the risk of crystallization can be suppressed at low loads.

【0013】本発明に係る並列溶液循環方式の二重効用
型吸収冷凍機においては、低温熱交換器(5)から高温熱
交換器(4)へ分配される溶液の流量と低温熱交換器(5)
から低温再生器(12)へ分配される溶液の流量との比を調
整するための溶液分配比調整機構を装備して、低温熱交
換器(5)から吸収器(22)へ向けて流出する高濃度の溶液
の濃度が、該溶液の温度に相当する晶析濃度に対して一
定の結晶余裕を持つように、溶液循環量を制御すると共
に、冷凍負荷に応じて溶液分配比を調整する。
In the double-effect absorption refrigerator of the parallel solution circulation type according to the present invention, the flow rate of the solution distributed from the low-temperature heat exchanger (5) to the high-temperature heat exchanger (4) and the low-temperature heat exchanger ( 5)
Equipped with a solution distribution ratio adjusting mechanism for adjusting the ratio of the flow rate of the solution distributed to the low-temperature regenerator (12) from the low-temperature heat exchanger (5) to the absorber (22) The circulation amount of the solution is controlled and the solution distribution ratio is adjusted according to the refrigeration load so that the concentration of the high-concentration solution has a certain crystallization margin with respect to the crystallization concentration corresponding to the temperature of the solution.

【0014】具体的には、低温熱交換器(5)から吸収器
(22)へ向けて流出する高濃度の溶液の温度に基づいて該
溶液の晶析濃度を算出する第1演算手段と、算出された
晶析濃度に所定の余裕を加味して目標濃度を算出する第
2演算手段と、低温熱交換器(5)から吸収器(22)へ向け
て流出する溶液の濃度の前記目標濃度に対する偏差を算
出する第3演算手段と、算出された偏差に基づいて溶液
循環量を制御する第1制御手段と、冷凍負荷に応じて、
低温熱交換器(5)から高温熱交換器(4)への溶液流量に
対する低温熱交換器(5)から低温再生器(12)への溶液流
量の比である溶液分配比を制御する第2制御手段とを装
備する。
[0014] Specifically, the low-temperature heat exchanger (5) to the absorber
(1) first calculating means for calculating the crystallization concentration of the high-concentration solution flowing out toward (22), and calculating the target concentration by adding a predetermined margin to the calculated crystallization concentration. A second calculating means for calculating a deviation of the concentration of the solution flowing out from the low-temperature heat exchanger (5) toward the absorber (22) from the target concentration, and a third calculating means for calculating the deviation based on the calculated deviation. First control means for controlling the amount of circulating solution, and depending on the refrigeration load,
A second method for controlling a solution distribution ratio, which is a ratio of a solution flow rate from the low-temperature heat exchanger (5) to the low-temperature regenerator (12) to a solution flow rate from the low-temperature heat exchanger (5) to the high-temperature heat exchanger (4). Equipped with control means.

【0015】そして、溶液循環量の制御は、目標濃度が
溶液濃度よりも大きいときは溶液循環量を減少させ、目
標濃度が溶液濃度よりも小さいときは溶液循環量を増大
させることによって行なう。又、溶液分配比の制御は、
冷凍負荷が大きいときには溶液分配比を大きく、冷凍負
荷が小さいときには溶液分配比を小さく設定することに
よって行なう。これによって、冷凍負荷全般に高い成績
係数を確保することが出来ると共に、低負荷時には、晶
析の危険性を抑えることが可能となる。
The circulation amount of the solution is controlled by decreasing the circulation amount when the target concentration is higher than the solution concentration, and increasing the circulation amount when the target concentration is lower than the solution concentration. Control of the solution distribution ratio is as follows:
When the refrigeration load is large, the solution distribution ratio is set large, and when the refrigeration load is small, the solution distribution ratio is set small. As a result, a high coefficient of performance can be secured for the entire refrigeration load, and at the time of a low load, the risk of crystallization can be suppressed.

【0016】又、図9は、並列溶液循環方式の二重効用
型吸収冷凍機において、低温熱交換器管外出口の溶液の
濃度余裕値が冷凍負荷に拘わらず一定となるように溶液
循環制御を行なったときの、冷凍負荷と成績係数との関
係を表わしたものである。図示の如く、濃度余裕値が小
さい方が全般的に成績係数が高くなっているが、冷凍負
荷の小さな範囲では、このような濃度余裕値による成績
係数の差は非常に小さくなっている。
FIG. 9 shows a solution circulation control in a double-effect absorption refrigerator of a parallel solution circulation type such that a margin of concentration of the solution at the outlet of the low-temperature heat exchanger tube is constant regardless of the refrigeration load. Is a graph showing the relationship between the refrigeration load and the coefficient of performance at the time of performing. As shown in the drawing, the coefficient of performance generally increases as the concentration margin value decreases, but in a small range of the refrigeration load, the difference in the coefficient of performance due to such concentration margin value is extremely small.

【0017】これは次の理由による。即ち、成績係数
は、高温再生器に流入する溶液を飽和温度まで温める顕
熱として消費される熱量の影響が大きい。従って、冷凍
負荷が同じであれば、通常、高温再生器への溶液流入量
が少ない方が成績係数は大きくなる。濃度余裕値が大き
いと、溶液濃度を全体に薄くしようとして、溶液循環量
が大きくなる。従って、高温再生器への溶液流入量も大
きくなり、成績係数が低下する。但し、冷凍負荷が小さ
いとき、全体の溶液循環量が少なくなるので、濃度余裕
値の違いによる高温再生器への流入量の差は、冷凍負荷
が大きいときのそれに比べて小さくなる。これによっ
て、成績係数の差も小さくなってくる。
This is for the following reason. That is, the coefficient of performance is greatly affected by the amount of heat consumed as sensible heat for warming the solution flowing into the high-temperature regenerator to the saturation temperature. Therefore, if the refrigeration load is the same, the coefficient of performance generally increases as the amount of solution flowing into the high-temperature regenerator decreases. If the concentration margin value is large, the solution circulation amount increases in an attempt to reduce the solution concentration as a whole. Therefore, the amount of the solution flowing into the high-temperature regenerator also increases, and the coefficient of performance decreases. However, when the refrigeration load is small, the total amount of the solution circulated is small, so the difference in the amount of inflow into the high-temperature regenerator due to the difference in the concentration margin value is smaller than that when the refrigeration load is large. As a result, the difference in the coefficient of performance also decreases.

【0018】又図10は、図2と同じ制御を行なったと
きの低温熱交換器管外出口及び高温熱交換器出口の濃度
及び温度をプロットしたものである。低温熱交換器管外
出口の溶液の濃度余裕が大きいと、高温熱交換器管外出
口の溶液の濃度及び温度は、結晶線から安全側へ移動
し、晶析の危険性が小さくなっている。
FIG. 10 is a plot of the concentration and temperature at the outlet of the low-temperature heat exchanger and at the outlet of the high-temperature heat exchanger when the same control as in FIG. 2 is performed. When the concentration margin of the solution at the outlet of the low-temperature heat exchanger tube is large, the concentration and temperature of the solution at the outlet of the high-temperature heat exchanger tube move from the crystal wire to the safe side, and the risk of crystallization is reduced. .

【0019】以上のことから、低温熱交換器管外出口の
溶液の濃度余裕値を、冷凍負荷の大きいときは小さく、
冷凍負荷の小さいときは大きくする。即ち、負荷の変化
に伴って、図11に太線で示すように溶液の濃度及び温
度が推移するようにする。これによって、図12に太線
で示すように、冷凍負荷全般に高い成績係数を確保する
ことが出来ると共に、低負荷時には、晶析の危険性を抑
えることが可能となる。
From the above, it can be seen that the margin of concentration of the solution at the outlet of the low-temperature heat exchanger tube is small when the refrigeration load is large,
Increase when the refrigeration load is small. That is, as the load changes, the concentration and temperature of the solution change as shown by the thick line in FIG. As a result, as shown by the thick line in FIG. 12, a high coefficient of performance can be secured for the entire refrigeration load, and at the time of a low load, the risk of crystallization can be suppressed.

【0020】本発明に係る並列溶液循環方式の二重効用
型吸収冷凍機においては、低温熱交換器(5)から吸収器
(22)へ向けて流出する高濃度の溶液の濃度が、該溶液の
温度に相当する晶析濃度に対して一定の結晶余裕を持つ
ように、溶液循環量を制御すると共に、冷凍負荷に応じ
て結晶余裕を変化させる。
In the parallel solution circulation type double effect absorption refrigerator according to the present invention, the low-temperature heat exchanger (5) is connected to the absorber.
The circulation amount of the solution is controlled so that the concentration of the high-concentration solution flowing out toward (22) has a certain crystallization margin with respect to the crystallization concentration corresponding to the temperature of the solution, and the refrigeration load is adjusted. To change the crystal margin.

【0021】具体的には、低温熱交換器(5)から吸収器
(22)へ向けて流出する高濃度の溶液の温度に基づいて該
溶液の晶析濃度を算出する第1演算手段と、冷凍負荷に
基づいて結晶余裕を算出する第2演算手段と、算出され
た晶析濃度と結晶余裕に基づいて目標濃度を算出する第
3演算手段と、低温熱交換器(5)から吸収器(22)へ向け
て流出する溶液の濃度の前記目標濃度に対する偏差を算
出する第4演算手段と、算出された偏差に基づいて溶液
循環量を制御する制御手段とを装備する。
Specifically, from the low-temperature heat exchanger (5) to the absorber
(1) first calculating means for calculating a crystallization concentration of the high-concentration solution flowing out toward (22), and second calculating means for calculating a crystal margin based on a refrigeration load. Third calculating means for calculating a target concentration based on the crystallization concentration and the crystal margin, and calculating a deviation of the concentration of the solution flowing from the low-temperature heat exchanger (5) toward the absorber (22) with respect to the target concentration. And a control means for controlling the solution circulation amount based on the calculated deviation.

【0022】そして、溶液循環量の制御において、目標
濃度が溶液濃度よりも大きいときは溶液循環量を減少さ
せ、目標濃度が溶液濃度よりも小さいときは溶液循環量
を増大させる。又、冷凍負荷が大きいときには結晶余裕
を小さく、冷凍負荷が小さいときには結晶余裕を大きく
設定する。これによって、冷凍負荷全般に高い成績係数
を確保することが出来ると共に、低負荷時には、晶析の
危険性を抑えることが可能となる。
In controlling the solution circulation amount, the solution circulation amount is reduced when the target concentration is higher than the solution concentration, and the solution circulation amount is increased when the target concentration is lower than the solution concentration. When the refrigerating load is large, the crystal margin is set small, and when the refrigerating load is small, the crystal margin is set large. As a result, a high coefficient of performance can be secured for the entire refrigeration load, and at the time of a low load, the risk of crystallization can be suppressed.

【0023】[0023]

【発明の効果】本発明に係る並列溶液循環方式の二重効
用型吸収冷凍機によれば、晶析を回避しつつ、高い成績
係数を得ることが出来る。
According to the double solution absorption refrigerator of the parallel solution circulation type according to the present invention, a high coefficient of performance can be obtained while avoiding crystallization.

【0024】[0024]

【発明の実施の形態】以下、本発明を図1に示す並列溶
液循環方式の二重効用型吸収冷凍機に実施した2つの例
につき、図面に沿って具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Two examples in which the present invention is applied to a double solution absorption refrigerator of a parallel solution circulation type shown in FIG. 1 will be specifically described with reference to the drawings.

【0025】第1実施例 本実施例の二重効用型吸収冷凍機においては、図2に示
す如く、低温熱交換器(5)の出口の溶液分配点と高温熱
交換器(4)の間に制御弁(7)を介在させて、低温熱交換
器(5)から高温熱交換器(4)へ分配される溶液の流量
と、低温熱交換器(5)から低温再生器(12)へ分配される
溶液の流量の比を調整する。
[0025]First embodiment  In the double effect absorption refrigerator of the present embodiment, as shown in FIG.
Thus, the solution distribution point at the outlet of the low-temperature heat exchanger (5) and the high-temperature heat
Low temperature heat exchange with control valve (7) interposed between exchangers (4)
Of solution to be distributed from heat exchanger (5) to high temperature heat exchanger (4)
Is distributed from the low-temperature heat exchanger (5) to the low-temperature regenerator (12)
Adjust the solution flow ratio.

【0026】図3は、本実施例の吸収冷凍機の制御系と
演算の流れを表わしており、 高温再生器溶液流入量Wshw、及び低温再生器溶液
流入量Wswl、 吸収器圧力Pa、及び吸収器出口溶液温度Tsa、 高温再生器圧力Phg、及び高温再生器出口溶液温度
Tshg、 低温再生器圧力Plg、及び低温再生器出口溶液温度
Tslg、 冷水入口温度Tci、冷水出口温度Tco、及び冷水流
量Wc を測定する複数の測定器を具えている。
FIG. 3 shows the control system and the flow of calculation of the absorption refrigerator of the present embodiment. The high-temperature regenerator solution inflow Wshw, the low-temperature regenerator solution inflow Wswl, the absorber pressure Pa, and the absorption pressure are shown. Reactor outlet solution temperature Tsa, high temperature regenerator pressure Phg, and high temperature regenerator outlet solution temperature Tshg, low temperature regenerator pressure Plg, low temperature regenerator outlet solution temperature Tslg, cold water inlet temperature Tci, cold water outlet temperature Tco, and cold water flow Wc It has a plurality of measuring instruments for measuring.

【0027】これらの測定器から得られる測定データに
基づいて、先ず、監視点である低温熱交換器管外の溶液
濃度を推定する。溶液濃度は直接測定することも考えら
れるが、濃度測定器は高価であるため、次のような演算
による推定を行なう。
First, based on the measurement data obtained from these measuring instruments, the solution concentration outside the low-temperature heat exchanger tube, which is the monitoring point, is estimated. It is conceivable to directly measure the solution concentration, but since the concentration measurement device is expensive, estimation is performed by the following calculation.

【0028】(演算1) 吸収液圧力Paより吸収器冷媒
飽和温度Trsを、又高温再生器圧力Phgより高温再生器
冷媒飽和温度Trsaを、更に低温再生器圧力Plgより低
温再生器冷媒飽和温度Trslgを推定する。尚、飽和圧力
Pと飽和温度Trsの関係fpは、例えば、次の管原の式
によって与えられる。
(Operation 1) Absorber refrigerant pressure Pa is used to determine absorber refrigerant saturation temperature Trs, high temperature regenerator pressure Phg is used to determine high temperature regenerator refrigerant temperature Trsa, and low temperature regenerator pressure Plg is used to specify low temperature regenerator refrigerant saturation temperature Trslg. Is estimated. The relationship fp between the saturation pressure P and the saturation temperature Trs is given by, for example, the following tube equation.

【0029】[0029]

【数1】 (Equation 1)

【0030】(演算2) 吸収器冷媒飽和温度Trsa及び
吸収器出口溶液温度Tsaより吸収器出口溶液濃度Xsw
を、又高温再生器冷媒飽和温度Trshg、高温再生器出口
溶液温度Tshgより高温再生器出口溶液濃度Xshgを、更
に低温再生器冷媒飽和温度Trslg、低温再生器出口溶液
温度Tslgより低温再生器出口溶液濃度Xslgを推定す
る。臭化リチウム水溶液の温度Tsと濃度Xsの関係fst
は、その温度及び濃度に平衡する水の飽和温度Trsを用
いて、次のような関係式で表わされる(McNeelyの式)。
(Operation 2) From the absorber refrigerant saturation temperature Trsa and the absorber outlet solution temperature Tsa, the absorber outlet solution concentration Xsw
And the high temperature regenerator outlet solution concentration Xshg higher than the high temperature regenerator refrigerant saturation temperature Trshg and the high temperature regenerator outlet solution temperature Tshg, and the low temperature regenerator outlet solution lower than the low temperature regenerator refrigerant saturation temperature Trslg and the low temperature regenerator outlet solution temperature Tslg. The density Xslg is estimated. Relation fst between temperature Ts and concentration Xs of lithium bromide aqueous solution
Is expressed by the following relational expression using the saturation temperature Trs of water that balances the temperature and concentration (McNeely's expression).

【0031】[0031]

【数2】 (Equation 2)

【0032】(演算3) 高温再生器溶液流入量Wswh、
吸収器出口溶液濃度Xsw、高温再生器出口溶液濃度Xsh
gより高温再生器出口溶液流量Wshgを、又低温再生器溶
液流入量Wswl、吸収器出口溶液濃度Xsw、低温再生器
出口溶液温度Xslgより低温再生器出口溶液流量Wslgを
推定する。推定には、定常時において高温再生器に出入
りする溶液の量は同じであり、また、低温再生器に出入
りする溶液の量は同じであることに基づいて、次のよう
な式を用いる。
(Calculation 3) High-temperature regenerator solution inflow Wswh,
Absorber outlet solution concentration Xsw, high temperature regenerator outlet solution concentration Xsh
g, the low-temperature regenerator outlet solution flow rate Wshg, and the low-temperature regenerator solution inflow amount Wswl, the absorber outlet solution concentration Xsw, and the low-temperature regenerator outlet solution temperature Xslg are estimated. For the estimation, the following equation is used based on the fact that the amount of solution entering and leaving the high-temperature regenerator in the steady state is the same, and the amount of solution entering and exiting the low-temperature regenerator is the same.

【0033】[0033]

【数3】 (Equation 3)

【0034】(演算4) 高温再生器出口溶液濃度Xsh
g、低温再生器出口溶液濃度Xslg、高温再生器出口溶液
流量Wshg、低温再生器出口溶液流量Wslgより低温熱交
換器管外溶液濃度Xsmを推定する。推定には、定常時に
おいて低温熱交換器管外に出入する溶液の量は同じであ
ることに基づいて、次のような式を用いる。
(Operation 4) The solution concentration Xsh at the outlet of the high temperature regenerator
g, the low-temperature regenerator outlet solution concentration Xsm, the high-temperature regenerator outlet solution flow rate Wshg, and the low-temperature regenerator outlet solution flow rate Wslg are used to estimate the low-temperature heat exchanger out-of-tube solution concentration Xsm. For the estimation, the following equation is used based on the fact that the amount of the solution that flows in and out of the low-temperature heat exchanger tube in the steady state is the same.

【0035】[0035]

【数4】 (Equation 4)

【0036】(演算5) 低温熱交換器管外出口温度よ
り、それに相当する晶析濃度を推定する。
(Calculation 5) From the temperature at the outlet of the low-temperature heat exchanger tube, the crystallization concentration corresponding thereto is estimated.

【0037】(演算6) 低温熱交換器管外の晶析濃度か
ら、あらかじめ設定した濃度余裕値を差し引いて、目標
濃度を決定する。
(Operation 6) A target concentration is determined by subtracting a preset concentration margin value from the crystallization concentration outside the low temperature heat exchanger tube.

【0038】(演算7) 目標濃度から低温熱交換器管外
溶液濃度Xsmを差し引いた偏差exsmを第1コントロー
ラ(8)に入力し、目標濃度に近づくように溶液ポンプ
(6)の回転周波数を制御して、溶液循環量を調整する。
即ち、溶液濃度が目標濃度よりも小さいときは、溶液循
環量を減少させ、溶液濃度が目標濃度よりも大きいとき
は、溶液循環量を増大させる。第1コントローラ(8)を
PID制御器とすれば、溶液ポンプの回転周波数fspu
は次の式で決まる。ここで、Kp、Ki及びKd
はPIDパラメータであり、予め適切な値を与えてお
く。
(Operation 7) A deviation exsm obtained by subtracting the low-temperature heat exchanger outside-tube solution concentration Xsm from the target concentration is input to the first controller (8), and the solution pump is adjusted so as to approach the target concentration.
The rotation frequency of (6) is controlled to adjust the solution circulation amount.
That is, when the solution concentration is lower than the target concentration, the solution circulation amount is decreased, and when the solution concentration is higher than the target concentration, the solution circulation amount is increased. If the first controller (8) is a PID controller, the rotation frequency fspu of the solution pump
Is determined by the following equation. Here, Kp 1 , Ki 1 and Kd 1
Is a PID parameter, which is given an appropriate value in advance.

【0039】[0039]

【数5】 (Equation 5)

【0040】又、上記溶液循環量の制御と同時に、以下
のようにして溶液分配比の制御を行なう。 (演算8) 高温再生器溶液流入量Wswh、低温再生器溶
液流入量Wswlより溶液分配比Dlgを推定する。推定に
は、下記数式を用いる。
Simultaneously with the control of the solution circulation amount, the solution distribution ratio is controlled as follows. (Operation 8) The solution distribution ratio Dlg is estimated from the high-temperature regenerator solution inflow Wswh and the low-temperature regenerator solution inflow Wswl. The following formula is used for estimation.

【0041】[0041]

【数6】 (Equation 6)

【0042】(演算9) 冷水入口温度Tci、冷水出口温
度Tco、冷水流量Wcより冷凍負荷率Lcを推定する。推
定には、Cpwを冷水比熱、Qを定格冷凍能力として、次
の式を用いる。
(Operation 9) The refrigeration load factor Lc is estimated from the chilled water inlet temperature Tci, the chilled water outlet temperature Tco, and the chilled water flow rate Wc. For the estimation, the following equation is used, where Cpw is the chilled water specific heat, and Q is the rated refrigeration capacity.

【0043】[0043]

【数7】 (Equation 7)

【0044】(演算10) 冷凍負荷率Lcより目標とす
る溶液分配比を決定する。溶液分配比の目標値rDlg
は、例えば冷凍負荷率Lcに比例して変化させるとすれ
ば、その関係frdlgは次のようになる。
(Operation 10) A target solution distribution ratio is determined from the refrigeration load factor Lc. Target value rDlg of solution distribution ratio
Is, for example, changed in proportion to the refrigeration load factor Lc, the relationship frdlg is as follows.

【0045】[0045]

【数8】 (Equation 8)

【0046】(演算11) 溶液分配比目標値rDlgから
溶液分配比目標値Dlgを差し引いた偏差edlgを第2コ
ントローラ(81)に入力し、溶液分配比が目標値に近づく
ように、制御弁(7)の開度を調節する。即ち、冷凍負荷
が大きいときは、溶液分配比を大きく設定し、冷凍負荷
が小さいときは、溶液分配比を小さく設定する。第2コ
ントローラ(81)をPID制御器とすれば、弁開度Vは次
の式で決まる。ここで、Kp、Ki及びKdはP
IDパラメータであり、予め適切な値を与えておく。
(Operation 11) A deviation edlg obtained by subtracting the solution distribution ratio target value Dlg from the solution distribution ratio target value rDlg is input to the second controller (81), and the control valve (so that the solution distribution ratio approaches the target value). Adjust the opening of 7). That is, when the refrigeration load is large, the solution distribution ratio is set large, and when the refrigeration load is small, the solution distribution ratio is set small. If the second controller (81) is a PID controller, the valve opening degree V is determined by the following equation. Here, Kp 2 , Ki 2 and Kd 2 are P
This is an ID parameter, and an appropriate value is given in advance.

【0047】[0047]

【数9】 (Equation 9)

【0048】尚、上記濃度目標値の設定においては、図
13に示す様に、温度測定値から決まる晶析濃度X1か
ら一定の濃度余裕値Dxを差し引いて、目標濃度X2を
算出する方式に限らず、濃度余裕と温度余裕の両方を加
味する方式も採用可能であって、この場合、温度測定値
T1と前記目標濃度X2から決まる結晶温度T2との差
(T1−T2)が、所定の温度余裕値Dtよりも大きいと
きは、前記目標濃度X2を採用するが、温度差(T1−
T2)が所定の温度余裕値Dt以下であるときは、更に
結晶線に対して温度余裕値Dtを有する目標濃度X3を
設定するのである。
The setting of the target concentration is not limited to the method of calculating the target concentration X2 by subtracting a certain concentration margin value Dx from the crystallization concentration X1 determined from the measured temperature as shown in FIG. Instead, a method that takes into account both the concentration allowance and the temperature allowance can be adopted. In this case, the difference between the temperature measurement value T1 and the crystal temperature T2 determined from the target concentration X2 is used.
When (T1−T2) is larger than the predetermined temperature margin value Dt, the target density X2 is adopted, but the temperature difference (T1−T2) is used.
When T2) is equal to or smaller than the predetermined temperature margin value Dt, the target concentration X3 having the temperature margin value Dt for the crystal line is set.

【0049】上述の制御によれば、冷凍負荷の変化に伴
って、図6に太線で示すように溶液の濃度及び温度が変
化することとなり、これによって、図7に太線で示すよ
うに、冷凍負荷全般に高い成績係数を確保することが出
来ると共に、低負荷時には、晶析の危険性を抑えること
が出来る。
According to the above-described control, the concentration and temperature of the solution change as shown by the thick line in FIG. 6 with the change of the refrigeration load, and as a result, as shown by the thick line in FIG. A high coefficient of performance can be ensured over the entire load, and the risk of crystallization can be suppressed at low loads.

【0050】第2実施例 図8は、本実施例の吸収冷凍機の制御系と演算の流れを
表わしており、上記第1実施例と同一の複数の測定器を
具え、これらの測定器から得られる測定データに基づい
て、次のような制御を行なう。
[0050]Second embodiment  FIG. 8 shows the control system of the absorption refrigerator of this embodiment and the flow of calculation.
And the same plurality of measuring instruments as those in the first embodiment.
Based on the measurement data obtained from these measuring instruments
Then, the following control is performed.

【0051】先ず、監視点である低温熱交換器管外の溶
液濃度を推定する。溶液濃度は直接測定することも考え
られるが、濃度測定器は高価であるため、以下の演算に
よる推定を行なう。
First, the solution concentration outside the tubes of the low-temperature heat exchanger, which is the monitoring point, is estimated. Although it is conceivable to directly measure the solution concentration, since the concentration measuring device is expensive, estimation is performed by the following calculation.

【0052】(演算1) 吸収器圧力Paより吸収器冷媒
飽和温度Trsを、又高温再生器圧力Phgより高温再生器
冷媒飽和温度Trshgを、更に低温再生器圧力Plgより低
温再生器冷媒飽和温度Trslgを推定する。尚、飽和圧力
Pと飽和温度Trsの関係fpは、例えば上記数1の菅原
の式から与えられる。
(Operation 1) Absorber refrigerant saturation temperature Trs from absorber pressure Pa, high-temperature regenerator refrigerant saturation temperature Trshg from high-temperature regenerator pressure Phg, and low-temperature regenerator refrigerant saturation temperature Trslg from low-temperature regenerator pressure Plg. Is estimated. Note that the relationship fp between the saturation pressure P and the saturation temperature Trs is given by, for example, the above equation (1).

【0053】(演算2) 吸収器冷媒飽和温度Trsa、吸
収器出口溶液温度Tsaより吸収器出口溶液濃度Xswを、
又高温再生器冷媒飽和温度Trshg、高温再生器出口溶液
温度Tshgより高温再生器出口溶液濃度Xshgを、更に低
温再生器冷媒飽和温度Trslg、低温再生器出口溶液温度
Tslgより低温再生器出口溶液濃度Xslgを推定する。臭
化リチウム水溶液の温度Tsと濃度Xsの関係fstは、そ
の温度及び濃度に平衡する水の飽和温度Trsを用いて、
上記数2のMcNeelyの式で表わされる。
(Operation 2) From the absorber refrigerant saturation temperature Trsa and the absorber outlet solution temperature Tsa, the absorber outlet solution concentration Xsw is calculated as follows:
The high-temperature regenerator refrigerant saturation temperature Trshg, the high-temperature regenerator outlet solution concentration Xshg from the high-temperature regenerator outlet solution temperature Tshg, the low-temperature regenerator refrigerant saturation temperature Trslg, and the low-temperature regenerator outlet solution concentration Xslg from the low-temperature regenerator outlet solution temperature Tslg. Is estimated. The relationship fst between the temperature Ts and the concentration Xs of the aqueous lithium bromide solution is obtained by using the saturation temperature Trs of water that balances the temperature and the concentration.
It is represented by the McNeely equation of Equation 2 above.

【0054】(演算3) 高温再生器溶液流入量Wswh、
吸収器出口溶液濃度Xsw、高温再生器出口溶液濃度Xsh
gより高温再生器出口溶液流量Wshgを、又低温再生器溶
液流入量Wswl、吸収器出口溶液濃度Xsw、低温再生器
出口溶液濃度Xslgより低温再生器出口溶液流量Wslgを
推定する。推定には、上記数3を用いる。
(Calculation 3) High-temperature regenerator solution inflow amount Wswh,
Absorber outlet solution concentration Xsw, high temperature regenerator outlet solution concentration Xsh
g, the low-temperature regenerator outlet solution flow rate Wshg, and the low-temperature regenerator solution inflow amount Wswl, the absorber outlet solution concentration Xsw, and the low-temperature regenerator outlet solution concentration Xslg are estimated. Equation 3 is used for the estimation.

【0055】(演算4) 高温再生器出口溶液濃度Xsh
g、低温再生器出口溶液濃度Xslg、高温再生器出口溶液
流量Wshg、低温再生器出口溶液流量Wslgより低温熱交
換器管外溶液濃度Xsmを推定する。推定には、上記数4
を用いる。
(Operation 4) The solution concentration Xsh at the outlet of the high temperature regenerator
g, the low-temperature regenerator outlet solution concentration Xsm, the high-temperature regenerator outlet solution flow rate Wshg, and the low-temperature regenerator outlet solution flow rate Wslg are used to estimate the low-temperature heat exchanger out-of-tube solution concentration Xsm. The above equation is used for estimation.
Is used.

【0056】(演算5) 低温熱交換器管外出口溶液温度
より、それに相当する晶析濃度を推定する。
(Operation 5) From the temperature of the solution at the outlet of the low-temperature heat exchanger tube, a crystallization concentration corresponding thereto is estimated.

【0057】(演算6) 冷水入口温度Tci、冷水出口温
度Tco、冷水流量Wcより冷凍負荷率Lcを推定する。推
定には、上記数7を用いる。
(Operation 6) The refrigeration load factor Lc is estimated from the chilled water inlet temperature Tci, the chilled water outlet temperature Tco, and the chilled water flow rate Wc. Equation 7 is used for the estimation.

【0058】(演算7) 冷凍負荷率Lcより濃度余裕値
を決定する。濃度余裕値xofsは、例えば冷凍負荷率に
対して一次関数的に変化させるとすれば、その関係fxo
fsは次の式で表わされる。
(Operation 7) A concentration margin value is determined from the refrigeration load factor Lc. Assuming that the concentration margin value xofs changes linearly with respect to the refrigeration load factor, for example, the relation fxo
fs is expressed by the following equation.

【0059】[0059]

【数10】 (Equation 10)

【0060】(演算8) 低温熱交換器管外の晶析濃度か
ら、(演算7)で設定した濃度余裕値を差し引いて、目標
濃度を決定する。
(Calculation 8) The target concentration is determined by subtracting the concentration margin value set in (Calculation 7) from the crystallization concentration outside the low temperature heat exchanger tube.

【0061】(演算9) 目標濃度から低温熱交換器管外
溶液濃度Xsmを差し引いた偏差exsmをコントローラ(8
2)に入力し、目標濃度に近づくように溶液ポンプの回転
周波数を制御して、溶液循環量を調整する。即ち、溶液
濃度が目標濃度よりも小さいときは、溶液循環量を減少
させ、溶液濃度が目標濃度よりも大きいときは、溶液循
環量を増大させる。コントローラ(82)をPID制御器と
すれば、溶液ポンプの回転周波数fspuは上記5によっ
て決定することが出来る。
(Operation 9) A deviation exsm obtained by subtracting the low-temperature heat exchanger outside-tube solution concentration Xsm from the target concentration is calculated by the controller (8).
Input to 2), and adjust the solution circulation amount by controlling the rotation frequency of the solution pump so as to approach the target concentration. That is, when the solution concentration is lower than the target concentration, the solution circulation amount is decreased, and when the solution concentration is higher than the target concentration, the solution circulation amount is increased. If the controller (82) is a PID controller, the rotation frequency fspu of the solution pump can be determined by the above (5).

【0062】尚、上記濃度目標値の設定においては、第
1実施例と同様に、図13に示す如く温度測定値から決
まる晶析濃度X1から一定の濃度余裕値Dxを差し引い
て、目標濃度X2を算出する方式に限らず、温度差(T
1−T2)が所定の温度余裕値Dtよりも大きいとき
は、目標濃度X2を採用し、温度差(T1−T2)が所定
の温度余裕値Dt以下であるときは、更に結晶線に対し
て温度余裕値Dtを有する目標濃度X3を設定すること
が出来る。
In the setting of the target concentration value, as in the first embodiment, a constant concentration margin value Dx is subtracted from the crystallization concentration X1 determined from the temperature measurement value as shown in FIG. , The temperature difference (T
When (1−T2) is larger than the predetermined temperature margin value Dt, the target concentration X2 is adopted, and when the temperature difference (T1−T2) is equal to or smaller than the predetermined temperature margin value Dt, the target concentration is further reduced with respect to the crystal line. The target density X3 having the temperature margin value Dt can be set.

【0063】上述の制御によれば、負荷の変化に伴っ
て、図11に太線で示すように溶液の濃度及び温度が変
化し、これによって、図12に太線で示すように、冷凍
負荷全般に高い成績係数を確保することが出来ると共
に、低負荷時には、晶析の危険性を抑えることが出来
る。
According to the above-described control, the concentration and temperature of the solution change as shown by the bold line in FIG. 11 with the change of the load. As a result, as shown by the bold line in FIG. A high coefficient of performance can be ensured, and the risk of crystallization can be suppressed at low load.

【0064】尚、上記第1実施例において、溶液分配比
の制御は、冷凍負荷に対して1次関数的に変化させる例
に限らず、冷凍負荷に対して単調増加する種々の関係を
採用することが出来る。又、溶液分配比の制御は、高温
熱交換器(4)側へ伸びる配管に設けた制御弁(7)によっ
て連続的に流量を変化させる方式に限らず、低温再生器
(12)側へ伸びる配管に設けた制御弁によって行なう方
式、両方の配管に設けた制御弁によって行なう方式、制
御弁に代えてダンパによって行なう方式、流量を段階的
に変化させる方式等、種々の方式が採用可能である。更
に、制御方式としては、ファジィ制御、フィードフォワ
ード制御など、種々の制御方式が採用可能である。又、
上記第2実施例においても同様に、冷凍負荷に対する濃
度余裕値の制御には、冷凍負荷に対して単調減少する種
々の関係を採用することが出来る。
In the above-described first embodiment, the control of the solution distribution ratio is not limited to the example of changing the refrigerating load in a linear function, but adopts various relations that increase monotonically with the refrigerating load. I can do it. Further, the control of the solution distribution ratio is not limited to a method in which the flow rate is continuously changed by a control valve (7) provided in a pipe extending toward the high-temperature heat exchanger (4), but is controlled by a low-temperature regenerator.
(12) Various methods such as a method using a control valve provided on a pipe extending to the side, a method using a control valve provided on both pipes, a method using a damper instead of the control valve, a method that changes the flow rate stepwise, etc. A scheme can be adopted. Further, as the control method, various control methods such as fuzzy control and feedforward control can be adopted. or,
Similarly, in the second embodiment, various relationships that monotonically decrease with respect to the refrigeration load can be used for controlling the concentration margin value with respect to the refrigeration load.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施すべき並列溶液循環方式の二重効
用型吸収冷凍機の構成を示す系統図である。
FIG. 1 is a system diagram showing a configuration of a parallel solution circulation type double effect absorption refrigerator in which the present invention is implemented.

【図2】低温熱交換器と高温熱交換器の間に介在させた
制御弁を示す図である。
FIG. 2 is a diagram showing a control valve interposed between a low-temperature heat exchanger and a high-temperature heat exchanger.

【図3】本発明の第1実施例における制御系の構成と演
算の流れを表わすブロック図である。
FIG. 3 is a block diagram showing a configuration of a control system and a flow of calculation in the first embodiment of the present invention.

【図4】冷凍負荷と成績係数の関係を表わすグラフであ
る。
FIG. 4 is a graph showing a relationship between a refrigeration load and a coefficient of performance.

【図5】低温熱交換器管外出口及び高温熱交換器管外出
口における溶液濃度と溶液温度を示すグラフである。
FIG. 5 is a graph showing the solution concentration and the solution temperature at the outlet of the low-temperature heat exchanger tube and at the outlet of the high-temperature heat exchanger tube.

【図6】第1実施例における溶液温度と濃度の動きを表
わすグラフである。
FIG. 6 is a graph showing changes in solution temperature and concentration in the first embodiment.

【図7】第1実施例における冷凍負荷と成績係数の関係
を表わすグラフである。
FIG. 7 is a graph showing a relationship between a refrigeration load and a coefficient of performance in the first embodiment.

【図8】本発明の第2実施例における制御系の構成と演
算の流れを表わすブロック図である。
FIG. 8 is a block diagram showing a configuration of a control system and a flow of calculation in a second embodiment of the present invention.

【図9】冷凍負荷と成績係数の関係を表わすグラフであ
る。
FIG. 9 is a graph showing a relationship between a refrigeration load and a coefficient of performance.

【図10】低温熱交換器管外出口及び高温熱交換器管外
出口における溶液濃度と溶液温度を示すグラフである。
FIG. 10 is a graph showing the solution concentration and the solution temperature at the outlet of the low-temperature heat exchanger tube and the outlet of the high-temperature heat exchanger tube.

【図11】第2実施例における溶液温度と濃度の動きを
表わすグラフである。
FIG. 11 is a graph showing the movement of the solution temperature and the concentration in the second embodiment.

【図12】第2実施例における冷凍負荷と成績係数の関
係を表わすグラフである。
FIG. 12 is a graph showing a relationship between a refrigeration load and a coefficient of performance in the second embodiment.

【図13】目標濃度の設定方法を説明するグラフであ
る。
FIG. 13 is a graph illustrating a method for setting a target density.

【符号の説明】[Explanation of symbols]

(12) 低温再生器 (22) 吸収器 (3) 高温再生器 (4) 高温熱交換器 (5) 低温熱交換器 (6) 溶液ポンプ (7) 制御弁 (12) Low temperature regenerator (22) Absorber (3) High temperature regenerator (4) High temperature heat exchanger (5) Low temperature heat exchanger (6) Solution pump (7) Control valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小澤 芳男 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 古川 雅裕 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 山田 敏宏 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3L093 AA01 BB11 BB22 BB29 BB31 BB32 CC01 DD09 EE04 EE17 GG00 GG02 JJ02 JJ06 KK05 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshio Ozawa 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Masahiro Furukawa 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Toshihiro Yamada 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 3L093 AA01 BB11 BB22 BB29 BB31 BB32 CC01 DD09 EE04 EE17 GG00 GG02 JJ02 JJ06 KK05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 吸収器(22)から供給される低濃度の溶液
を、低温熱交換器(5)及び高温熱交換器(4)を経て高温
再生器(3)へ流入させると共に、低温熱交換器(5)から
流出する溶液の一部を低温再生器(12)へ流入させる一
方、高温再生器(3)から高温熱交換器(4)を経て供給さ
れる高濃度の溶液は、低温再生器(12)から流出する溶液
と共に、低温熱交換器(5)を経て吸収器(22)へ流入させ
る並列溶液循環方式の二重効用型吸収冷凍機において、
低温熱交換器(5)から高温熱交換器(4)へ分配される溶
液の流量と低温熱交換器(5)から低温再生器(12)へ分配
される溶液の流量との比を調整するための溶液分配比調
整機構を装備して、低温熱交換器(5)から吸収器(22)へ
向けて流出する高濃度の溶液の濃度が、該溶液の温度に
相当する晶析濃度に対して一定の結晶余裕を持つよう
に、溶液循環量を制御すると共に、冷凍負荷に応じて溶
液分配比を調整することを特徴とする吸収冷凍機の制御
装置。
1. A low-concentration solution supplied from an absorber (22) flows into a high-temperature regenerator (3) through a low-temperature heat exchanger (5) and a high-temperature heat exchanger (4). While a part of the solution flowing out of the exchanger (5) flows into the low-temperature regenerator (12), the high-concentration solution supplied from the high-temperature regenerator (3) through the high-temperature heat exchanger (4) In a double solution absorption refrigerator of a parallel solution circulation type in which the solution flowing out of the regenerator (12) flows into the absorber (22) through the low-temperature heat exchanger (5),
Adjust the ratio of the flow rate of the solution distributed from the low-temperature heat exchanger (5) to the high-temperature heat exchanger (4) and the flow rate of the solution distributed from the low-temperature heat exchanger (5) to the low-temperature regenerator (12). For adjusting the concentration of the highly concentrated solution flowing out of the low-temperature heat exchanger (5) to the absorber (22) with respect to the crystallization concentration corresponding to the temperature of the solution. A control device for an absorption refrigerator, characterized in that the amount of circulating solution is controlled so as to have a certain crystal margin, and the solution distribution ratio is adjusted according to the refrigeration load.
【請求項2】 低温熱交換器(5)から吸収器(22)へ向け
て流出する高濃度の溶液の温度に基づいて該溶液の晶析
濃度を算出する第1演算手段と、算出された晶析濃度に
所定の余裕を加味して目標濃度を算出する第2演算手段
と、低温熱交換器(5)から吸収器(22)へ向けて流出する
溶液の濃度の前記目標濃度に対する偏差を算出する第3
演算手段と、算出された偏差に基づいて溶液循環量を制
御する第1制御手段と、冷凍負荷に応じて、低温熱交換
器(5)から高温熱交換器(4)への溶液流量に対する低温
熱交換器(5)から低温再生器(12)への溶液流量の比であ
る溶液分配比を制御する第2制御手段とを具えている請
求項1に記載の吸収冷凍機の制御装置。
2. A first calculating means for calculating a crystallization concentration of a high-concentration solution flowing out from a low-temperature heat exchanger (5) toward an absorber (22) based on a temperature of the solution. A second calculating means for calculating a target concentration by adding a predetermined margin to the crystallization concentration; and a deviation of the concentration of the solution flowing out from the low-temperature heat exchanger (5) toward the absorber (22) with respect to the target concentration. Third to calculate
Calculating means, first control means for controlling the amount of solution circulation based on the calculated deviation, and low temperature with respect to the solution flow rate from the low temperature heat exchanger (5) to the high temperature heat exchanger (4) depending on the refrigeration load. The control device for an absorption refrigerator according to claim 1, further comprising second control means for controlling a solution distribution ratio, which is a ratio of a solution flow rate from the heat exchanger (5) to the low temperature regenerator (12).
【請求項3】 目標濃度が溶液濃度よりも大きいときは
溶液循環量を減少させ、目標濃度が溶液濃度よりも小さ
いときは溶液循環量を増大させる請求項2に記載の吸収
冷凍機の制御装置。
3. The control device for an absorption refrigerator according to claim 2, wherein when the target concentration is higher than the solution concentration, the solution circulation amount is decreased, and when the target concentration is lower than the solution concentration, the solution circulation amount is increased. .
【請求項4】 冷凍負荷が大きいときには溶液分配比を
大きく、冷凍負荷が小さいときには溶液分配比を小さく
設定する請求項3に記載の吸収冷凍機の制御装置。
4. The absorption chiller control apparatus according to claim 3, wherein the solution distribution ratio is set to be large when the refrigeration load is large, and to be small when the refrigeration load is small.
【請求項5】 吸収器(22)から供給される低濃度の溶液
を、低温熱交換器(5)及び高温熱交換器(4)を経て高温
再生器(3)へ流入させると共に、低温熱交換器(5)から
流出する溶液の一部を低温再生器(12)へ流入させる一
方、高温再生器(3)から高温熱交換器(4)を経て供給さ
れる高濃度の溶液は、低温再生器(12)から流出する溶液
と共に、低温熱交換器(5)を経て吸収器(22)へ流入させ
る並列溶液循環方式の二重効用型吸収冷凍機において、
低温熱交換器(5)から吸収器(22)へ向けて流出する高濃
度の溶液の濃度が、該溶液の温度に相当する晶析濃度に
対して一定の結晶余裕を持つように、溶液循環量を制御
すると共に、冷凍負荷に応じて結晶余裕を変化させるこ
とを特徴とする吸収冷凍機の制御装置。
5. The low-concentration solution supplied from the absorber (22) flows into the high-temperature regenerator (3) through the low-temperature heat exchanger (5) and the high-temperature heat exchanger (4). While a part of the solution flowing out of the exchanger (5) flows into the low-temperature regenerator (12), the high-concentration solution supplied from the high-temperature regenerator (3) through the high-temperature heat exchanger (4) In the double-effect absorption refrigerator of the parallel solution circulation type in which the solution flowing out of the regenerator (12) flows into the absorber (22) through the low-temperature heat exchanger (5),
The solution is circulated so that the concentration of the highly concentrated solution flowing out of the low-temperature heat exchanger (5) to the absorber (22) has a certain crystallization margin with respect to the crystallization concentration corresponding to the temperature of the solution. A control device for an absorption refrigerator, wherein the amount is controlled and a crystal margin is changed according to a refrigeration load.
【請求項6】 低温熱交換器(5)から吸収器(22)へ向け
て流出する高濃度の溶液の温度に基づいて該溶液の晶析
濃度を算出する第1演算手段と、冷凍負荷に基づいて結
晶余裕を算出する第2演算手段と、算出された晶析濃度
と結晶余裕に基づいて目標濃度を算出する第3演算手段
と、低温熱交換器(5)から吸収器(22)へ向けて流出する
溶液の濃度の前記目標濃度に対する偏差を算出する第4
演算手段と、算出された偏差に基づいて溶液循環量を制
御する制御手段とを具えている請求項5に記載の吸収冷
凍機の制御装置。
6. A first calculating means for calculating a crystallization concentration of a high-concentration solution flowing out from a low-temperature heat exchanger (5) toward an absorber (22) based on a temperature of the solution, and a refrigeration load. A second calculating means for calculating a crystal margin based on the calculated crystallization concentration and a third calculating means for calculating a target concentration based on the crystal margin; and a low-temperature heat exchanger (5) to the absorber (22). Calculating a deviation of the concentration of the solution flowing toward the target concentration from the fourth concentration.
The control device for an absorption refrigerator according to claim 5, further comprising a calculating means and a control means for controlling a solution circulation amount based on the calculated deviation.
【請求項7】 目標濃度が溶液濃度よりも大きいときは
溶液循環量を減少させ、目標濃度が溶液濃度よりも小さ
いときは溶液循環量を増大させる請求項6に記載の吸収
冷凍機の制御装置。
7. The control device for an absorption refrigerator according to claim 6, wherein the circulating amount of the solution is decreased when the target concentration is higher than the solution concentration, and the circulating amount of the solution is increased when the target concentration is lower than the solution concentration. .
【請求項8】 冷凍負荷が大きいときには結晶余裕を小
さく、冷凍負荷が小さいときには結晶余裕を大きく設定
する請求項7に記載の吸収冷凍機の制御装置。
8. The control device for an absorption refrigerator according to claim 7, wherein the crystallization margin is set small when the refrigeration load is large, and the crystallization margin is set large when the refrigeration load is small.
JP11042391A 1999-02-19 1999-02-19 Controller for absorption refrigerating machine Pending JP2000241039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11042391A JP2000241039A (en) 1999-02-19 1999-02-19 Controller for absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11042391A JP2000241039A (en) 1999-02-19 1999-02-19 Controller for absorption refrigerating machine

Publications (1)

Publication Number Publication Date
JP2000241039A true JP2000241039A (en) 2000-09-08

Family

ID=12634778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11042391A Pending JP2000241039A (en) 1999-02-19 1999-02-19 Controller for absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JP2000241039A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343600C (en) * 2003-06-18 2007-10-17 三洋电机株式会社 Single/double effect absorption refrigerating machine, and its operation control method
JP2011094910A (en) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2011094911A (en) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd Absorption refrigerating machine
JPWO2021117184A1 (en) * 2019-12-12 2021-06-17

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343600C (en) * 2003-06-18 2007-10-17 三洋电机株式会社 Single/double effect absorption refrigerating machine, and its operation control method
JP2011094910A (en) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2011094911A (en) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd Absorption refrigerating machine
JPWO2021117184A1 (en) * 2019-12-12 2021-06-17
JP7386895B2 (en) 2019-12-12 2023-11-27 三菱電機株式会社 Heat pump equipment and heat pump water heater

Similar Documents

Publication Publication Date Title
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
JP4248099B2 (en) Control method of refrigerator or hot and cold water machine
JP2002031376A (en) Air-conditioning system
WO1999039140A1 (en) Absorption type refrigerating machine
JP2000241039A (en) Controller for absorption refrigerating machine
JPH07318188A (en) Controlling equipment of absorption type water cooling-heating appliance
JP2007263462A (en) Absorption refrigerating machine
JPH04327738A (en) Air-conditioning system
JP2000274864A (en) Method for controlling absorption refrigerator
JPH038453B2 (en)
JP2006046839A (en) Cold and hot water carrying system
JP3630775B2 (en) Heat input control method of absorption refrigerator
JP2708809B2 (en) Control method of absorption refrigerator
JPH0586543B2 (en)
JP5606796B2 (en) Absorption-type device and method for adjusting cooling capacity of absorption-type device
JP3831427B2 (en) Heat input control method of absorption refrigerator
JPH04151470A (en) Control device for absorption type cold-hot water heater
JPH07280384A (en) Double effect absorption chilled and warm water machine
JPS6157537B2 (en)
JP6438717B2 (en) Cooling system
JPH0384371A (en) Double effective absorption refrigerator
JP2654137B2 (en) Control method of absorption refrigerator
JP3280085B2 (en) Operation control method in absorption refrigerator
JP2517455B2 (en) Absorption refrigerator control device
KR960012320B1 (en) Control device for absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees