JP2007263462A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine Download PDF

Info

Publication number
JP2007263462A
JP2007263462A JP2006088937A JP2006088937A JP2007263462A JP 2007263462 A JP2007263462 A JP 2007263462A JP 2006088937 A JP2006088937 A JP 2006088937A JP 2006088937 A JP2006088937 A JP 2006088937A JP 2007263462 A JP2007263462 A JP 2007263462A
Authority
JP
Japan
Prior art keywords
water temperature
cold water
control
dead zone
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006088937A
Other languages
Japanese (ja)
Other versions
JP4776416B2 (en
Inventor
Akira Hatayama
朗 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006088937A priority Critical patent/JP4776416B2/en
Priority to CN200610166773A priority patent/CN100576129C/en
Priority to KR1020070029492A priority patent/KR100990822B1/en
Publication of JP2007263462A publication Critical patent/JP2007263462A/en
Application granted granted Critical
Publication of JP4776416B2 publication Critical patent/JP4776416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/005Regeneration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize cold water temperature by absorbing a little change in cooling water temperature near 100% by solving a problem wherein in the case of taking the opening of a fuel valve of a burner of a high-temperature regenerator as a control input M and PID controlling the control input M in order to control a cold water temperature, which is an output of an absorption refrigerating machine to a preset water temperature, the change speed of the cold water temperature, which is the output, is different depending on the installation status of the absorption refrigerating machine, and when the change speed is high, the opening of the fuel valve of the burner is quickly controlled to quickly follow load fluctuation, and on the other hand, the opening control for the fuel valve is conducted even in the case of a little cold water temperature change during rated operation, so that the cold water temperature fluctuates up and down without becoming stable. <P>SOLUTION: A dead zone is fixed in the plus direction of control input M (100%) in rated operation, and the width of the dead zone is varied corresponding to a proportional term P so that when the change speed of cold water temperature is high, the width of the dead zone is large, and when the change speed of cold water temperature is low, the width of the dead zone is small. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、吸収冷凍機の運転制御を比例項、積分項、及び微分項の和による制御であるPID制御によって行う技術に関するものである。   The present invention relates to a technique for performing operation control of an absorption refrigerator by PID control that is control based on the sum of a proportional term, an integral term, and a differential term.

吸収冷凍機の出力である冷水温度を設定水温に制御するための運転制御が、高温再生器のバーナの燃料弁の開度を操作量Mとして行う場合、設定水温よりも現在水温が十分高い範囲では操作量Mは100%であり、十分低い範囲では操作量Mは0%とし、これら両者の間の範囲では操作量Mを現在水温に比例させる制御を行った場合、何らかの外乱が発生した場合には応答が遅れる問題があり、これを解決するために、PID制御を採用することが知られている。(例えば、特許文献1)。
特開平10−170088号公報
When the operation control for controlling the cold water temperature, which is the output of the absorption chiller, to the set water temperature is performed with the fuel valve opening of the burner of the high temperature regenerator as the operation amount M, the current water temperature is sufficiently higher than the set water temperature. In the case where the manipulated variable M is 100%, the manipulated variable M is set to 0% in a sufficiently low range, and in the range between the two, when the control is performed to make the manipulated variable M proportional to the current water temperature, when some disturbance occurs. Has a problem that the response is delayed, and it is known to employ PID control to solve this problem. (For example, patent document 1).
Japanese Patent Laid-Open No. 10-170088

この特許文献1は、PID制御において、設定水温の冷水を操作量Mを略100%の状態(定格出力略100%の状態)で取り出すように設計されている場合に、現在水温が設定水温付近であるとき、操作量Mに余裕がなくて制御性が悪くなる問題があるため、これを解決するために、比例項、積分項、及び微分に、それぞれ現在水温と設定水温との関係から定めた補正係数A、B、Cを乗じるものである。   In Patent Document 1, in the case of PID control, when it is designed to take out cold water at a set water temperature in a state where the operation amount M is approximately 100% (a state where the rated output is approximately 100%), the current water temperature is close to the set water temperature. In order to solve this problem, there is a problem that the operation amount M has no margin and the controllability deteriorates. To solve this problem, the proportional term, integral term, and derivative are respectively determined from the relationship between the current water temperature and the set water temperature. The correction coefficients A, B, and C are multiplied.

このように、吸収冷凍機の出力である冷水温度を設定水温に制御するために、高温再生器のバーナの燃料弁の開度を操作量Mとして、この操作量Mを比例項、積分項、及び微分項の和による制御であるPID制御によって行う場合、吸収冷凍機の設置状況等によって出力である冷水温度の変化速度が異なる。この変化速度が速い場合は入熱の制御(バーナの燃料弁の開度制御)も速く行われて負荷変動に早く追随できる反面、定格運転時における僅かな冷水温度変化でも入熱の制御(バーナの燃料弁の開度制御)が働き、冷水温度が上下変動して安定しないという問題がある。   Thus, in order to control the cold water temperature, which is the output of the absorption chiller, to the set water temperature, the opening of the fuel valve of the burner of the high-temperature regenerator is the operation amount M, and this operation amount M is proportional, integral, And when performing by PID control which is control by the sum of a differential term, the change speed of the cold water temperature which is an output changes with installation conditions etc. of an absorption refrigerator. When this rate of change is high, heat input control (burner fuel valve opening control) can be performed quickly and can follow load fluctuations quickly. The fuel valve opening degree control) works, and the cold water temperature fluctuates up and down and is not stable.

本発明は、このような点に鑑みて、定格運転時の制御量(100%)のプラス方向に不感帯を設けることで、100%付近での冷水温度の僅かな変化を吸収して、冷水温度を安定させることができる制御とするものである。この場合、不感帯の幅は、制御速度の設定値に応じて可変とすることによって、冷水温度の変化速度が速い場合にも遅い場合にも対応できるようにするものである。   In view of these points, the present invention absorbs a slight change in the chilled water temperature near 100% by providing a dead zone in the positive direction of the control amount (100%) during rated operation, It is set as control which can stabilize. In this case, the width of the dead zone is made variable according to the set value of the control speed, so that the case where the change speed of the chilled water temperature is fast or slow can be dealt with.

第1発明の吸収冷凍機は、吸収冷凍機の出力である冷水温度を設定水温に制御するために、高温再生器のバーナの燃料弁の開度を操作量Mとして、この操作量Mを比例項、積分項、及び微分項の和による制御であるPID制御によって行う制御方法において、定格運転時の操作量M(100%)のプラス方向に不感帯を定め、冷水温度の変化速度が速い場合は前記不感帯の幅が大きく、冷水温度の変化速度が遅い場合は前記不感帯の幅が小さくなるように、前記比例項Pに対応して前記不感帯の幅を可変としたことを特徴とする吸収冷凍機の制御方法。   In the absorption refrigerator of the first invention, in order to control the cold water temperature, which is the output of the absorption refrigerator, to the set water temperature, the opening of the fuel valve of the burner of the high-temperature regenerator is set as the operation amount M, and this operation amount M is proportional. In the control method performed by PID control which is control by the sum of the term, the integral term, and the derivative term, when the dead zone is set in the positive direction of the operation amount M (100%) at the rated operation and the change rate of the chilled water temperature is fast An absorption refrigerator characterized in that the width of the dead zone is variable corresponding to the proportional term P so that the width of the dead zone becomes smaller when the width of the dead zone is large and the change rate of the chilled water temperature is slow. Control method.

第1発明によって、吸収冷凍機の設置状況等によって、出力である冷水温度の変化速度が異なる場合でも、冷水温度の変化速度が速い場合は不感帯の幅が大きく、冷水温度の変化速度が遅い場合は不感帯の幅が小さくなることによって、冷水温度の変化速度が速い場合にも遅い場合にも対応できるようになり、吸収冷凍機の定格運転時の冷水温度を安定させることができる。   Even if the change rate of the chilled water temperature that is the output varies depending on the installation status of the absorption refrigerator, etc., the dead zone width is large and the change rate of the chilled water temperature is slow if the change rate of the chilled water temperature is fast. By reducing the width of the dead zone, it becomes possible to cope with a case where the change rate of the cold water temperature is fast and slow, and the cold water temperature during rated operation of the absorption refrigerator can be stabilized.

本発明の吸収冷凍機は、吸収冷凍機の出力である冷水温度を設定水温に制御するために、高温再生器のバーナの燃料弁の開度を操作量Mとして、この操作量Mを比例項、積分項、及び微分項の和による制御であるPID制御によって行う制御方法において、定格運転時の操作量M(100%)のプラス方向に不感帯を定め、冷水温度の変化速度が速い場合は前記不感帯の幅が大きく、冷水温度の変化速度が遅い場合は前記不感帯の幅が小さくなるように、前記比例項Pに対応して前記不感帯の幅を可変とした制御方法であり、本発明の実施例を以下に記載する。   In the absorption refrigerator of the present invention, in order to control the cold water temperature, which is the output of the absorption refrigerator, to the set water temperature, the opening of the fuel valve of the burner of the high-temperature regenerator is set as the operation amount M, and this operation amount M is a proportional term. In the control method performed by PID control, which is control by the sum of the integral term and the derivative term, a dead zone is defined in the positive direction of the operation amount M (100%) during rated operation, and the change rate of the chilled water temperature is high A control method in which the width of the dead zone is variable corresponding to the proportional term P so that the width of the dead zone becomes smaller when the width of the dead zone is large and the change rate of the chilled water temperature is slow. Examples are described below.

次に、本発明の吸収式冷凍機の実施の形態について説明する。図1は本発明に係る吸収式冷凍機の概略構成図、図2は本発明に係る不感帯幅可変の場合の制御フロー図、図3は本発明に係る不感帯幅固定の場合の制御フロー図である。   Next, an embodiment of the absorption refrigerator of the present invention will be described. FIG. 1 is a schematic configuration diagram of an absorption refrigerator according to the present invention, FIG. 2 is a control flow diagram when the dead band width is variable according to the present invention, and FIG. 3 is a control flow diagram when the dead band width is fixed according to the present invention. is there.

本発明の実施形態を説明する。図1は、冷媒に水を使用し、吸収液に臭化リチウム(LiBr)を使用した吸収式冷凍機の概略構成図を示している。高温再生器1は、都市ガス等を燃料とするガスバーナ2の火力によって吸収液と冷媒が混入した稀溶液を加熱して、冷媒を蒸発させ、吸収液と冷媒を分離させる構成である。3は低温再生器、4は凝縮器、5は蒸発器、6は吸収器、7は低温熱交換器、8は高温熱交換器、9乃至11は吸収液管、12は吸収液ポンプ、13乃至15は冷媒管、16は冷媒ポンプ、17は冷水管、18は冷却水管、19はガスバーナ2へのガス供給管、20はガスバーナ2へのガス供給量を制御する燃料弁、21は冷水管17の出口温度を検出する温度検出部、22は温度検出部21の温度検出に基づき燃料弁20の開度を制御する制御部である。制御部22は、データ記憶部に記憶した設定データと、温度検出部21の温度検出に基づくデータとの比較制御によって、燃料弁20の開度を制御する。   An embodiment of the present invention will be described. FIG. 1 shows a schematic configuration diagram of an absorption refrigerator using water as a refrigerant and using lithium bromide (LiBr) as an absorbing solution. The high-temperature regenerator 1 is configured to heat a dilute solution in which an absorbing liquid and a refrigerant are mixed by a thermal power of a gas burner 2 that uses city gas or the like as fuel to evaporate the refrigerant and separate the absorbing liquid and the refrigerant. 3 is a low temperature regenerator, 4 is a condenser, 5 is an evaporator, 6 is an absorber, 7 is a low temperature heat exchanger, 8 is a high temperature heat exchanger, 9 to 11 are absorption liquid tubes, 12 is an absorption liquid pump, 13 15 to 15 are refrigerant pipes, 16 is a refrigerant pump, 17 is a cold water pipe, 18 is a cooling water pipe, 19 is a gas supply pipe to the gas burner 2, 20 is a fuel valve for controlling the gas supply amount to the gas burner 2, and 21 is a cold water pipe. Reference numeral 17 denotes a temperature detection unit that detects the outlet temperature, and 22 denotes a control unit that controls the opening degree of the fuel valve 20 based on the temperature detection of the temperature detection unit 21. The control unit 22 controls the opening degree of the fuel valve 20 by comparison control between the setting data stored in the data storage unit and the data based on the temperature detection of the temperature detection unit 21.

本発明の吸収冷凍機の出力である冷水管17の出口温度(以下、冷水温度という)を設定水温に制御するための制御方法は、高温再生器1のガスバーナ2の燃料弁20の開度を操作量Mとして、この操作量Mを比例項、積分項、及び微分項の和による制御であるPID制御によって行うものであり、これは上記特許文献1(特開平10−170088号公報)に記載されたように、操作量Mは、式1又は式2で表される。制御部22は、上記の他に、マイクロコンピュータ制御に必要なプログラムや、設定温度データ、温度検出部21の温度検出に基づき算出した操作量M、制御動作を行うために必要な諸々のデータを記憶するメモリも備える。   The control method for controlling the outlet temperature of the cold water pipe 17 (hereinafter referred to as the cold water temperature), which is the output of the absorption refrigerator of the present invention, to the set water temperature is to set the opening of the fuel valve 20 of the gas burner 2 of the high temperature regenerator 1. As the operation amount M, this operation amount M is performed by PID control which is control by the sum of a proportional term, an integral term, and a derivative term, which is described in Patent Document 1 (Japanese Patent Laid-Open No. 10-170088). As described above, the operation amount M is expressed by Formula 1 or Formula 2. In addition to the above, the control unit 22 stores a program necessary for microcomputer control, set temperature data, an operation amount M calculated based on temperature detection by the temperature detection unit 21, and various data necessary for performing a control operation. A memory for storing is also provided.

Figure 2007263462
Figure 2007263462

Figure 2007263462
Figure 2007263462

このように操作量Mを比例項、積分項、及び微分項の和による制御であるPID制御によって行う場合、吸収冷凍機の設置状況等によって出力である冷水温度の変化速度が異なる。この変化速度が速い場合は入熱の制御(バーナ2の燃料弁20の開度制御)も速く行われて負荷変動に早く追随できる反面、定格運転時における僅かな冷水温度変化でも入熱の制御(バーナの燃料弁の開度制御)が働き、冷水温度が上下変動して安定しないという問題がある。   Thus, when the manipulated variable M is performed by PID control, which is control based on the sum of the proportional term, the integral term, and the derivative term, the change rate of the chilled water temperature that is output varies depending on the installation status of the absorption chiller. When this rate of change is fast, heat input control (opening control of the fuel valve 20 of the burner 2) can be performed quickly to follow load fluctuations quickly, but heat input control is possible even with slight chilled water temperature changes during rated operation. There is a problem that the temperature of the cold water fluctuates up and down and is not stable.

通常、操作量Mが100%の状態(定格出力100%の状態)で設定水温の冷水を冷水管17の出口から取り出すように設計してあるが、定格運転時(定格出力100%時)の制御量(操作量Mが100%)の状態で、冷水温度が僅かに変化しても、それに追随してバーナ2の燃料弁20の開度制御が行われ、100%の定格運転状態を境にフラツキ現象を呈して、安定した定格運転の制御(操作量Mが100%制御)ができない状態となる。   Normally, it is designed so that cold water with a set water temperature is taken out from the outlet of the cold water pipe 17 in a state where the operation amount M is 100% (state where the rated output is 100%), but at the time of rated operation (when the rated output is 100%). Even if the chilled water temperature changes slightly in the controlled amount state (the manipulated variable M is 100%), the opening degree control of the fuel valve 20 of the burner 2 is performed following this and the 100% rated operating state is reached. Thus, a stable phenomenon of rated operation (operation amount M is controlled to 100%) cannot be achieved.

このフラツキ現象をなくするために、定格運転時の制御量(100%)のプラス方向に不感帯を設け、これによって、100%付近での冷水温度の僅かな変化を吸収して、冷水温度を安定させることができる制御とする方法がある。この方法は、図3に示すように、温度検出部21で現在の水温を検出し(ステップS1)、現在の操作量Mの値Mcをメモリから読み出し(ステップS2)、予め設定された冷水管17の出口水温(設定水温という)とPID設定値(比例項、積分項、及び微分項)から算出した操作量Mと、温度検出部21で検出した水温に基づいて算出した操作量Mと差ΔMを算出し(ステップS3)、現在の操作量Mの値McにこのΔMを加えて新しい操作量Mの値Mcを算出する(ステップS4)。   In order to eliminate this fluctuation phenomenon, a dead zone is provided in the positive direction of the control amount (100%) during rated operation, thereby absorbing a slight change in the chilled water temperature near 100% and stabilizing the chilled water temperature. There is a method that can be controlled. In this method, as shown in FIG. 3, the current water temperature is detected by the temperature detector 21 (step S1), the current value M of the operation amount M is read from the memory (step S2), and a preset cold water pipe is used. The difference between the manipulated variable M calculated from the outlet water temperature (referred to as set water temperature) and the PID set value (proportional term, integral term, and derivative term) and the manipulated variable M calculated based on the water temperature detected by the temperature detector 21 ΔM is calculated (step S3), and this value M is added to the current value M of the manipulated variable M to calculate a new value Mc of the manipulated variable M (step S4).

実施例として、不感帯の幅を20としている。このため、この新しい操作量Mcの値が0以下の場合は0とし(ステップS5)、この新しい操作量Mcの値が120以上の場合は120とする判定制御を行い(ステップS6)、この新しい操作量Mcの値をメモリに保存する(ステップS7)。そして、この新しい操作量Mcから燃料弁20の目標開度である操作量Mtを算出し(ステップS8)、Mcが100以下か100以上かの判定を行いMcが100以下ならばMt=Mcとし、Mcが100以上ならばMt=100とし、これらをメモリに保存し(ステップS9)、燃料弁20の開度がMtになるように制御部22が出力信号を燃料弁20に出す(ステップS10)。   As an example, the width of the dead zone is set to 20. Therefore, when the value of the new operation amount Mc is 0 or less, 0 is set (step S5), and when the value of the new operation amount Mc is 120 or more, determination control is performed to be 120 (step S6). The value of the operation amount Mc is stored in the memory (step S7). Then, an operation amount Mt that is the target opening degree of the fuel valve 20 is calculated from the new operation amount Mc (step S8), and it is determined whether Mc is 100 or less or 100 or more. If Mc is 100 or less, Mt = Mc. If Mc is 100 or more, Mt = 100 is set and stored in the memory (step S9), and the control unit 22 outputs an output signal to the fuel valve 20 so that the opening degree of the fuel valve 20 becomes Mt (step S10). ).

このように、上記の演算を繰り返し行うことによって、現在の操作量Mcが100のときはMtが100であり、このときの燃料弁20の開度MtはMt=100、即ち100%出力状態であり、バーナ2での燃焼状態は100%の状態である。そして、上記算出したΔMが例えば+5のときは、新しい操作量Mcが105となり、以後このようにしてMcが120まで算出されるが、燃料弁20の開度Mtは100のままであるため、100%出力状態を維持することとなり、冷水管17の出口水温が変動しても燃料弁20の開度は100%を保ち、バーナ2での燃焼状態が100%の定格出力状態において、冷水管17の出口水温の僅かな変動があっても、これに追随した燃料弁20の開度変動が生じず不感となり、安定した状態となる。   As described above, by repeating the above calculation, when the current operation amount Mc is 100, Mt is 100. At this time, the opening degree Mt of the fuel valve 20 is Mt = 100, that is, 100% output state. Yes, the combustion state in the burner 2 is 100%. When the calculated ΔM is +5, for example, the new manipulated variable Mc is 105, and Mc is calculated up to 120 in this way, but the opening degree Mt of the fuel valve 20 remains 100. The 100% output state is maintained, and even if the outlet water temperature of the cold water pipe 17 fluctuates, the opening degree of the fuel valve 20 remains 100%, and the cold water pipe is in the rated output state where the combustion state in the burner 2 is 100%. Even if there is a slight fluctuation of the outlet water temperature of 17, the opening degree fluctuation of the fuel valve 20 following this does not occur, and it becomes insensitive and becomes stable.

即ち、燃料弁20の開度を可変する出力値は0〜100%であるが、例えば20の不感帯の幅を設けた場合は、操作量Mの計算値が100以上(100〜120までの範囲)の場合は、燃料弁20の開度を可変する出力値は100%にするものである。このため、冷水管17の出口水温が若干上昇しても、略定格出力100%付近でのフラツキ現象は回避できることとなり、100%付近での冷水管17の出口水温の僅かな変化を吸収して、冷水管17の出口水温を安定させることができるものとなる。上記では不感帯の幅を20と固定しているが、不感帯の幅は、10でも15でもよく、事前のテストによって適切な幅を定めればよい。   That is, the output value for varying the opening degree of the fuel valve 20 is 0 to 100%. However, for example, when a dead zone width of 20 is provided, the calculated value of the operation amount M is 100 or more (range from 100 to 120). ), The output value for changing the opening of the fuel valve 20 is set to 100%. For this reason, even if the outlet water temperature of the chilled water pipe 17 rises slightly, the flicker phenomenon around the rated output of about 100% can be avoided, and a slight change in the outlet water temperature of the chilled water pipe 17 around 100% is absorbed. The outlet water temperature of the cold water pipe 17 can be stabilized. In the above, the width of the dead zone is fixed at 20, but the width of the dead zone may be 10 or 15, and an appropriate width may be determined by a prior test.

ここで、現在の操作量Mcが100を基準としたが、Mc=98を基準として、Mcが98以下か98以上かの判定を行うようにして、Mc=98以上で燃料弁20の開度が100%となるようにすることもできる。この場合は、Mc=98以上で定格出力100%の運転状態となり、冷水管17の出口水温が若干低下しても、また上昇しても、略定格出力100%付近でのフラツキ現象は回避できることとなり、100%付近での冷水管17の出口水温の僅かな変化を吸収して、冷水管17の出口水温を安定させることができるものとなる。   Here, the current operation amount Mc is based on 100, but based on Mc = 98, it is determined whether Mc is 98 or less or 98 or more. Can be set to 100%. In this case, when Mc = 98 or more, the operation state is 100% rated output, and even if the outlet water temperature of the cold water pipe 17 is slightly lowered or increased, the flicker phenomenon around the nearly 100% rated output can be avoided. Thus, a slight change in the outlet water temperature of the cold water pipe 17 near 100% is absorbed, and the outlet water temperature of the cold water pipe 17 can be stabilized.

上記では不感帯の幅を例えば定数20と固定した値を採用しているが、本発明では特に、これを制御速度の設定値に応じて可変とすることによって、冷水管17の出口水温の変化速度が速い場合にも、また遅い場合にも対応できるようにする。   In the above description, a value in which the width of the dead zone is fixed to, for example, a constant 20 is adopted. In the present invention, in particular, by changing this according to the set value of the control speed, the changing speed of the outlet water temperature of the cold water pipe 17 is changed. It is possible to cope with cases where the speed is fast and slow.

即ち、PID制御の比例帯幅の設定値であるP設定値(比例項)に対して可変とし、上記のように固定の不感帯の幅を定数20と設定した状態で、P設定値が1から20まで変化する場合に、不感帯の幅を20/P(20をPで除算)で計算する。P設定値は、吸収式冷凍機の運転管理者等が、リモートコントローラ式操作部を操作することによって可変する値である。このため、温度検出部21の温度検出に基づき、制御部22の動作によって表示される温度表示部の温度変化を運転管理者等が目視して、冷水管17の出口水温の変化が遅い場合は、それに見合ってPを大きくする。これによって、不感帯の幅が小さくなる。また、冷水管17の出口水温の変化が速い場合は、それに見合ってPを小さくする。これによって、不感帯の幅が大きくなる。このようにすれば、冷水管17の出口水温の変化速度に対応した制御ができることとなり、冷水管17の出口水温変化が速い場合にも遅い場合にも対応できることとなり、吸収冷凍機の定格運転時の冷水温度を安定させることができる。この場合も、20/Pの分子の定数20は、不感帯の固定幅20とした場合であり、上記同様に、事前のテストによって適切な値に定めればよい。   That is, the P setting value is set to 1 in a state where the P setting value (proportional term) which is a setting value of the proportional band width of PID control is variable and the fixed dead band width is set to the constant 20 as described above. When changing to 20, the dead zone width is calculated by 20 / P (20 divided by P). The P set value is a value that can be changed by operating the remote controller type operation unit by an operation manager or the like of the absorption chiller. For this reason, based on the temperature detection of the temperature detection part 21, when the operation manager etc. visually observe the temperature change of the temperature display part displayed by operation | movement of the control part 22, and the change of the outlet water temperature of the cold water pipe 17 is slow, , P is increased accordingly. This reduces the width of the dead zone. Moreover, when the change of the outlet water temperature of the cold water pipe 17 is fast, P is reduced correspondingly. This increases the width of the dead zone. In this way, control corresponding to the changing speed of the outlet water temperature of the cold water pipe 17 can be performed, and the case where the change in the outlet water temperature of the cold water pipe 17 is fast or slow can be dealt with. The chilled water temperature can be stabilized. In this case as well, the constant 20 of the 20 / P numerator is a case where the dead band has a fixed width 20, and similarly to the above, it may be set to an appropriate value by a prior test.

図2にはこれに関する制御フローを示している。これにおいて、ステップS1からステップS4までは図3の場合と同様である。ステップS5において、PID制御のP設定値(比例項)からMcの最大幅Mmを算出する(例えば、Mm=20/P)。そして、ステップS4で算出したMcが0以下の場合は0とし(ステップS6)、この新しい操作量Mcの値が100+Mm以上の場合は100+Mmとする判定制御を行い(ステップS7)、この新しい操作量Mcの値をメモリに保存する(ステップS8)。そして、この新しい操作量Mcから燃料弁20の目標開度である操作量Mtを算出し(ステップS9)、Mcが100以下か100以上かの判定を行いMcが100以下ならばMt=Mcとし、Mcが100以上ならばMt=100とし、これらをメモリに保存し(ステップS10)、燃料弁20の開度がMtになるように制御部22が出力信号を燃料弁20に出す(ステップS10)。   FIG. 2 shows a control flow relating to this. In this case, steps S1 to S4 are the same as those in FIG. In step S5, the maximum width Mm of Mc is calculated from the P setting value (proportional term) of PID control (for example, Mm = 20 / P). Then, when Mc calculated in Step S4 is 0 or less, 0 is determined (Step S6), and when the value of the new operation amount Mc is 100 + Mm or more, determination control is performed to be 100 + Mm (Step S7). The value of Mc is stored in the memory (step S8). Then, an operation amount Mt that is the target opening degree of the fuel valve 20 is calculated from the new operation amount Mc (step S9), and it is determined whether Mc is 100 or less or 100 or more. If Mc is 100 or less, Mt = Mc. If Mc is 100 or more, Mt = 100 is set and stored in the memory (step S10), and the control unit 22 outputs an output signal to the fuel valve 20 so that the opening degree of the fuel valve 20 becomes Mt (step S10). ).

このように、上記の演算を繰り返し行うことによって、現在の操作量Mcが100のときはMtが100であり、このときの燃料弁20の開度MtはMt=100、即ち100%出力状態であり、バーナ2での燃焼状態は100%の状態である。そして、ステップS4で算出したMcが0以下の場合は0とし、この新しい操作量Mcの値が100+Mm以上の場合は100+Mmとする制御を行うため、冷水管17の出口水温変化速度に応じた制御ができることとなり、冷水管17の出口水温変化が速い場合にも遅い場合にも対応できることとなる。   As described above, by repeating the above calculation, when the current operation amount Mc is 100, Mt is 100. At this time, the opening degree Mt of the fuel valve 20 is Mt = 100, that is, 100% output state. Yes, the combustion state in the burner 2 is 100%. Then, control is performed according to the outlet water temperature change rate of the chilled water pipe 17 in order to control to 0 when Mc calculated in step S4 is 0 or less and 100 + Mm when the value of this new manipulated variable Mc is 100 + Mm or more. Therefore, it is possible to cope with a case where the outlet water temperature change of the cold water pipe 17 is fast or slow.

本発明は、上記実施形態に限定されず、吸収式冷凍機の配管図は従来技術に記載した特許文献1の各図の形態のいずれにも適用可能であり、本発明の技術的範囲を逸脱しない限り種々の形態に適用できるものである。   The present invention is not limited to the above embodiment, and the piping diagram of the absorption chiller can be applied to any of the forms shown in Patent Document 1 described in the prior art, and deviates from the technical scope of the present invention. Unless otherwise specified, the present invention can be applied to various forms.

本発明に係る吸収式冷凍機の概略構成図である。(実施例1)It is a schematic block diagram of the absorption refrigerator which concerns on this invention. Example 1 本発明に係る不感帯幅可変の場合の制御フロー図である。(実施例1)It is a control flow figure in the case of dead zone variable according to the present invention. Example 1 本発明に係る不感帯幅固定の場合の制御フロー図である。(実施例1)It is a control flow figure in the case of dead zone width fixation concerning the present invention. Example 1

符号の説明Explanation of symbols

1 高温再生器
2 バーナ
3 低温再生器
4 凝縮器
5 蒸発器
6 吸収器
7 低温熱交換器
8 高温熱交換器
9乃至11 吸収液管
12 吸収液ポンプ
13乃至15 冷媒管
16 冷媒ポンプ
17 冷水管
19 ガスバーナ2へのガス供給管
20 燃料弁
21 温度検出部
22 制御部
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Burner 3 Low temperature regenerator 4 Condenser 5 Evaporator 6 Absorber 7 Low temperature heat exchanger 8 High temperature heat exchanger 9 thru | or 11 Absorption liquid pipe 12 Absorption liquid pump 13 thru | or 15 Refrigerant pipe 16 Refrigerant pump 17 Cold water pipe 19 Gas supply pipe to gas burner 2 20 Fuel valve 21 Temperature detection unit 22 Control unit

Claims (1)

吸収冷凍機の出力である冷水温度を設定水温に制御するために、高温再生器のバーナの燃料弁の開度を操作量Mとして、この操作量Mを比例項、積分項、及び微分項の和による制御であるPID制御によって行う制御方法において、定格運転時の操作量M(100%)のプラス方向に不感帯を定め、冷水温度の変化速度が速い場合は前記不感帯の幅が大きく、冷水温度の変化速度が遅い場合は前記不感帯の幅が小さくなるように、前記比例項Pに対応して前記不感帯の幅を可変としたことを特徴とする吸収冷凍機の制御方法。   In order to control the cold water temperature, which is the output of the absorption chiller, to the set water temperature, the opening of the fuel valve of the burner of the high-temperature regenerator is the operation amount M, and this operation amount M is a proportional term, integral term, and differential term. In the control method performed by PID control, which is control by sum, when a dead zone is defined in the positive direction of the operation amount M (100%) during rated operation and the change rate of the chilled water temperature is fast, the width of the dead zone is large. A method for controlling an absorption chiller, wherein the dead zone width is variable corresponding to the proportional term P so that the dead zone width decreases when the change rate of is slow.
JP2006088937A 2006-03-28 2006-03-28 Absorption refrigerator Active JP4776416B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006088937A JP4776416B2 (en) 2006-03-28 2006-03-28 Absorption refrigerator
CN200610166773A CN100576129C (en) 2006-03-28 2006-12-14 Absorption refrigerating machine
KR1020070029492A KR100990822B1 (en) 2006-03-28 2007-03-27 Control Method for Absorption Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088937A JP4776416B2 (en) 2006-03-28 2006-03-28 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2007263462A true JP2007263462A (en) 2007-10-11
JP4776416B2 JP4776416B2 (en) 2011-09-21

Family

ID=38636620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088937A Active JP4776416B2 (en) 2006-03-28 2006-03-28 Absorption refrigerator

Country Status (3)

Country Link
JP (1) JP4776416B2 (en)
KR (1) KR100990822B1 (en)
CN (1) CN100576129C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247508A (en) * 2010-05-27 2011-12-08 Sanyo Electric Co Ltd Operation control method of exhaust gas type absorption chiller heater
CN102313416A (en) * 2011-09-30 2012-01-11 浪达科技(深圳)有限公司 Control system of heating device for vehicular refrigerating equipment and method thereof
CN102313415B (en) * 2011-10-08 2014-01-29 深圳市唯克瑞投资咨询有限公司 Control system of vehicular refrigerating equipment and method thereof
CN104792079B (en) * 2015-04-10 2017-03-08 柳州职业技术学院 A kind of temperature scaling factor method of steam type lithium bromide adsorption water chilling unit
CN109101049B (en) * 2018-10-26 2020-11-24 马鞍山当涂发电有限公司 Desulfurization absorption tower pH value-to-power frequency hybrid control system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118693A (en) * 1991-10-30 1993-05-14 Yamatake Honeywell Co Ltd Controller of absorptive water cooling/heating device
JPH0719652A (en) * 1993-07-01 1995-01-20 Tokyo Gas Co Ltd Absorption refrigerating machine
JPH08233392A (en) * 1995-02-24 1996-09-13 Sanyo Electric Co Ltd Absorption type refrigerating machine
JPH10170088A (en) * 1996-12-10 1998-06-26 Sanyo Electric Co Ltd Controlling method in absorption type refrigerating machine
JP2001201203A (en) * 2000-01-18 2001-07-27 Mitsubishi Heavy Ind Ltd Controller and controlling method for refrigerating machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527615B2 (en) 1989-05-31 1996-08-28 三洋電機株式会社 Temperature control device
US5156013A (en) * 1990-05-29 1992-10-20 Sanyo Electric Co., Ltd. Control device for absorption refrigerator
JP2823338B2 (en) * 1990-08-08 1998-11-11 三洋電機株式会社 Absorption chiller control device
JP2777470B2 (en) * 1990-09-18 1998-07-16 三洋電機株式会社 Control device for absorption refrigerator
JP3059534B2 (en) 1991-07-19 2000-07-04 株式会社鷺宮製作所 Control method of reversible proportional expansion valve
CN1099565C (en) * 1996-08-23 2003-01-22 三洋电机株式会社 Absorption type refrigerating apparatus
JP2002295917A (en) * 2001-03-28 2002-10-09 Sanyo Electric Co Ltd Control method for absorption freezer
JP2002357370A (en) * 2001-05-31 2002-12-13 Sanyo Electric Co Ltd Control method of absorption refrigerating machine
JP4315855B2 (en) * 2004-04-14 2009-08-19 三洋電機株式会社 Absorption refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118693A (en) * 1991-10-30 1993-05-14 Yamatake Honeywell Co Ltd Controller of absorptive water cooling/heating device
JPH0719652A (en) * 1993-07-01 1995-01-20 Tokyo Gas Co Ltd Absorption refrigerating machine
JPH08233392A (en) * 1995-02-24 1996-09-13 Sanyo Electric Co Ltd Absorption type refrigerating machine
JPH10170088A (en) * 1996-12-10 1998-06-26 Sanyo Electric Co Ltd Controlling method in absorption type refrigerating machine
JP2001201203A (en) * 2000-01-18 2001-07-27 Mitsubishi Heavy Ind Ltd Controller and controlling method for refrigerating machine

Also Published As

Publication number Publication date
KR20070097333A (en) 2007-10-04
JP4776416B2 (en) 2011-09-21
CN100576129C (en) 2009-12-30
CN101046693A (en) 2007-10-03
KR100990822B1 (en) 2010-10-29

Similar Documents

Publication Publication Date Title
JP5657110B2 (en) Temperature control system and air conditioning system
JP5583897B2 (en) Cooling tower and heat source system
JP4776416B2 (en) Absorption refrigerator
CN110671777A (en) Control method and device of air conditioner and air conditioner
JP2003279186A (en) Absorption type refrigerator and method for controlling same
JP2009156502A (en) Device for controlling degree of superheat
JP2009204174A (en) Multiple chamber air conditioner
JP2017009269A (en) Air conditioning system
JP2008180504A (en) Cold water circulating system
JP3418655B2 (en) Absorption cycle operation equipment
KR20090077568A (en) Apparatus preventing from crystallizing of absorption chiller and method thereof
JP3186392B2 (en) Absorption refrigerator
JP5388660B2 (en) Operation method of absorption chiller water heater
CN113834177B (en) Refrigerant cooling control method and device and air conditioner
JP2529029B2 (en) Absorption refrigerator and control method thereof
JP2009085507A (en) Control method of absorption type refrigerating machine
JP3203551B2 (en) Combustion control device for absorption chiller / heater
JP2000241039A (en) Controller for absorption refrigerating machine
JP2003148829A (en) Cogeneration type absorption refrigerating machine and its operation control method
JP4820173B2 (en) Control device and control method of absorption refrigeration apparatus
CN114754475A (en) Air conditioner operation control method, operation device, air conditioner and storage medium
JPS58175769A (en) Controller for flow rate of heat-source steam of absorption refrigerator
JP3126884B2 (en) Air conditioner using absorption refrigerator
JP2016044832A (en) Heat medium circulation system
JP2002295918A (en) Control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R151 Written notification of patent or utility model registration

Ref document number: 4776416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3