JPH0719652A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JPH0719652A
JPH0719652A JP16359693A JP16359693A JPH0719652A JP H0719652 A JPH0719652 A JP H0719652A JP 16359693 A JP16359693 A JP 16359693A JP 16359693 A JP16359693 A JP 16359693A JP H0719652 A JPH0719652 A JP H0719652A
Authority
JP
Japan
Prior art keywords
heating
cold water
refrigerant
amount
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16359693A
Other languages
Japanese (ja)
Other versions
JP3321911B2 (en
Inventor
Masayuki Fujimoto
正之 藤本
Kenichi Tanokashira
健一 田之頭
Yasuhisa Asawa
泰久 浅輪
Shozo Kato
昇三 加藤
Yasuo Takase
保夫 高瀬
Kazuhiro Tajima
一弘 田島
Tetsuo Miyamoto
哲雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tokyo Gas Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16359693A priority Critical patent/JP3321911B2/en
Publication of JPH0719652A publication Critical patent/JPH0719652A/en
Application granted granted Critical
Publication of JP3321911B2 publication Critical patent/JP3321911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To immediately deal with an aging change of recovery such as abrupt change of the outside-air temperature, suspension of water supply, a decrease in water pressure and to rapidly recover to a normal capacity when it is returned to a normal state. CONSTITUTION:An absorption type refrigerator has a regenerator 1 having a heater 2, an absorber 9, a condenser 5, and an evaporator 7 in such a manner that chilled water from the evaporator 7 is removed, and heating capacity of the heater 2 is controlled according to concentration or solution or amount of refrigerant liquid, and comprises heating amount control means 26 for dealing with speed change of heating upper limit capacity of the heater 2 in response to the change speed of the concentration of the solution or the amount of the refrigerant liquid and chilled water temperature with respect to the heating capacity of the heater 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱装置を備えた再生
器と、吸収器と、凝縮器と、蒸発器を有する吸収式冷凍
装置であって、経年変化と経時変化とを区別すると共
に、両者に即座に対応できるようにして無駄な加熱を抑
制することが可能な吸収式冷凍装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigeration system having a regenerator equipped with a heating device, an absorber, a condenser, and an evaporator, and distinguishes between aging and aging. The present invention relates to an absorption refrigeration system capable of immediately responding to both of them and suppressing wasteful heating.

【0002】[0002]

【従来の技術】一般に、加熱装置を熱源とする再生器、
吸収器、凝縮器、蒸発器、熱交換器等から構成した吸収
式冷凍装置において、従来、加熱装置の加熱量の制御対
象としては冷水等の負荷を基準としている。
2. Description of the Related Art Generally, a regenerator using a heating device as a heat source,
In an absorption type refrigeration system including an absorber, a condenser, an evaporator, a heat exchanger, etc., conventionally, a load of cold water or the like is used as a control target of a heating amount of a heating device.

【0003】しかし、この場合、吸収器や蒸発器の目詰
まり等の経年変化によって初期能力が低下してゆくもの
である。このため、むやみに加熱量を増加させても無効
冷媒の発生にしかならず、無駄な加熱になる。即ち、加
熱量を増加させ液冷媒を多量に冷媒タンクに供給しても
オーバーフローさせるだけであり、加熱の所謂無駄炊き
となっていた。
However, in this case, the initial capacity is lowered due to secular change such as clogging of the absorber and the evaporator. For this reason, even if the amount of heating is increased unnecessarily, only ineffective refrigerant is generated, resulting in useless heating. That is, even if the amount of heating is increased and a large amount of liquid refrigerant is supplied to the refrigerant tank, it only overflows, resulting in so-called waste cooking of heating.

【0004】そこで、冷媒タンクの冷媒量が所定値以上
になったときに、最大加熱量を予め定めた値から徐々に
小さくすることにより、無駄炊きを未然に防止せんとす
る方法が提案されている(例えば、特願平4−1730
14号参照)。
Therefore, there has been proposed a method for preventing waste cooking by gradually reducing the maximum heating amount from a predetermined value when the amount of refrigerant in the refrigerant tank exceeds a predetermined value. (For example, Japanese Patent Application No. 4-1730
(See No. 14).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法では、吸収器や蒸発器の目詰まり等の経年変化に相当
する適正な加熱量を捜すまでに時間がかかり、その間
は、無効冷媒が発生し、加熱の無駄になってしまう。し
かも、冷房運転を行なう度毎に適正な加熱量を捜す同じ
ような作業を実施する必要があるので、非効率的であっ
た。また、経時的変化(例えば、外気温の急速な変化や
水量不足など)に対しては即座に対応出来なかった。
However, in this method, it takes time to find an appropriate heating amount corresponding to the secular change such as clogging of the absorber and the evaporator, and during that time, the ineffective refrigerant is generated. , Waste of heating. In addition, it is inefficient because it is necessary to perform the same work each time to search for an appropriate amount of heating each time the cooling operation is performed. In addition, it was not possible to immediately respond to changes over time (for example, rapid changes in outside temperature or insufficient water volume).

【0006】本発明は、上記事情に鑑み、溶液の濃度ま
たは冷媒の液量と上記冷水管の冷水温度の変化の速度に
応じて、上記加熱装置の加熱上限能力の変化速度を対応
させることにより、経年変化と経時変化とを区別し、両
者に即座に対応できるようにして無駄な加熱を抑制でき
る吸収式冷凍装置を提供することを目的とするものであ
る。
In view of the above-mentioned circumstances, the present invention makes the change rate of the heating upper limit capacity of the heating device correspond to the change rate of the concentration of the solution or the liquid amount of the refrigerant and the change of the cold water temperature of the cold water pipe. It is an object of the present invention to provide an absorption type refrigerating apparatus which can discriminate between aged deterioration and aged deterioration and can respond to both of them immediately to suppress unnecessary heating.

【0007】[0007]

【課題を解決するための手段】即ち、本発明は、加熱装
置を有する再生器と、吸収器と、凝縮器と、蒸発器とか
らなり、上記蒸発器から冷水を取り出すと共に、溶液の
濃度または冷媒の液量により上記加熱装置の加熱能力を
制御する吸収式冷凍装置装置において、溶液の濃度また
は冷媒の液量と冷水温度の変化の速度に応じて、上記加
熱装置の加熱上限能力の変化速度を対応させる加熱量制
御手段を設けて構成される。
That is, the present invention comprises a regenerator having a heating device, an absorber, a condenser, and an evaporator. The cold water is taken out from the evaporator and the concentration of the solution or In an absorption refrigeration system that controls the heating capacity of the heating device by the liquid amount of the refrigerant, the rate of change of the heating upper limit capacity of the heating device according to the concentration of the solution or the rate of change of the liquid amount of the refrigerant and the cold water temperature. Is provided with a heating amount control means.

【0008】[0008]

【作用】上記した構成により、本発明は、経年変化と経
時変化を区別して両者に即座に対応し、溶液の濃度また
は冷媒の液量と上記冷水管の冷水温度の変化の速度に応
じて、上記加熱装置の加熱上限能力の変化速度を対応さ
せることにより、無駄な加熱を抑制できる。
With the above-described structure, the present invention distinguishes between aging and aging, and immediately responds to both, depending on the concentration of the solution or the amount of the refrigerant and the rate of change of the cold water temperature of the cold water pipe. Unnecessary heating can be suppressed by making the changing speed of the heating upper limit capacity of the heating device correspond.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は家庭用などの小容量の水−リチウム
塩系吸収式冷凍装置を示し、1はバーナ等の冷房用加熱
装置2を備えた再生器で、前記加熱装置2の排気フード
3は並設した暖房用加熱装置4の排気フードと併用する
構成である。5は再生器1に連設した冷媒蒸気を液冷媒
とする凝縮器で、該凝縮器5には冷媒配管6を介して蒸
発器7に臨む冷媒タンク8を接続する。9は蒸発器7に
連通路10を介し連設した吸収器で、該吸収器9の上部
には、前記再生器1で冷媒を蒸発させて生じた濃溶液を
導く濃溶液配管11を溶液熱交換器12を経て配管し、
且つ、吸収器9の下方に稀溶液を回収する溶液タンク1
3を接続し、該溶液タンク13は前記溶液熱交換器12
を経て再生器1に戻る稀溶液配管14を配管し溶液循環
路を構成している。15は冷媒タンク8の下端に配管し
た冷媒ポンプ16をもつ冷媒循環配管で、先端を蒸発器
7の散布装置17に接続している。また、蒸発器7に臨
む冷水管18の出口部18aには冷水温度を検出する温
度センサ19を取り付け、冷媒タンク8には液位センサ
20を取り付けてなる。前記冷水管18は適宜個数の室
内機21に導かれ、この戻り配管が貯溜タンク22及び
切換弁23Aを経て蒸発器7内に戻る循環路を構成す
る。また、暖房時は温水が切換弁23Bを経て前記暖房
用加熱装置4の温水熱交換器24に流れる暖房配管25
を使用する。26は温度センサ19、液位センサ20等
の出力を導く制御装置であり、加熱装置2等を制御す
る。27は吸収器9、凝縮器5を冷却する冷却ファンを
示す。また、29は吸収器9の冷却水配管である。更
に、温水熱交換器24の図1下方には、外気温度を検出
する外気温度センサ30が設けられており、この温度セ
ンサ30は図示を省略したが制御装置26に接続されて
いる。
FIG. 1 shows a small-capacity water-lithium salt absorption refrigeration system for household use, and 1 is a regenerator equipped with a heating device 2 for cooling such as a burner, and an exhaust hood 3 of the heating device 2. Is used together with the exhaust hood of the heating device 4 for heating arranged in parallel. A condenser 5 connected to the regenerator 1 uses a refrigerant vapor as a liquid refrigerant, and a condenser tank 8 facing an evaporator 7 is connected to the condenser 5 via a refrigerant pipe 6. Reference numeral 9 denotes an absorber which is connected to the evaporator 7 via a communication passage 10. Above the absorber 9, a concentrated solution pipe 11 for guiding a concentrated solution generated by evaporating the refrigerant in the regenerator 1 is used as a solution heat exchanger. Piping through the exchanger 12,
Moreover, the solution tank 1 for collecting the dilute solution below the absorber 9
3, the solution tank 13 is connected to the solution heat exchanger 12
A dilute solution pipe 14 returning to the regenerator 1 via the above is provided to form a solution circulation path. Reference numeral 15 is a refrigerant circulation pipe having a refrigerant pump 16 arranged at the lower end of the refrigerant tank 8, the tip of which is connected to the spraying device 17 of the evaporator 7. Further, a temperature sensor 19 for detecting the cold water temperature is attached to the outlet portion 18a of the cold water pipe 18 facing the evaporator 7, and a liquid level sensor 20 is attached to the refrigerant tank 8. The cold water pipe 18 is guided to an appropriate number of indoor units 21, and this return pipe constitutes a circulation path that returns to the inside of the evaporator 7 via the storage tank 22 and the switching valve 23A. Further, at the time of heating, heating pipe 25 in which hot water flows through the switching valve 23B to the hot water heat exchanger 24 of the heating device 4 for heating.
To use. A control device 26 guides the outputs of the temperature sensor 19, the liquid level sensor 20, and the like, and controls the heating device 2 and the like. Reference numeral 27 denotes a cooling fan that cools the absorber 9 and the condenser 5. Reference numeral 29 is a cooling water pipe for the absorber 9. Further, an outside air temperature sensor 30 for detecting the outside air temperature is provided below the hot water heat exchanger 24 in FIG. 1, and the temperature sensor 30 is connected to the control device 26 although not shown.

【0011】次に、この作用を説明すると、まず吸収式
冷凍装置を運転すれば、例えば冷房用加熱装置2の加熱
により再生器1では溶液(稀溶液)が沸騰し、蒸発した
冷媒蒸気と濃溶液を生ずる。この冷媒蒸気は凝縮器5に
導かれ、凝縮されて冷媒液となる。この冷媒液は冷媒配
管6を経て冷媒タンク8に溜まって行き、該冷媒タンク
8から冷媒ポンプ16をもって給送した冷媒液は蒸発器
7内へ散布装置17をもつて散布され、この散布時に生
ずる気化潜熱を利用して冷水管18の伝熱管部を冷やし
て冷水を得、この冷水を室内機21へ導いて冷房を行な
う。
To explain this action, first, when the absorption type refrigerating device is operated, for example, the solution (dilute solution) is boiled in the regenerator 1 by the heating of the heating device 2 for cooling, and the concentrated refrigerant vapor and concentrated vapor are concentrated. Form a solution. This refrigerant vapor is guided to the condenser 5 and condensed to become a refrigerant liquid. This refrigerant liquid accumulates in the refrigerant tank 8 via the refrigerant pipe 6, and the refrigerant liquid fed from the refrigerant tank 8 by the refrigerant pump 16 is sprayed into the evaporator 7 by means of the spraying device 17, and is generated at the time of this spraying. The latent heat of vaporization is used to cool the heat transfer pipe portion of the cold water pipe 18 to obtain cold water, and this cold water is guided to the indoor unit 21 for cooling.

【0012】一方、蒸発器7で発生した冷媒蒸気は連通
路10を経て吸収器9に流れる。この吸収器9では、前
記再生器1で得た濃溶液が濃溶液配管11をもって導か
れて散布され、器内の冷媒蒸気を吸収して稀溶液とす
る。この稀溶液は溶液タンク13、溶液熱交換器12を
経て再生器1に戻る液循環とする。
On the other hand, the refrigerant vapor generated in the evaporator 7 flows into the absorber 9 through the communication passage 10. In the absorber 9, the concentrated solution obtained in the regenerator 1 is guided by the concentrated solution pipe 11 and sprinkled, and the refrigerant vapor in the container is absorbed to form a diluted solution. The diluted solution is circulated through the solution tank 13 and the solution heat exchanger 12 and returned to the regenerator 1 for circulation.

【0013】この場合、冷房運転制御としては冷媒タン
ク8に溜まる液冷媒を生ずる基となる再生器用加熱装置
2の加熱量を制御して行なう。これは、冷媒タンク8の
上部に接続した溶液タンク13へ戻すオーバーフロー管
28の流出口近くの所定量の冷媒液面Leeに配設され
た液位センサ20の液位検出と、蒸発器7から出る冷水
管18に配設された温度センサ19による冷水温度の検
出とで総合して行なう。
In this case, the cooling operation control is performed by controlling the heating amount of the regenerator heating device 2 which is the basis for producing the liquid refrigerant accumulated in the refrigerant tank 8. This is because the liquid level sensor 20 arranged on a predetermined amount of the refrigerant liquid level Lee near the outlet of the overflow pipe 28 returning to the solution tank 13 connected to the upper portion of the refrigerant tank 8 detects the liquid level from the evaporator 7. The temperature sensor 19 provided on the outgoing cold water pipe 18 detects the cold water temperature in a comprehensive manner.

【0014】即ち、オーバーフロー管28より冷媒液を
オーバーフローさせるということは、その冷媒液を得る
だけ加熱装置2の加熱量が過剰(無駄炊き)であるとの
判断に基づく。まず、冷水管18の出口温度が設定温度
に至ったか否かを検出し、設定温度になるように加熱量
を最大加熱量から最小加熱量の範囲で段階的に変更し、
また、冷媒タンク8に溜まる冷媒液面が所定値Leeに
達するか否かを検出し、且つ蒸発器7の冷水管18で出
口の温度を温度センサ19で検知し、その値を制御装置
26に入力し、これに基づき加熱装置2の加熱量を制御
し、冷媒液が冷媒タンク8からオーバーフローしないよ
うに適正な冷媒液面を得るようにする。更に、このとき
の適正な加熱量を上限加熱量として制御装置26に記憶
しておき、次回の冷房運転時には、この上限加熱量を考
慮して制御を開始することにより、経年変化を加味した
適正な上限加熱量が直ちに設定されることとなる。
That is, the fact that the refrigerant liquid overflows from the overflow pipe 28 is based on the judgment that the heating amount of the heating device 2 is excessive (waste cooking) to obtain the refrigerant liquid. First, it is detected whether the outlet temperature of the cold water pipe 18 has reached the set temperature, and the heating amount is changed stepwise within the range of the maximum heating amount to the minimum heating amount so as to reach the setting temperature.
Further, it is detected whether or not the liquid level of the refrigerant accumulated in the refrigerant tank 8 reaches a predetermined value Lee, the temperature of the outlet is detected by the temperature sensor 19 in the cold water pipe 18 of the evaporator 7, and the value is notified to the controller 26. It is input and the heating amount of the heating device 2 is controlled based on this input to obtain an appropriate refrigerant liquid level so that the refrigerant liquid does not overflow from the refrigerant tank 8. Further, the proper heating amount at this time is stored in the control device 26 as the upper limit heating amount, and at the time of the next cooling operation, the upper limit heating amount is taken into consideration to start the control so that an appropriate change considering secular change is taken into consideration. The upper limit heating amount will be set immediately.

【0015】いま、この加熱量制御動作を図2及び図3
に示す冷房運転制御プログラムのフローチャートに基づ
いて詳述すれば、次の通りである。
Now, this heating amount control operation will be described with reference to FIGS.
The following is a detailed description based on the flowchart of the cooling operation control program shown in FIG.

【0016】まず、冷房運転に際し、冷水温度Twの検
出は蒸発器7の出口側の冷水温度を検知する温度センサ
19で行なう。この冷水温度Twが設定温度Twsにな
るように、加熱量Qを最大加熱量Qmax と最小加熱量Q
min との間で、PID(比例、積分、微分)制御をす
る。
First, in the cooling operation, the cold water temperature Tw is detected by the temperature sensor 19 which detects the cold water temperature at the outlet side of the evaporator 7. The heating amount Q is set to the maximum heating amount Qmax and the minimum heating amount Q so that the cold water temperature Tw becomes the set temperature Tws.
PID (proportional, integral, derivative) control between min and.

【0017】ここにおいて、最初は吸収器9、蒸発器7
等が十分な効果を発揮しているが、吸収器9や蒸発器7
の目詰まり等の経年変化により初期能力が低下し、冷水
温度が上がって来るにつれて加熱量Qを増すようにな
り、加熱量Qが増せばそれだけ冷媒液が冷媒タンク8に
溜まってくる。そこで、冷媒タンク8に配設した液位セ
ンサ20でオーバーフローする直前の冷媒液面を検知す
る。
Here, first, the absorber 9 and the evaporator 7
Etc. are fully effective, but absorber 9 and evaporator 7
The initial capacity is deteriorated due to the secular change such as clogging, and the heating amount Q increases as the cold water temperature rises, and as the heating amount Q increases, the refrigerant liquid accumulates in the refrigerant tank 8. Therefore, the liquid level sensor 20 arranged in the refrigerant tank 8 detects the liquid surface of the refrigerant immediately before it overflows.

【0018】そして、冷媒液面が一定値(Lee)以上
になった時、冷水温度Twが前回の冷水温度Tw1と7
℃との間にあるか否かを判断し、この範囲内にある場合
には冷水温度TwをTw1として記憶する。また、冷水
温度Twが7℃以下である場合にはTw1=7℃とした
後、前回運転時に記憶した上限加熱量Qmemoをある数量
分α1だけ小さくする。以下、冷媒液面が下がらない場
合は、所定時間毎に加熱量Qを減じる。この際、上限加
熱量Qmemoが最小加熱量Qmin 以下となった場合には最
小加熱量Qmin を上限加熱量Qmemoとして記憶する。
When the liquid level of the refrigerant exceeds a certain value (Lee), the cold water temperature Tw is the same as the previous cold water temperature Tw1 and 7.
It is determined whether or not the temperature is between 0 ° C., and if it is within this range, the cold water temperature Tw is stored as Tw1. When the cold water temperature Tw is 7 ° C. or lower, Tw1 = 7 ° C., and then the upper limit heating amount Qmemo stored in the previous operation is reduced by a certain amount α1. Hereinafter, when the liquid level of the refrigerant does not drop, the heating amount Q is reduced every predetermined time. At this time, when the upper limit heating amount Qmemo becomes less than or equal to the minimum heating amount Qmin, the minimum heating amount Qmin is stored as the upper limit heating amount Qmemo.

【0019】こうして、冷媒液面が一定値(Lee)以
上になり、上限加熱量Qmemoが調整された結果、冷媒液
面が一定値(Lee)未満となった時には、冷水温度T
wが前回の冷水温度Tw1と比べてある温度差ΔT以上
であるか否かを判断し、冷水温度Twと前回の冷水温度
Tw1との差が温度差ΔT未満である場合には、冷房能
力があまり落ちていないため加熱量Qを大きくする必要
性に乏しいが、冷水温度Twと前回の冷水温度Tw1と
の差が温度差ΔT以上である場合には、加熱量Qを大き
くして冷房能力を回復させる。それには、前回運転時に
記憶した上限加熱量Qmemoをある数量分α2だけ大きく
し、上限加熱量Qmemoが最大加熱量Qmax 以上となった
場合には最大加熱量Qmax を上限加熱量Qmemoとして記
憶する。
In this way, when the coolant liquid level becomes equal to or higher than the constant value (Lee) and the upper limit heating amount Qmemo is adjusted and the coolant liquid level becomes lower than the constant value (Lee), the cold water temperature T
It is determined whether or not w is a certain temperature difference ΔT or more compared to the previous cold water temperature Tw1, and if the difference between the cold water temperature Tw and the previous cold water temperature Tw1 is less than the temperature difference ΔT, the cooling capacity is Since it does not fall so much, it is not necessary to increase the heating amount Q, but when the difference between the cold water temperature Tw and the previous cold water temperature Tw1 is the temperature difference ΔT or more, the heating amount Q is increased to increase the cooling capacity. Restore. To this end, the upper limit heating amount Qmemo stored in the previous operation is increased by a certain amount α2, and when the upper limit heating amount Qmemo becomes equal to or more than the maximum heating amount Qmax, the maximum heating amount Qmax is stored as the upper limit heating amount Qmemo.

【0020】このようにして、経年変化に相当する適正
な上限加熱量Qmemoを捜し、その値を記憶させるように
する。
In this way, an appropriate upper limit heating amount Qmemo corresponding to the secular change is searched for and the value is stored.

【0021】なお、上述の冷房運転プログラムでは、経
年変化に相当する適正な上限加熱量Qmemoを捜す加熱量
制御について説明したが、この加熱量制御は、断水や水
圧低下による水量不足、外気温度の急激な変化、或いは
電圧変動などの経時変化にも適用し得るものである。
In the cooling operation program described above, the heating amount control for searching for the appropriate upper limit heating amount Qmemo corresponding to the secular change has been described. However, this heating amount control is performed by water shortage due to water cutoff or water pressure drop, and outside air temperature. It can also be applied to abrupt changes or changes with time such as voltage fluctuations.

【0022】適正な上限加熱量Qmemoの増減を得る点に
ついては、上記の通り、冷媒タンクの冷媒量が所定値以
上になったときに或る数量分(α1)加熱量を小さく
し、逆にその後所定値未満かつ冷水温度が或る温度差以
上になると或る数量分(α2)加熱量を大きくする(図
4参照)。
As for the point that the appropriate upper limit heating amount Qmemo is increased or decreased, as described above, when the refrigerant amount in the refrigerant tank becomes a predetermined value or more, the heating amount is reduced by a certain amount (α1), and conversely. After that, when the temperature is lower than a predetermined value and the cold water temperature is higher than a certain temperature difference, the heating amount is increased by a certain quantity (α2) (see FIG. 4).

【0023】ところで、上記或る数量分α1とα2を決
定する行程に付いて図5を用いて説明する。
Now, the process of determining the certain quantities α1 and α2 will be described with reference to FIG.

【0024】このα1とα2とを決定するにはステップ
S1にて冷媒タンク8(図1)の冷媒液面レベルを判断
する。この冷媒液面レベルには、レベル1(低)をl=
1、レベル2(中)をl=2,レベル3(高)をl=3
とする。
In order to determine α1 and α2, the refrigerant liquid level in the refrigerant tank 8 (FIG. 1) is determined in step S1. For this refrigerant liquid level, level 1 (low) is set to l =
1, level 2 (middle) l = 2, level 3 (high) l = 3
And

【0025】上記液面レベルが得られたら冷水官18内
の冷水Twの冷水温度の変化率dTw/dtを求める。
この変化率は、dTw/dt≦a<0の場合をJ=1と
し、a<dTw/dt<bの場合をJ=2とし、dTw
/dt≧b>0の場合をJ=3の3種類とする。ここ
で、a=負の定数であり、b=正の定数である。したが
って、J=1のdTw/dt≦a<0の場合とは冷水温
度の下がり方が大きい場合を意味し、J=3のdTw/
dt≧b>0の場合とは温度の上がり方が大きい場合を
意味する。そして、J=2は温度変化率が定数aと定数
bの間に存在する場合、即ち通常運転時の変化率の場合
を示している。
After the liquid level is obtained, the rate of change dTw / dt of the cold water temperature of the cold water Tw in the cold water officer 18 is obtained.
This change rate is set to J = 1 when dTw / dt ≦ a <0, J = 2 when a <dTw / dt <b, and dTw
When / dt ≧ b> 0, there are three types of J = 3. Here, a = a negative constant and b = a positive constant. Therefore, the case of dTw / dt ≦ a <0 of J = 1 means that the cooling water temperature decreases largely, and dTw / dt of J = 3.
The case of dt ≧ b> 0 means that the temperature rises largely. J = 2 indicates that the temperature change rate is between the constant a and the constant b, that is, the change rate during normal operation.

【0026】上記冷水温度の変化率が決定したところ
で、ステップS3に移行してα1、α2=(l,J)と
して上記レベルlと上記冷水温度の変化率Jを変化させ
て(1,2,3)次のテーブルを用いてα1とα2を決
める。
When the rate of change of the cold water temperature is determined, the process proceeds to step S3 and α1, α2 = (l, J) is set to change the level 1 and the rate of change J of the cold water temperature (1, 2, 3) Determine α1 and α2 using the following table.

【0027】 α1,α2の決定: J 1 2 3 レ 1 α1=ΔQ α1=ΔQ α1=ΔQ ベ α2=2ΔQ α2=ΔQ α2=1/2ΔQ ル 2 α1=ΔQ α1=ΔQ α1=ΔQ (l) α2=ΔQ α2=ΔQ α2=ΔQ 3 α1=1/2ΔQ α1=ΔQ α1=2ΔQ α2=ΔQ α2=ΔQ α2=ΔQ この様にして得られたα1とα2に基づいて、Qmem
o(前の段階の運転時における経年変化に相当する加熱
量をあらかじめ定めた最大加熱量Qmaxから差し引い
た値)を得る。図4参照。
Determination of α1 and α2: J 1 2 3 1 1 α1 = ΔQ α1 = ΔQ α1 = ΔQ α2 = 2ΔQ α2 = ΔQ α2 = 1 / 2ΔQ R 2 α1 = ΔQ α1 = ΔQ α1 = ΔQ (l) α2 = ΔQ α2 = ΔQ α2 = ΔQ 3 α1 = 1 / 2ΔQ α1 = ΔQ α1 = 2ΔQ α2 = ΔQ α2 = ΔQ α2 = ΔQ Based on α1 and α2 thus obtained, Qmem
o (the value obtained by subtracting the heating amount corresponding to the secular change during the operation in the previous stage from the predetermined maximum heating amount Qmax) is obtained. See FIG.

【0028】上記のテーブルより、冷媒量が多い場合に
おいて、冷水温度が急激に上昇するときには加熱上限値
を急速に減少させ、冷水温度が一定値以下で低下すると
きには加熱上限値の変化を緩やかに行う。冷媒量が少な
い場合においては、冷水温度の急激な低下時には加熱上
限値を急激に増加させ、一定値より遅く低下するときに
はゆっくり増加させることになる。
From the above table, when the amount of refrigerant is large, the heating upper limit value is rapidly decreased when the cold water temperature rises sharply, and the change of the heating upper limit value is moderate when the cold water temperature falls below a certain value. To do. When the amount of the refrigerant is small, the heating upper limit value is rapidly increased when the cold water temperature is drastically lowered, and is slowly increased when the cold water temperature is slower than a certain value.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
溶液の濃度または冷媒の液量と上記冷水管の冷水温度の
変化の速度に応じて、上記加熱装置の加熱上限能力の変
化速度を対応させることにより、経年変化と経時変化と
を区別し、両者に即座に対応できるようにして無駄な加
熱を抑制できる。即ち、経年変化と経時変化を区別する
と共に、外気温の急激な変化や、水圧低下や水量不足か
ら、元の正常状態に回復すると、吸収器の能力が上昇
し、吸収器の圧力が低下して冷却能力が急上昇するの
で、水温が急激に低下する。したがって、上記経時変化
による能力制限が起きているときに水温が急激に低下し
た場合には、制限能力の回復を早める制御をすることに
より、加熱能力の回復を早めることが出来る。これによ
り、現状の能力に見合った適性な加熱量を即座に探すこ
とが出来るので、無駄な加熱を抑制でき、高効率の運転
が達成できる。
As described above, according to the present invention,
Depending on the concentration of the solution or the amount of the refrigerant and the rate of change of the cold water temperature of the cold water pipe, by corresponding the rate of change of the heating upper limit capacity of the heating device, to distinguish between aging and aging, both. It is possible to immediately suppress the useless heating. In other words, while distinguishing the secular change from the secular change, when the original normal state is restored from a sudden change in the outside air temperature, a decrease in water pressure, and a lack of water volume, the capacity of the absorber increases and the pressure of the absorber decreases. As a result, the cooling capacity rapidly rises, and the water temperature sharply drops. Therefore, when the water temperature sharply decreases while the capacity is being limited due to the above-described change with time, the heating capacity can be recovered more quickly by performing control to accelerate the recovery of the limiting capacity. As a result, it is possible to immediately search for an appropriate heating amount that matches the current capacity, so that useless heating can be suppressed and highly efficient operation can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による吸収式冷凍機の一実施例を示す概
略図である。
FIG. 1 is a schematic view showing an embodiment of an absorption refrigerator according to the present invention.

【図2】冷房運転制御プログラムの一例の一部を示すフ
ローチャートである。
FIG. 2 is a flowchart showing a part of an example of a cooling operation control program.

【図3】図2に示す冷房運転制御のプログラムの残部を
示すフローチャートである。
FIG. 3 is a flowchart showing the rest of the program for cooling operation control shown in FIG.

【図4】上限加熱量Qmemoの増減を得るための行程を示
すフローチャートである。
FIG. 4 is a flowchart showing a process for obtaining an increase / decrease in an upper limit heating amount Qmemo.

【図5】上限加熱量Qmemoの増減を得るに際して必要な
或る数量分α1とα2を決定する行程を示すフローチャ
ートである。
FIG. 5 is a flow chart showing a process of determining a certain quantity α1 and α2 necessary for increasing or decreasing the upper limit heating amount Qmemo.

【符号の説明】[Explanation of symbols]

1……再生器 2……加熱装置(冷房用加熱装置) 5……凝縮器 7……蒸発器 8……冷媒タンク 9……吸収器 18……冷水管 19……冷水温度検知装置 24……温水熱交換器 26……加熱量制御装置 30……外気温度センサ 1 ... Regenerator 2 ... Heating device (cooling heating device) 5 ... Condenser 7 ... Evaporator 8 ... Refrigerant tank 9 ... Absorber 18 ... Cold water pipe 19 ... Cold water temperature detection device 24 ... … Hot water heat exchanger 26 …… Heating amount control device 30 …… Outside air temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 昇三 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 高瀬 保夫 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 田島 一弘 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 宮本 哲雄 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shozo Kato 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yasuo Takase 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Denki Incorporated (72) Inventor Kazuhiro Tajima 2-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Tetsuo Miyamoto 2-18-2 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱装置を有する再生器と、吸収器と、
凝縮器と、蒸発器とからなり、上記蒸発器から冷水を取
り出すと共に、溶液の濃度または冷媒の液量により上記
加熱装置の加熱能力を制御する吸収式冷凍装置におい
て、 溶液の濃度または冷媒の液量と冷水温度の変化の速度に
応じて、上記加熱装置の加熱上限能力の変化速度を対応
させる加熱量制御手段を設けたことを特徴とする吸収式
冷凍装置。
1. A regenerator having a heating device, and an absorber,
In an absorption refrigeration system that consists of a condenser and an evaporator, draws cold water from the evaporator, and controls the heating capacity of the heating device according to the concentration of the solution or the liquid amount of the refrigerant, the concentration of the solution or the liquid of the refrigerant. An absorption type refrigerating apparatus comprising: a heating amount control means for controlling the changing speed of the heating upper limit capacity of the heating device according to the changing amount and the changing speed of the cold water temperature.
【請求項2】 上記溶液の濃度が高いとき又は冷媒の液
量が多いときにおいて、上記冷水管内の冷水温度の上昇
速度が急激な場合には上記加熱装置の加熱上限値の減少
速度を増し、上記冷水温度の変化速度が一定値以下にて
変化する場合には加熱上限値の減少速度を遅らせ、更
に、上記溶液の濃度が低いとき又は冷媒の液量が少ない
ときにおいて、上記冷水温度の低下が急激の場合には加
熱上限値の増加速度を速め、一定値より遅く変化する場
合には上記加熱上限値の増加を遅らせるようにしてな
る、請求項1の吸収式冷凍装置。
2. When the concentration of the solution is high or the amount of the refrigerant is large, and when the rate of rise of the cold water temperature in the cold water pipe is rapid, the rate of decrease of the heating upper limit value of the heating device is increased, If the rate of change of the cold water temperature changes below a certain value, delay the rate of decrease of the heating upper limit value, and further, when the concentration of the solution is low or when the liquid amount of the refrigerant is low, the decrease of the cold water temperature 2. The absorption refrigerating apparatus according to claim 1, wherein the increase rate of the heating upper limit value is increased when the temperature is abrupt, and the increase of the heating upper limit value is delayed when the heating upper limit value changes slower than a certain value.
JP16359693A 1993-07-01 1993-07-01 Absorption refrigeration equipment Expired - Fee Related JP3321911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16359693A JP3321911B2 (en) 1993-07-01 1993-07-01 Absorption refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16359693A JP3321911B2 (en) 1993-07-01 1993-07-01 Absorption refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH0719652A true JPH0719652A (en) 1995-01-20
JP3321911B2 JP3321911B2 (en) 2002-09-09

Family

ID=15776931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16359693A Expired - Fee Related JP3321911B2 (en) 1993-07-01 1993-07-01 Absorption refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3321911B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263462A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Absorption refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263462A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Absorption refrigerating machine

Also Published As

Publication number Publication date
JP3321911B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
WO2019210802A1 (en) Defrosting control method and system
JP2003279186A (en) Absorption type refrigerator and method for controlling same
JPH0719652A (en) Absorption refrigerating machine
KR20120012955A (en) Air conditioning apparatus
JP2006275492A (en) Air conditioning installation and its control method, as well as refrigerating machine operation number control device
KR100193333B1 (en) Absorption Chiller
JP3122284B2 (en) Absorption refrigeration equipment
JP2000055503A (en) Absorption type refrigerating device
JP6603066B2 (en) Waste heat input type absorption chiller / heater
JP2906834B2 (en) Absorption refrigerator
JPH0688653A (en) Method for preventing crystallization of absorption refrigerating machine
JP3240344B2 (en) Refrigerant temperature controller for gas absorption heat source equipment
JP3615353B2 (en) Operation control method for air conditioner
JPH0320671B2 (en)
JP3735744B2 (en) Cooling operation control method for absorption air conditioner
JPH0713637A (en) Cold water temperature control method for cold water generator
JP2000179977A (en) Control for multiple-effect absorption type refrigerating machine
JP2906835B2 (en) Refrigeration equipment
CN117167982A (en) Water heater control method, control device, equipment and computer readable storage medium
JP3735745B2 (en) Cooling operation control method for absorption air conditioner
KR100321586B1 (en) Device for preventing generation of adhering ores in mixing material processing shut
CN117663417A (en) Air conditioner control method and device and air conditioner equipment
JP3122282B2 (en) Absorption refrigerator
JP3604869B2 (en) Operation control method of air conditioner
JPH0243105B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees