JP3321911B2 - Absorption refrigeration equipment - Google Patents

Absorption refrigeration equipment

Info

Publication number
JP3321911B2
JP3321911B2 JP16359693A JP16359693A JP3321911B2 JP 3321911 B2 JP3321911 B2 JP 3321911B2 JP 16359693 A JP16359693 A JP 16359693A JP 16359693 A JP16359693 A JP 16359693A JP 3321911 B2 JP3321911 B2 JP 3321911B2
Authority
JP
Japan
Prior art keywords
heating
refrigerant
amount
upper limit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16359693A
Other languages
Japanese (ja)
Other versions
JPH0719652A (en
Inventor
正之 藤本
健一 田之頭
泰久 浅輪
昇三 加藤
保夫 高瀬
一弘 田島
哲雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tokyo Gas Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16359693A priority Critical patent/JP3321911B2/en
Publication of JPH0719652A publication Critical patent/JPH0719652A/en
Application granted granted Critical
Publication of JP3321911B2 publication Critical patent/JP3321911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、加熱装置を備えた再生
器と、吸収器と、凝縮器と、蒸発器を有する吸収式冷凍
装置であって、経年変化と経時変化とを区別すると共
に、両者に即座に対応できるようにして無駄な加熱を抑
制することが可能な吸収式冷凍装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator having a regenerator provided with a heating device, an absorber, a condenser, and an evaporator. The present invention relates to an absorption refrigeration apparatus capable of responding to both of them immediately and suppressing unnecessary heating.

【0002】[0002]

【従来の技術】一般に、加熱装置を熱源とする再生器、
吸収器、凝縮器、蒸発器、熱交換器等から構成した吸収
式冷凍装置において、従来、加熱装置の加熱量の制御対
象としては冷水等の負荷を基準としている。
2. Description of the Related Art Generally, a regenerator using a heating device as a heat source,
2. Description of the Related Art In an absorption refrigeration system including an absorber, a condenser, an evaporator, a heat exchanger, and the like, conventionally, a heating amount of a heating device is controlled based on a load such as chilled water.

【0003】しかし、この場合、吸収器や蒸発器の目詰
まり等の経年変化によって初期能力が低下してゆくもの
である。このため、むやみに加熱量を増加させても無効
冷媒の発生にしかならず、無駄な加熱になる。即ち、加
熱量を増加させ液冷媒を多量に冷媒タンクに供給しても
オーバーフローさせるだけであり、加熱の所謂無駄炊き
となっていた。
[0003] However, in this case, the initial capacity is reduced due to aging such as clogging of the absorber and the evaporator. For this reason, even if the heating amount is increased unnecessarily, only an ineffective refrigerant is generated, resulting in unnecessary heating. That is, even if the amount of heating is increased and a large amount of liquid refrigerant is supplied to the refrigerant tank, only overflow occurs, and so-called wasted heating is caused.

【0004】そこで、冷媒タンクの冷媒量が所定値以上
になったときに、最大加熱量を予め定めた値から徐々に
小さくすることにより、無駄炊きを未然に防止せんとす
る方法が提案されている(例えば、特願平4−1730
14号参照)。
Therefore, a method has been proposed in which when the amount of refrigerant in the refrigerant tank exceeds a predetermined value, the maximum heating amount is gradually reduced from a predetermined value, thereby preventing waste cooking from occurring. (For example, Japanese Patent Application No. 4-1730)
No. 14).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法では、吸収器や蒸発器の目詰まり等の経年変化に相当
する適正な加熱量を捜すまでに時間がかかり、その間
は、無効冷媒が発生し、加熱の無駄になってしまう。し
かも、冷房運転を行なう度毎に適正な加熱量を捜す同じ
ような作業を実施する必要があるので、非効率的であっ
た。また、経時的変化(例えば、外気温の急速な変化や
水量不足など)に対しては即座に対応出来なかった。
However, in this method, it takes time to find an appropriate heating amount corresponding to aging such as clogging of an absorber or an evaporator. During that time, invalid refrigerant is generated. , Heating is wasted. Moreover, every time the cooling operation is performed, it is necessary to perform a similar operation for searching for an appropriate heating amount, which is inefficient. Further, it was not possible to immediately respond to a temporal change (for example, a rapid change in the outside temperature or a shortage of water).

【0006】本発明は、上記事情に鑑み、溶液の濃度ま
たは冷媒の液量と上記冷水管の冷水温度の変化の速度に
応じて、上記加熱装置の加熱上限能力の変化速度を対応
させることにより、経年変化と経時変化とを区別し、両
者に即座に対応できるようにして無駄な加熱を抑制でき
る吸収式冷凍装置を提供することを目的とするものであ
る。
The present invention has been made in view of the above circumstances, by associating the rate of change in the upper limit heating capacity of the heating device with the rate of change in the chilled water temperature of the chilled water pipe in accordance with the concentration of the solution or the amount of the refrigerant. It is an object of the present invention to provide an absorption refrigeration apparatus that can distinguish between aging and aging and can respond to both immediately and suppress unnecessary heating.

【0007】[0007]

【課題を解決するための手段】即ち、本発明は、加熱装
置を有する再生器と、吸収器と、凝縮器と、蒸発器とか
らなり、上記蒸発器から冷水を取り出すと共に、溶液の
濃度または冷媒の液量により上記加熱装置の加熱能力を
制御する吸収式冷凍装置装置において、溶液の濃度また
は冷媒の液量と冷水温度の変化の速度に応じて、上記加
熱装置の加熱上限能力の変化速度を対応させる加熱量制
御手段を設けて構成される。
That is, the present invention comprises a regenerator having a heating device, an absorber, a condenser, and an evaporator. The cold water is taken out from the evaporator and the concentration of the solution or In an absorption refrigerating apparatus that controls the heating capacity of the heating apparatus according to the amount of the refrigerant, the rate of change of the upper limit heating capacity of the heating apparatus according to the concentration of the solution or the rate of change of the amount of the refrigerant and the temperature of the chilled water. Is provided by providing a heating amount control means for corresponding to.

【0008】[0008]

【作用】上記した構成により、本発明は、経年変化と経
時変化を区別して両者に即座に対応し、溶液の濃度また
は冷媒の液量と上記冷水管の冷水温度の変化の速度に応
じて、上記加熱装置の加熱上限能力の変化速度を対応さ
せることにより、無駄な加熱を抑制できる。
With the above arrangement, the present invention distinguishes between aging and aging and immediately responds to both, depending on the concentration of the solution or the amount of refrigerant and the speed of change of the chilled water temperature of the chilled water pipe. Unnecessary heating can be suppressed by matching the changing speed of the heating upper limit capability of the heating device.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は家庭用などの小容量の水−リチウム
塩系吸収式冷凍装置を示し、1はバーナ等の冷房用加熱
装置2を備えた再生器で、前記加熱装置2の排気フード
3は並設した暖房用加熱装置4の排気フードと併用する
構成である。5は再生器1に連設した冷媒蒸気を液冷媒
とする凝縮器で、該凝縮器5には冷媒配管6を介して蒸
発器7に臨む冷媒タンク8を接続する。9は蒸発器7に
連通路10を介し連設した吸収器で、該吸収器9の上部
には、前記再生器1で冷媒を蒸発させて生じた濃溶液を
導く濃溶液配管11を溶液熱交換器12を経て配管し、
且つ、吸収器9の下方に稀溶液を回収する溶液タンク1
3を接続し、該溶液タンク13は前記溶液熱交換器12
を経て再生器1に戻る稀溶液配管14を配管し溶液循環
路を構成している。15は冷媒タンク8の下端に配管し
た冷媒ポンプ16をもつ冷媒循環配管で、先端を蒸発器
7の散布装置17に接続している。また、蒸発器7に臨
む冷水管18の出口部18aには冷水温度を検出する温
度センサ19を取り付け、冷媒タンク8には液位センサ
20を取り付けてなる。前記冷水管18は適宜個数の室
内機21に導かれ、この戻り配管が貯溜タンク22及び
切換弁23Aを経て蒸発器7内に戻る循環路を構成す
る。また、暖房時は温水が切換弁23Bを経て前記暖房
用加熱装置4の温水熱交換器24に流れる暖房配管25
を使用する。26は温度センサ19、液位センサ20等
の出力を導く制御装置であり、加熱装置2等を制御す
る。27は吸収器9、凝縮器5を冷却する冷却ファンを
示す。また、29は吸収器9の冷却水配管である。更
に、温水熱交換器24の図1下方には、外気温度を検出
する外気温度センサ30が設けられており、この温度セ
ンサ30は図示を省略したが制御装置26に接続されて
いる。
FIG. 1 shows a small-capacity water-lithium salt absorption refrigeration system for home use or the like. Reference numeral 1 denotes a regenerator provided with a heating device 2 for cooling such as a burner, and an exhaust hood 3 of the heating device 2. Is a configuration used in combination with the exhaust hood of the heating device 4 for heating arranged in parallel. 5 is a condenser connected to the regenerator 1 and using the refrigerant vapor as a liquid refrigerant. The condenser 5 is connected to a refrigerant tank 8 facing an evaporator 7 via a refrigerant pipe 6. Reference numeral 9 denotes an absorber connected to the evaporator 7 via a communication passage 10. Above the absorber 9, a concentrated solution pipe 11 for introducing a concentrated solution produced by evaporating the refrigerant in the regenerator 1 is used as a solution heat pipe. Piping through the exchanger 12,
And a solution tank 1 for collecting a dilute solution below the absorber 9.
3 and the solution tank 13 is connected to the solution heat exchanger 12
The dilute solution pipe 14 returning to the regenerator 1 through the pipes forms a solution circulation path. Reference numeral 15 denotes a refrigerant circulation pipe having a refrigerant pump 16 provided at a lower end of the refrigerant tank 8, and a leading end thereof is connected to a spraying device 17 of the evaporator 7. Further, a temperature sensor 19 for detecting the temperature of the cold water is attached to an outlet 18a of the cold water pipe 18 facing the evaporator 7, and a liquid level sensor 20 is attached to the refrigerant tank 8. The cold water pipe 18 is guided to an appropriate number of indoor units 21, and this return pipe constitutes a circulation path returning to the evaporator 7 via the storage tank 22 and the switching valve 23A. Further, at the time of heating, a heating pipe 25 through which hot water flows to the hot water heat exchanger 24 of the heating device 4 for heating through the switching valve 23B.
Use Reference numeral 26 denotes a control device that guides outputs of the temperature sensor 19, the liquid level sensor 20, and the like, and controls the heating device 2 and the like. Reference numeral 27 denotes a cooling fan for cooling the absorber 9 and the condenser 5. Reference numeral 29 denotes a cooling water pipe of the absorber 9. Further, an outside air temperature sensor 30 for detecting an outside air temperature is provided below the hot water heat exchanger 24 in FIG. 1, and the temperature sensor 30 is connected to the control device 26 (not shown).

【0011】次に、この作用を説明すると、まず吸収式
冷凍装置を運転すれば、例えば冷房用加熱装置2の加熱
により再生器1では溶液(稀溶液)が沸騰し、蒸発した
冷媒蒸気と濃溶液を生ずる。この冷媒蒸気は凝縮器5に
導かれ、凝縮されて冷媒液となる。この冷媒液は冷媒配
管6を経て冷媒タンク8に溜まって行き、該冷媒タンク
8から冷媒ポンプ16をもって給送した冷媒液は蒸発器
7内へ散布装置17をもつて散布され、この散布時に生
ずる気化潜熱を利用して冷水管18の伝熱管部を冷やし
て冷水を得、この冷水を室内機21へ導いて冷房を行な
う。
Next, the operation will be described. First, when the absorption type refrigerating apparatus is operated, the solution (dilute solution) is boiled in the regenerator 1 by, for example, heating of the heating device 2 for cooling, and the evaporated refrigerant vapor and the concentrated refrigerant vapor are condensed. This produces a solution. This refrigerant vapor is led to the condenser 5 and is condensed into a refrigerant liquid. This refrigerant liquid accumulates in the refrigerant tank 8 via the refrigerant pipe 6, and the refrigerant liquid fed from the refrigerant tank 8 by the refrigerant pump 16 is sprayed into the evaporator 7 with the spraying device 17, and is generated at the time of spraying. The heat transfer tube portion of the cold water pipe 18 is cooled using latent heat of vaporization to obtain cold water, and the cold water is guided to the indoor unit 21 to perform cooling.

【0012】一方、蒸発器7で発生した冷媒蒸気は連通
路10を経て吸収器9に流れる。この吸収器9では、前
記再生器1で得た濃溶液が濃溶液配管11をもって導か
れて散布され、器内の冷媒蒸気を吸収して稀溶液とす
る。この稀溶液は溶液タンク13、溶液熱交換器12を
経て再生器1に戻る液循環とする。
On the other hand, the refrigerant vapor generated in the evaporator 7 flows to the absorber 9 through the communication path 10. In the absorber 9, the concentrated solution obtained in the regenerator 1 is guided and sprayed through the concentrated solution pipe 11, and absorbs the refrigerant vapor in the vessel to form a dilute solution. The diluted solution is used as a liquid circulation returning to the regenerator 1 via the solution tank 13 and the solution heat exchanger 12.

【0013】この場合、冷房運転制御としては冷媒タン
ク8に溜まる液冷媒を生ずる基となる再生器用加熱装置
2の加熱量を制御して行なう。これは、冷媒タンク8の
上部に接続した溶液タンク13へ戻すオーバーフロー管
28の流出口近くの所定量の冷媒液面Leeに配設され
た液位センサ20の液位検出と、蒸発器7から出る冷水
管18に配設された温度センサ19による冷水温度の検
出とで総合して行なう。
In this case, the cooling operation control is performed by controlling the heating amount of the regenerator heating device 2 which is the basis for generating the liquid refrigerant accumulated in the refrigerant tank 8. This is because the liquid level is detected by the liquid level sensor 20 disposed on a predetermined amount of the refrigerant liquid level Lee near the outlet of the overflow pipe 28 that returns to the solution tank 13 connected to the upper part of the refrigerant tank 8, The detection is performed in combination with the detection of the chilled water temperature by the temperature sensor 19 disposed in the chilled water pipe 18 that exits.

【0014】即ち、オーバーフロー管28より冷媒液を
オーバーフローさせるということは、その冷媒液を得る
だけ加熱装置2の加熱量が過剰(無駄炊き)であるとの
判断に基づく。まず、冷水管18の出口温度が設定温度
に至ったか否かを検出し、設定温度になるように加熱量
を最大加熱量から最小加熱量の範囲で段階的に変更し、
また、冷媒タンク8に溜まる冷媒液面が所定値Leeに
達するか否かを検出し、且つ蒸発器7の冷水管18で出
口の温度を温度センサ19で検知し、その値を制御装置
26に入力し、これに基づき加熱装置2の加熱量を制御
し、冷媒液が冷媒タンク8からオーバーフローしないよ
うに適正な冷媒液面を得るようにする。更に、このとき
の適正な加熱量を上限加熱量として制御装置26に記憶
しておき、次回の冷房運転時には、この上限加熱量を考
慮して制御を開始することにより、経年変化を加味した
適正な上限加熱量が直ちに設定されることとなる。
That is, the overflow of the refrigerant liquid from the overflow pipe 28 is based on the judgment that the heating amount of the heating device 2 is excessive (wasteful cooking) just to obtain the refrigerant liquid. First, it is detected whether or not the outlet temperature of the cold water pipe 18 has reached a set temperature, and the heating amount is changed stepwise in a range from the maximum heating amount to the minimum heating amount so as to reach the setting temperature.
Further, it is detected whether or not the level of the refrigerant stored in the refrigerant tank 8 reaches a predetermined value Lee, and the temperature of the outlet is detected by the temperature sensor 19 with the cold water pipe 18 of the evaporator 7, and the value is sent to the control device 26. Based on the input, the heating amount of the heating device 2 is controlled based on the input, so that an appropriate refrigerant liquid level is obtained so that the refrigerant liquid does not overflow from the refrigerant tank 8. Further, the appropriate heating amount at this time is stored in the control device 26 as the upper limit heating amount, and at the next cooling operation, the control is started in consideration of the upper limit heating amount, so that the appropriate heating considering the aging is performed. The maximum heating amount is set immediately.

【0015】いま、この加熱量制御動作を図2及び図3
に示す冷房運転制御プログラムのフローチャートに基づ
いて詳述すれば、次の通りである。
Now, this heating amount control operation will be described with reference to FIGS.
The following is a detailed description based on the flowchart of the cooling operation control program shown in FIG.

【0016】まず、冷房運転に際し、冷水温度Twの検
出は蒸発器7の出口側の冷水温度を検知する温度センサ
19で行なう。この冷水温度Twが設定温度Twsにな
るように、加熱量Qを最大加熱量Qmax と最小加熱量Q
min との間で、PID(比例、積分、微分)制御をす
る。
First, in the cooling operation, the detection of the chilled water temperature Tw is performed by a temperature sensor 19 for detecting the chilled water temperature at the outlet side of the evaporator 7. The heating amount Q is set to the maximum heating amount Qmax and the minimum heating amount Q so that the cold water temperature Tw becomes the set temperature Tws.
PID (Proportional, Integral, Differential) control is performed between these two values.

【0017】ここにおいて、最初は吸収器9、蒸発器7
等が十分な効果を発揮しているが、吸収器9や蒸発器7
の目詰まり等の経年変化により初期能力が低下し、冷水
温度が上がって来るにつれて加熱量Qを増すようにな
り、加熱量Qが増せばそれだけ冷媒液が冷媒タンク8に
溜まってくる。そこで、冷媒タンク8に配設した液位セ
ンサ20でオーバーフローする直前の冷媒液面を検知す
る。
Here, first, the absorber 9 and the evaporator 7
Are effective enough, but the absorber 9 and the evaporator 7
Due to aging such as clogging, the initial capacity decreases, and as the cold water temperature rises, the heating amount Q increases, and as the heating amount Q increases, the refrigerant liquid accumulates in the refrigerant tank 8. Therefore, the liquid level sensor 20 disposed in the refrigerant tank 8 detects the liquid level of the refrigerant immediately before the overflow.

【0018】そして、冷媒液面が一定値(Lee)以上
になった時、冷水温度Twが前回の冷水温度Tw1と7
℃との間にあるか否かを判断し、この範囲内にある場合
には冷水温度TwをTw1として記憶する。また、冷水
温度Twが7℃以下である場合にはTw1=7℃とした
後、前回運転時に記憶した上限加熱量Qmemoをある数量
分α1だけ小さくする。以下、冷媒液面が下がらない場
合は、所定時間毎に加熱量Qを減じる。この際、上限加
熱量Qmemoが最小加熱量Qmin 以下となった場合には最
小加熱量Qmin を上限加熱量Qmemoとして記憶する。
When the liquid level of the refrigerant becomes equal to or higher than a predetermined value (Lee), the chilled water temperature Tw becomes equal to the previous chilled water temperature Tw1
It is determined whether or not the temperature is within the range, and if it is within this range, the cold water temperature Tw is stored as Tw1. If the cold water temperature Tw is 7 ° C. or lower, Tw1 is set to 7 ° C., and then the upper limit heating amount Qmemo stored during the previous operation is reduced by a certain amount α1. Hereinafter, when the refrigerant liquid level does not drop, the heating amount Q is reduced every predetermined time. At this time, if the upper limit heating amount Qmemo is less than the minimum heating amount Qmin, the minimum heating amount Qmin is stored as the upper limit heating amount Qmemo.

【0019】こうして、冷媒液面が一定値(Lee)以
上になり、上限加熱量Qmemoが調整された結果、冷媒液
面が一定値(Lee)未満となった時には、冷水温度T
wが前回の冷水温度Tw1と比べてある温度差ΔT以上
であるか否かを判断し、冷水温度Twと前回の冷水温度
Tw1との差が温度差ΔT未満である場合には、冷房能
力があまり落ちていないため加熱量Qを大きくする必要
性に乏しいが、冷水温度Twと前回の冷水温度Tw1と
の差が温度差ΔT以上である場合には、加熱量Qを大き
くして冷房能力を回復させる。それには、前回運転時に
記憶した上限加熱量Qmemoをある数量分α2だけ大きく
し、上限加熱量Qmemoが最大加熱量Qmax 以上となった
場合には最大加熱量Qmax を上限加熱量Qmemoとして記
憶する。
In this way, when the refrigerant liquid level becomes equal to or higher than the predetermined value (Lee) and the upper limit heating amount Qmemo is adjusted, the refrigerant liquid level becomes lower than the predetermined value (Lee).
It is determined whether or not w is equal to or more than a certain temperature difference ΔT from the previous cold water temperature Tw1, and if the difference between the cold water temperature Tw and the previous cold water temperature Tw1 is less than the temperature difference ΔT, the cooling capacity is reduced. It is not necessary to increase the heating amount Q because it does not drop much, but if the difference between the chilled water temperature Tw and the previous chilled water temperature Tw1 is equal to or greater than the temperature difference ΔT, the heating amount Q is increased to increase the cooling capacity. Let it recover. To this end, the upper limit heating amount Qmemo stored during the previous operation is increased by a certain amount α2, and when the upper limit heating amount Qmemo is equal to or greater than the maximum heating amount Qmax, the maximum heating amount Qmax is stored as the upper limit heating amount Qmemo.

【0020】このようにして、経年変化に相当する適正
な上限加熱量Qmemoを捜し、その値を記憶させるように
する。
In this way, an appropriate upper limit heating amount Qmemo corresponding to aging is searched for and the value is stored.

【0021】なお、上述の冷房運転プログラムでは、経
年変化に相当する適正な上限加熱量Qmemoを捜す加熱量
制御について説明したが、この加熱量制御は、断水や水
圧低下による水量不足、外気温度の急激な変化、或いは
電圧変動などの経時変化にも適用し得るものである。
In the cooling operation program described above, the heating amount control for searching for an appropriate upper limit heating amount Qmemo corresponding to aging has been described. The present invention can be applied to a rapid change or a temporal change such as a voltage change.

【0022】適正な上限加熱量Qmemoの増減を得る点に
ついては、上記の通り、冷媒タンクの冷媒量が所定値以
上になったときに或る数量分(α1)加熱量を小さく
し、逆にその後所定値未満かつ冷水温度が或る温度差以
上になると或る数量分(α2)加熱量を大きくする(図
4参照)。
As described above, when the amount of refrigerant in the refrigerant tank exceeds a predetermined value, the amount of heating (α1) is reduced by a certain amount (α1). Thereafter, when the chilled water temperature is less than a predetermined value and the chilled water temperature is equal to or more than a certain temperature difference, the heating amount is increased by a certain number (α2) (see FIG. 4).

【0023】ところで、上記或る数量分α1とα2を決
定する行程に付いて図5を用いて説明する。
The process of determining α1 and α2 for a certain quantity will be described with reference to FIG.

【0024】このα1とα2とを決定するにはステップ
S1にて冷媒タンク8(図1)の冷媒液面レベルを判断
する。この冷媒液面レベルには、レベル1(低)をl=
1、レベル2(中)をl=2,レベル3(高)をl=3
とする。
In order to determine α1 and α2, the level of the refrigerant in the refrigerant tank 8 (FIG. 1) is determined in step S1. In this refrigerant liquid level, level 1 (low) is represented by l =
1, 1 = 2 for level 2 (medium), 1 = 3 for level 3 (high)
And

【0025】上記液面レベルが得られたら冷水官18内
の冷水Twの冷水温度の変化率dTw/dtを求める。
この変化率は、dTw/dt≦a<0の場合をJ=1と
し、a<dTw/dt<bの場合をJ=2とし、dTw
/dt≧b>0の場合をJ=3の3種類とする。ここ
で、a=負の定数であり、b=正の定数である。したが
って、J=1のdTw/dt≦a<0の場合とは冷水温
度の下がり方が大きい場合を意味し、J=3のdTw/
dt≧b>0の場合とは温度の上がり方が大きい場合を
意味する。そして、J=2は温度変化率が定数aと定数
bの間に存在する場合、即ち通常運転時の変化率の場合
を示している。
When the liquid level is obtained, the rate of change dTw / dt of the chilled water temperature in the chilled water officer 18 is determined.
The rate of change is J = 1 when dTw / dt ≦ a <0, J = 2 when a <dTw / dt <b, and dTw
The case where / dt ≧ b> 0 is set to three types of J = 3. Here, a = a negative constant and b = a positive constant. Therefore, the case where dTw / dt ≦ a <0 when J = 1 means a case where the temperature of the chilled water drops greatly, and the case where JT = 3
The case where dt ≧ b> 0 means the case where the temperature rise is large. J = 2 indicates the case where the temperature change rate is between the constant a and the constant b, that is, the case of the change rate during normal operation.

【0026】上記冷水温度の変化率が決定したところ
で、ステップS3に移行してα1、α2=(l,J)と
して上記レベルlと上記冷水温度の変化率Jを変化させ
て(1,2,3)次のテーブルを用いてα1とα2を決
める。
When the rate of change of the chilled water temperature is determined, the process proceeds to step S3, where α1, α2 = (l, J), and the level l and the rate of change J of the chilled water temperature are changed to (1, 2, 2). 3) Determine α1 and α2 using the following table.

【0027】 α1,α2の決定: J 1 2 3 レ 1 α1=ΔQ α1=ΔQ α1=ΔQ ベ α2=2ΔQ α2=ΔQ α2=1/2ΔQ ル 2 α1=ΔQ α1=ΔQ α1=ΔQ (l) α2=ΔQ α2=ΔQ α2=ΔQ 3 α1=1/2ΔQ α1=ΔQ α1=2ΔQ α2=ΔQ α2=ΔQ α2=ΔQ この様にして得られたα1とα2に基づいて、Qmem
o(前の段階の運転時における経年変化に相当する加熱
量をあらかじめ定めた最大加熱量Qmaxから差し引い
た値)を得る。図4参照。
Determination of α1, α2: J 1 2 3 1 1 α1 = ΔQ α1 = ΔQ α1 = ΔQ α2 = 2ΔQ α2 = ΔQ α2 = 1 / 2ΔQ L 2 α1 = ΔQ α1 = ΔQ α1 = ΔQ (l) α2 = ΔQ α2 = ΔQ α2 = ΔQ 3 α1 = 1 / 2ΔQ α1 = ΔQ α1 = 2ΔQ α2 = ΔQ α2 = ΔQ α2 = ΔQ Based on α1 and α2 thus obtained, Qmem
o (a value obtained by subtracting the heating amount corresponding to the aging during the operation at the previous stage from the predetermined maximum heating amount Qmax) is obtained. See FIG.

【0028】上記のテーブルより、冷媒量が多い場合に
おいて、冷水温度が急激に上昇するときには加熱上限値
を急速に減少させ、冷水温度が一定値以下で低下すると
きには加熱上限値の変化を緩やかに行う。冷媒量が少な
い場合においては、冷水温度の急激な低下時には加熱上
限値を急激に増加させ、一定値より遅く低下するときに
はゆっくり増加させることになる。
From the above table, when the amount of refrigerant is large, the heating upper limit is rapidly reduced when the chilled water temperature rises rapidly, and the change in the heating upper limit is gently reduced when the chilled water temperature falls below a certain value. Do. When the amount of the refrigerant is small, the heating upper limit value is sharply increased when the temperature of the chilled water is sharply decreased, and is slowly increased when the temperature is slower than a fixed value.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
溶液の濃度または冷媒の液量と上記冷水管の冷水温度の
変化の速度に応じて、上記加熱装置の加熱上限能力の変
化速度を対応させることにより、経年変化と経時変化と
を区別し、両者に即座に対応できるようにして無駄な加
熱を抑制できる。即ち、経年変化と経時変化を区別する
と共に、外気温の急激な変化や、水圧低下や水量不足か
ら、元の正常状態に回復すると、吸収器の能力が上昇
し、吸収器の圧力が低下して冷却能力が急上昇するの
で、水温が急激に低下する。したがって、上記経時変化
による能力制限が起きているときに水温が急激に低下し
た場合には、制限能力の回復を早める制御をすることに
より、加熱能力の回復を早めることが出来る。これによ
り、現状の能力に見合った適性な加熱量を即座に探すこ
とが出来るので、無駄な加熱を抑制でき、高効率の運転
が達成できる。
As described above, according to the present invention,
According to the rate of change of the concentration of the solution or the amount of the refrigerant and the chilled water temperature of the chilled water pipe, by changing the rate of change of the heating upper limit capacity of the heating device, the aging and the aging are distinguished. To avoid unnecessary heating. That is, when distinguishing between aging and aging, and when the original normal state is restored due to a sudden change in the outside air temperature, a decrease in water pressure or a shortage of water, the capacity of the absorber increases, and the pressure of the absorber decreases. As the cooling capacity rises sharply, the water temperature drops sharply. Therefore, when the water temperature suddenly drops while the above-described time-dependent change in the capacity is occurring, the recovery of the heating capacity can be quickened by controlling the recovery of the limited capacity. This makes it possible to immediately search for an appropriate heating amount that matches the current capacity, so that useless heating can be suppressed and high-efficiency operation can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による吸収式冷凍機の一実施例を示す概
略図である。
FIG. 1 is a schematic view showing one embodiment of an absorption refrigerator according to the present invention.

【図2】冷房運転制御プログラムの一例の一部を示すフ
ローチャートである。
FIG. 2 is a flowchart showing a part of an example of a cooling operation control program.

【図3】図2に示す冷房運転制御のプログラムの残部を
示すフローチャートである。
FIG. 3 is a flowchart showing the rest of the cooling operation control program shown in FIG. 2;

【図4】上限加熱量Qmemoの増減を得るための行程を示
すフローチャートである。
FIG. 4 is a flowchart showing a process for obtaining an increase and a decrease in an upper limit heating amount Qmemo.

【図5】上限加熱量Qmemoの増減を得るに際して必要な
或る数量分α1とα2を決定する行程を示すフローチャ
ートである。
FIG. 5 is a flowchart showing a process of determining a certain number of α1 and α2 required for obtaining an increase or decrease of the upper limit heating amount Qmemo.

【符号の説明】[Explanation of symbols]

1……再生器 2……加熱装置(冷房用加熱装置) 5……凝縮器 7……蒸発器 8……冷媒タンク 9……吸収器 18……冷水管 19……冷水温度検知装置 24……温水熱交換器 26……加熱量制御装置 30……外気温度センサ DESCRIPTION OF SYMBOLS 1 ... Regenerator 2 ... Heating apparatus (heating apparatus for cooling) 5 ... Condenser 7 ... Evaporator 8 ... Refrigerant tank 9 ... Absorber 18 ... Cold water pipe 19 ... Cold water temperature detector 24 ... … Hot water heat exchanger 26… heating amount control device 30… outside air temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 昇三 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 高瀬 保夫 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 田島 一弘 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 宮本 哲雄 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平4−68272(JP,A) 特開 昭59−173666(JP,A) 特開 昭58−210464(JP,A) 実開 昭62−171766(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Shozo Kato 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Yasuo Takase 2-18-3 Keihanhondori, Moriguchi-shi, Osaka (72) Inventor Kazuhiro Tajima 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Tetsuo Miyamoto 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric (56) References JP-A-4-68272 (JP, A) JP-A-59-173666 (JP, A) JP-A-58-210464 (JP, A) JP-A-62-171766 (JP, A) U) (58) Field surveyed (Int. Cl. 7 , DB name) F25B 15/00 306

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱装置を有する再生器と、吸収器と、
凝縮器と、蒸発器とからなり、上記蒸発器から冷水を取
り出すと共に、溶液の濃度または冷媒の液量により上記
加熱装置の加熱能力を制御する吸収式冷凍装置におい
て、 溶液の濃度または冷媒の液量と冷水温度の変化の速度に
応じて、上記加熱装置の加熱上限能力の変化速度を対応
させる加熱量制御手段を設けたことを特徴とする吸収式
冷凍装置。
1. A regenerator having a heating device, an absorber,
An absorption refrigeration system comprising a condenser and an evaporator, taking out cold water from the evaporator and controlling the heating capacity of the heating device according to the concentration of the solution or the amount of the refrigerant. An absorption refrigeration system, comprising: a heating amount control means for making a change speed of a heating upper limit capability of the heating device correspond to a change speed of an amount and a cooling water temperature.
【請求項2】 上記溶液の濃度が高いとき又は冷媒の液
量が多いときにおいて、上記冷水管内の冷水温度の上昇
速度が急激な場合には上記加熱装置の加熱上限値の減少
速度を増し、上記冷水温度の変化速度が一定値以下にて
変化する場合には加熱上限値の減少速度を遅らせ、更
に、上記溶液の濃度が低いとき又は冷媒の液量が少ない
ときにおいて、上記冷水温度の低下が急激の場合には加
熱上限値の増加速度を速め、一定値より遅く変化する場
合には上記加熱上限値の増加を遅らせるようにしてな
る、請求項1の吸収式冷凍装置。
2. When the concentration of the solution is high or the amount of the refrigerant is large, when the rising speed of the chilled water temperature in the chilled water pipe is rapid, the decreasing speed of the heating upper limit of the heating device is increased, If the rate of change of the chilled water temperature changes below a certain value, the rate of decrease of the heating upper limit is slowed down.Moreover, when the concentration of the solution is low or the amount of the refrigerant is small, the temperature of the chilled water decreases. 2. The absorption refrigeration system according to claim 1, wherein the rate of increase of the heating upper limit value is increased when the temperature is abrupt, and the rate of increase of the heating upper limit value is delayed when the rate of change is slower than a certain value.
JP16359693A 1993-07-01 1993-07-01 Absorption refrigeration equipment Expired - Fee Related JP3321911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16359693A JP3321911B2 (en) 1993-07-01 1993-07-01 Absorption refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16359693A JP3321911B2 (en) 1993-07-01 1993-07-01 Absorption refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH0719652A JPH0719652A (en) 1995-01-20
JP3321911B2 true JP3321911B2 (en) 2002-09-09

Family

ID=15776931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16359693A Expired - Fee Related JP3321911B2 (en) 1993-07-01 1993-07-01 Absorption refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3321911B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776416B2 (en) * 2006-03-28 2011-09-21 三洋電機株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JPH0719652A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
CN111397045A (en) Unit based on semiconductor heat exchanger, control method thereof and air conditioner
JP2003279186A (en) Absorption type refrigerator and method for controlling same
JPH0674933B2 (en) Air-cooled absorption chiller / heater
JP3321911B2 (en) Absorption refrigeration equipment
JP3390672B2 (en) Absorption refrigeration equipment
JP3122284B2 (en) Absorption refrigeration equipment
JP2906834B2 (en) Absorption refrigerator
JP3208472B2 (en) Absorption chiller / heater and control method thereof
JP2019190709A (en) Absorptive refrigerator
JPH0320671B2 (en)
JP3303440B2 (en) Cold water temperature control method for cold water generator
JP2816790B2 (en) Absorption chiller / heater
JPH0688653A (en) Method for preventing crystallization of absorption refrigerating machine
JP2956362B2 (en) Absorption refrigerator
JP2906835B2 (en) Refrigeration equipment
JP3615353B2 (en) Operation control method for air conditioner
JP3604869B2 (en) Operation control method of air conditioner
JPH0243105B2 (en)
JP3735744B2 (en) Cooling operation control method for absorption air conditioner
JPH08110114A (en) Absorption type refrigerating machine
JPH06347125A (en) Absorption type cold or hot water heater
JP3203039B2 (en) Absorption refrigerator
JPH0243109B2 (en)
JPH08110115A (en) Absorption type refrigerating machine
KR100321586B1 (en) Device for preventing generation of adhering ores in mixing material processing shut

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees