JP3615353B2 - Operation control method for air conditioner - Google Patents

Operation control method for air conditioner Download PDF

Info

Publication number
JP3615353B2
JP3615353B2 JP15390897A JP15390897A JP3615353B2 JP 3615353 B2 JP3615353 B2 JP 3615353B2 JP 15390897 A JP15390897 A JP 15390897A JP 15390897 A JP15390897 A JP 15390897A JP 3615353 B2 JP3615353 B2 JP 3615353B2
Authority
JP
Japan
Prior art keywords
outdoor unit
heating
pump
liquid level
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15390897A
Other languages
Japanese (ja)
Other versions
JPH112472A (en
Inventor
秀俊 有馬
雅士 泉
朗 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15390897A priority Critical patent/JP3615353B2/en
Priority to US08/984,017 priority patent/US5966954A/en
Priority to CNB971208352A priority patent/CN1149357C/en
Priority to KR1019970065880A priority patent/KR100502283B1/en
Publication of JPH112472A publication Critical patent/JPH112472A/en
Application granted granted Critical
Publication of JP3615353B2 publication Critical patent/JP3615353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空調装置に関するものであり、特に詳しくは室外機と、全数もしくは過半数が室外機より下方に設置された複数の室内機との間で、相変化可能な流体を主に液体と気体との比重差を利用して循環させ、各室内機において少なくとも冷房可能に構成した装置の制御に関するものである。
【0002】
【従来の技術】
従来から、相変化可能な流体、すなわち潜熱を出し入れすることによって液体と気体との間で状態が変化する流体の搬送動力を必要としない空調装置として、例えば図8に示されるような装置があるが、この装置は凝縮器として機能する室外機1を建物の高所位置に設置し、この室外機1と、これより低い位置にある被空調室に設置の室内機4の熱交換器5との間を液相管6と気相管7とで連結し、室外機1で放熱・凝縮した液体をその自重によって室内機4の熱交換器5に液相管6を介して供給する一方、室内機4の熱交換器5で温度の高い室内空気と熱交換して吸熱・蒸発した気体を、流体が凝縮して低圧となっている室外機1に気相管7を介して還流させることで循環を可能とするものであから、電動ポンプなどの搬送動力が不要となり、ランニングコストが抑制できると云った利点がある。なお、8は流量調整弁、9は送風機である。
【0003】
【発明が解決しようとする課題】
しかし、この種の空調装置にあっては、封入した相変化が可能な流体の圧力が急激に変化すると沸騰や気泡発生などが起こって円滑な循環ができなくなり、空調に不調を来す恐れがあった。また、冷房運転中に相変化可能な流体が室外機に液体の状態で多量に溜って室内機に循環する量が不足することがある、などと云った問題点があり、これらの解決が課題となっていた。
【0005】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するため、吸収式冷凍機からなる室外機と、全数もしくは過半数が室外機より下方に設置された複数の室内機との間で、相変化可能な流体を液相と気相との比重差と、液相管に設置した冷房用補助ポンプの吐出力とを利用して循環させ、各室内機において冷房可能に構成すると共に、前記冷房用補助ポンプの吸入側に、暖房運転時に開弁し、冷房運転時に閉弁する開閉弁を介して暖房用ポンプの吐出側を連結し、且つ、この暖房用ポンプの吸入側を前記冷房用補助ポンプの吐出側に設けた、冷房運転時に開弁し、暖房運転時に閉弁する開閉弁と室内機との間に連結し、室外機で吸熱して蒸発した気体を室内機に導入して放熱・凝縮させ、この凝縮した液体を前記暖房用ポンプの吐出力によって室外機に戻し、各室内機において暖房可能に構成した空調装置において、冷房用補助ポンプと暖房用ポンプの吸入側にそれぞれ液面検知手段を有する第1・第2のレシーバタンクを設けると共に、室外機を流れる前記流体の液面を検出する液面検知手段を設け、冷房運転時に、第1のレシーバタンクの液面が所定レベル以上になると冷房用補助ポンプを起動し、所定レベル以下になると冷房用補助ポンプの運転を停止し、室外機における前記流体の液面が所定レベル以上になると室外機における熱源投入を停止するようにした第の構成の運転制御方法と、
【0006】
吸収式冷凍機からなる室外機と、全数もしくは過半数が室外機より下方に設置された複数の室内機との間で、相変化可能な流体を液相と気相との比重差と、液相管に設置した冷房用補助ポンプの吐出力とを利用して循環させ、各室内機において冷房可能に構成すると共に、前記冷房用補助ポンプの吸入側に、暖房運転時に開弁し、冷房運転時に閉弁する開閉弁を介して暖房用ポンプの吐出側を連結し、且つ、この暖房用ポンプの吸入側を前記冷房用補助ポンプの吐出側に設けた、冷房運転時に開弁し、暖房運転時に閉弁する開閉弁と室内機との間に連結し、室外機で吸熱して蒸発した気体を室内機に導入して放熱・凝縮させ、この凝縮した液体を前記暖房用ポンプの吐出力によって室外機に戻し、各室内機において暖房可能に構成した空調装置において、冷房用補助ポンプと暖房用ポンプの吸入側にそれぞれ液面検知手段を有する第1・第2のレシーバタンクを設けると共に、室外機を流れる前記流体の液面を検出する液面検知手段を設け、暖房運転時に、第2のレシーバタンクの液面が所定レベル以上になると暖房用ポンプを起動し、所定レベル以下になると暖房用ポンプの運転を停止すると共に、室外機における前記流体の液面が第1の所定レベル以上になると暖房用ポンプの運転を停止し、室外機における前記流体液面が前記第1の所定レベルより低い第2の所定レベル以下になると室外機における熱源投入を停止するようにした第の構成の運転制御方法と、
を提供するものである。
【0007】
【発明の実施の形態】
以下、本発明の実施形態について、図1〜図7を参照して説明する。なお、理解を容易にするため、これらの図においても前記図8において説明した部分と同様の機能を有する部分には、同一の符号を付した。
【0008】
図1は、本発明になる運転制御方法によって制御する空調装置の一構成例を示したものであり、1は冷熱または温熱を選択的に発生させることができる、例えば吸収式冷凍機などからなる室外機であり、建物の例えば屋上にある機械室などに設置され、例えば蒸発器の内部に配管した熱交換器2を介して、閉回路3に封入した相変化が可能な流体、例えば低温度でも圧力が低下すると容易に蒸発し得る、R−134aと熱の授受を行う。
【0009】
なお、蒸発器に配管した熱交換器2から冷熱を供給したり、温熱を供給することができる吸収式冷凍機としては、例えば特開平7−318189号公報などに開示されたものが使用できる。
【0010】
5は、建物の各部屋に設置した室内機4の熱交換器であり、室外機1の熱交換器2とは、図のように液相管6・気相管7および流量調整弁8によって配管・接続されて、前記閉回路3を形成している。
【0011】
そして、液相管6には、室外機1の熱交換器2で放熱し、凝縮して流れ出た液体のR−134aを溜めるためのレシーバタンク10と、このタンクに溜ったR−134aを室内機4に搬送するための電動ポンプ11と、開閉弁12とを直列に設置すると共に、この経路とは並行に、室内機4の熱交換器5で暖房作用を行って凝縮し、流れ出た液体のR−134aを溜めるためのレシーバタンク13と、このタンクに溜ったR−134aを室外機1に戻すための電動ポンプ14と、開閉弁15とを直列に設置し、レシーバタンク10と13には、それぞれ上下二箇所に液面を検知するためのセンサ16と17、18と19とを設けてある。
【0012】
また、室外機1の熱交換器2の出入口部を連通し、この部分に液面検知管20を設置すると共に、この液面検知管20の上下二箇所にも液面センサ21と22とを設けてある。
【0013】
また、23は図示しない吸収液を加熱して冷媒蒸気を蒸発分離するためのバーナ24に接続した燃料管に設けた燃料調整弁、25は熱交換器2から液相管6に流れ出たR−134aの圧力を検出するための圧力センサ、26〜29は閉回路3を循環しているR−134aの温度を検出するための温度センサであり、温度センサ26と27は熱交換器2の出入口部に、温度センサ28と29は熱交換器5の出口部に、それぞれ設けられている。
【0014】
また、室外機1には室外制御装置30を、室内機4には室内制御装置31を設けてある。そして、室外制御装置30は、冷房運転中は圧力センサ25が検出するR−134aの圧力、すなわち熱交換器2で冷却作用を受けて凝縮し、液相管6に吐出するR−134aの圧力が所定圧力、例えばR−134aが7℃で凝縮する時の平衡圧力7.5Pa程度になるように、燃料調整弁23の開度を調節する機能を備えると共に、温度センサ27が検出するR−134aの温度が所定温度、すなわち熱交換器2で冷却作用を受けて凝縮し、液相管6に吐出するR−134aの温度が、例えば5℃以下に低下すると燃料調整弁23を閉弁する機能を備え、暖房運転中は温度センサ26が検出するR−134aの温度、すなわち熱交換器2で加熱作用を受けて蒸発し、気相管6に吐出するR−134aの温度が所定温度、例えば55℃になるように、燃料調整弁23の開度を調節する機能を備えており、室内制御装置31は、冷房運転中は温度センサ29が検出するR−134aの温度、すなわち熱交換器5を介して冷房作用を行って蒸発し、温度上昇して気相管7に吐出するR−134aの温度が所定温度、例えば12℃になるように流量調整弁8の開度を調節する機能を備え、暖房運転中は温度センサ28が検出するR−134aの温度、すなわち熱交換器5を介して暖房作用を行って凝縮し、温度低下して液相管6に吐出するR−134aの温度が所定温度、例えば50℃になるように流量調整弁8の開度を調節する機能を備えている。
【0015】
また、室内制御装置31と通信可能で、冷暖房の指定、運転の開始と停止、送風の強弱選択、温度設定などが行えるリモコン32を各室内機4に対応して設置してある。
【0016】
そして、室外機1においては、冷房モードでの運転中に燃料調整弁23の開度を大きくし、バーナ24に供給する燃料を増やして火力を増加すると、図示しない吸収液から蒸発分離する冷媒の量が増加する。この増加した冷媒蒸気が、図示しない凝縮器で放熱して凝縮し、液体となって熱交換器2の周囲に供給され、熱交換器2内を流れるR−134aから熱を奪って蒸発するので、熱交換器2内を流れるR−134aを冷却する機能が強化され、流量が同じであればその温度低下幅が拡大する。逆に、燃料調整弁23の開度を小さくしてバーナ24の火力を減じると、熱交換器2内を流れるR−134aを冷却する機能が弱まり、その温度低下幅は縮小する。一方、暖房モードでの運転中に燃料調整弁23の開度を大きくし、バーナ24に供給する燃料を増やして火力を増加すると、図示しない吸収液から蒸発分離する冷媒の量が増加する。この増加した冷媒蒸気と、加熱されて冷媒を蒸発分離した吸収液とが、熱交換器2の周囲に供給され、熱交換器2内を流れるR−134aに放熱するので、熱交換器2内を流れるR−134aを加熱する機能が強化され、流量が同じであればその温度上昇幅が拡大する。逆に、燃料調整弁23の開度を小さくしてバーナ24の火力を減じると、熱交換器2内を流れるR−134aを加熱する機能が弱まり、その温度上昇幅は縮小する。
【0017】
一方、室内機4においては、流量調整弁8の開度が同じであれば、空調負荷が大きいほど温度センサ28と29が検出するR−134aの温度差は拡大し、空調負荷が小さいほど前記温度差は縮小する。
【0018】
次に、閉回路3に封入したR−134aの循環サイクルを説明すると、冷房運転は室外制御装置30が出力する制御信号に基づいて、開閉弁15が閉弁し、電動ポンプ14の運転が停止した状態で、開閉弁12が開弁し、電動ポンプ11が起動して行われる。そして、室外機1では前記のようにして冷熱が発生しており、この冷熱によってR−134aが熱交換器2の管壁を介して冷却され、凝縮して7.5Pa、7℃で液相管6に吐出し、レシーバタンク10に溜まり、電動ポンプ11の搬送力によって各室内機4に供給される。
【0019】
そして、電動ポンプ11の運転は、室外制御装置30によって例えば図2に示したように制御される。すなわち、レシーバタンク10の上部側に設置した液面センサ17がR−134aを検出しているときには電動ポンプ11を運転し、下部側に設置した液面センサ16がR−134aを検出していないときには電動ポンプ11の運転を停止し、液面センサ16がR−134aを検出し、液面センサ17がR−134aを検出していないときには、電動ポンプ11が運転中であれば運転を継続し、停止中であれば停止を継続するように制御される。
【0020】
一方、各室内機4においては、送風機9によって温度の高い室内空気が熱交換器5に強制的に供給されているので、室外機1から7℃で供給された液体のR−134aは室内空気から熱を奪って蒸発し、冷房作用を行なう。
【0021】
そして、気体となったR−134aは、冷却されて凝縮・液化し、低圧になっている室外機1の熱交換器2に気相管7を通って流入する。
【0022】
このR−134aの循環において、ある室内機4における冷房負荷が増加(または減少)し、その室内機4の温度センサ29が検出するR−134aの温度が上昇(または低下)すると、その温度上昇(または温度低下)が解消するように、その室内制御装置31からの制御信号を受けて該当する流量調整弁8の開度が増加(または減少)し、冷房負荷が増加した室内機4の熱交換器5に流入するR−134aの量が増加(または減少)するので、その温度センサ29が検出するR−134aの温度上昇(または低下)はその内解消する。
【0023】
冷房負荷の変動に起因する室内機4におけるR−134aの圧力と温度の変化は、室外機1では圧力センサ25が検出するR−134aの圧力にいち早く影響が表れる。すなわち、温度センサ27がR−134aの温度変化を検出するは、室内機4で温度が変化したR−134aが室外機1に実際に流入して初めて影響が表れる(R−134aの循環速度に比較すると熱伝導は無視し得る)が、室内機4におけるR−134aの圧力の変化は速やかに室外機1に伝わる。
【0024】
そして、圧力センサ25が検出する応答性に優れたR−134aの圧力に基づいて、燃料調整弁23の開度が制御される。具体的には、圧力センサ25が検出するR−134aの圧力に変化が表れると、その変化を解消するように燃料調整弁23の開度を室外制御装置30によって容量制御する。
【0025】
燃料調整弁23は、温度センサ27の出力によっても制御される。すなわち、室外制御装置30は温度センサ27とも繋がっており、例えば図3に示したように、温度センサ27が検出するR−134aの温度、すなわち熱交換器2で冷却されて凝縮したR−134aの温度が所定温度、例えば5℃より高いときには、バーナ24による加熱の継続を指示するが、R−134aの温度が5℃以下になったときには、燃料調整弁23の閉弁を指示して燃焼と停止する。
【0026】
燃料調整弁23を閉弁し、バーナ24による加熱を停止すると、熱交換器2の周囲に供給される液状冷媒の量が急速に減り、これにより冷熱の発生量が急減する。そして、所定時間、例えば3分が経過するのを待って温度センサ27によるR−134aの温度検出を繰り返す。
【0027】
上記制御を行うことによって、燃料調整弁23の開度、すなわちR−134aを冷却する冷熱の発生量を、温度より応答性に優れた圧力に基づいて制御しながらも、室外機1を構成している吸収式冷凍機の冷媒(水)が過冷却現象を起こして氷結すると云った事態は回避できる。
【0028】
さらに、燃料調整弁23は、熱交換器2で凝縮したR−134aの液面レベルに基づいても制御される。すなわち、室外制御装置30は液面検知管20の下部側に設置した液面センサ21とも繋がっており、例えば図4に示したように、液面センサ21がR−134aを検出していないときには、バーナ24による加熱の継続を指示するが、液面センサ21がR−134aを検出したときには、燃料調整弁23の閉弁を指示して燃焼を停止し、冷熱の発生を停止させる。
【0029】
燃料調整弁23を閉弁してバーナ24による加熱を停止すると、前記したように熱交換器2の周囲に供給する液状冷媒の量が急減し、R−134aの温度が上昇する。このため、この部分の圧力が上昇し、これにより熱交換器2内にあるR−134aは液相管6に吐出し易くなる。そして、所定時間、例えば3分が経過するのを待って液面センサ21によるR−134aの検出を繰り返す。
【0030】
上記制御を行うことによって、室外機1にR−134aの液体が多量に溜って室内機4に循環するR−134aが不足すると云ったことが回避される。
【0031】
次に、開閉弁12を閉弁し、電動ポンプ11の運転を停止した状態で、開閉弁15を開弁し、電動ポンプ14を起動して行う暖房運転時のR−134aの循環サイクルと、そのときの機器制御について説明する。
【0032】
室外機1では前記のようにして温熱が発生しており、この温熱によってR−134aが熱交換器2の管壁を介して加熱され、蒸発して気相管7に吐出し、室内機4の各熱交換器5に所定温度、例えば55℃で供給される。
【0033】
各室内機4においては、送風機9によって温度の低い室内空気が熱交換器5に強制的に供給されているので、室外機1から55℃で供給された気体のR−134aは室内空気に放熱して凝縮し、暖房作用を行なう。
【0034】
そして、凝縮して液体となったR−134aは、レシーバタンク13に溜り、電動ポンプ14によって室外機1の熱交換器2に液相管6を通って送られる。
【0035】
このとき、電動ポンプ14は室外制御装置30によって、例えば図5に示したように制御される。すなわち、レシーバタンク13の上部側に設置した液面センサ19がR−134aを検出しているときには電動ポンプ14を運転し、下部側に設置した液面センサ18がR−134aを検出していないときには電動ポンプ14の運転を停止し、液面センサ18がR−134aを検出し、液面センサ19がR−134aを検出していないときには、電動ポンプ14が運転中であれば運転を継続し、停止中であれば停止を継続するように制御される。
【0036】
さらに、電動ポンプ14は、熱交換器2で加熱されて蒸発しているR−134aの液面レベルに基づいても制御される。すなわち、室外制御装置30は液面検知管20の上部側に設置した液面センサ22とも繋がっており、例えば図6に示したように、液面センサ22がR−134aを検出していないときには、電動ポンプ14の運転継続を指示するが、液面センサ22がR−134aを検出したときには、電動ポンプ14の運転停止が指示される。
【0037】
電動ポンプ14をこのように制御することによって、液体のR−134aが気相管7に流入する事態が回避される。そして、所定時間、例えば1分が経過するのを待って液面センサ22によるR−134aの検出を繰り返す。
【0038】
なお、上記R−134aの循環において、ある室内機4における暖房負荷が増加(または減少)し、その室内機4の温度センサ28が検出するR−134aの温度が低下(または上昇)すると、その温度低下(または温度上昇)が解消するように、その室内制御装置31からの制御信号を受けて該当する流量調整弁8の開度が増加(または減少)し、暖房負荷が増加した室内機4の熱交換器5に流入するR−134aの量が増加(または減少)するので、その温度センサ29が検出するR−134aの温度低下(または上昇)はその内解消する。
【0039】
そして、暖房負荷の変動に起因する、温度が変化したR−134aが室外機1に流入したり、室外機1に流入するR−134aの流量が変化して、温度センサ26が検出するR−134aの温度に変化が生じると、その変化を解消するように、燃料調整弁23の開度が室外制御装置30により制御される。
【0040】
また、燃料調整弁23は、液面センサ21の出力によっても制御される。すなわち、燃料調整弁23は、室外制御装置30により、例えば図7に示したように、液面センサ21がR−134aを検出しているときには、バーナ24による加熱の継続が指示されるが、液面センサ21がR−134aを検出していないときには、燃料調整弁23を閉弁しバーナ24による加熱を停止が指示される。
【0041】
上記制御によって、液体のR−134aが不足しているときのバーナ24による加熱、いわゆる空焚きが回避される。そして、所定時間、例えば3分が経過するのを待って液面センサ21によるR−134aの検出を繰り返す。
【0042】
なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0043】
例えば、温度センサ28・29は、熱交換器5に吹き付ける室内空気の温度変化が検出できるように設置したり、温度センサ28・29に代えて、熱交換器5の出入口部におけるR−134aの圧力差が検出できる圧力センサを設置して、室内制御装置31に空調負荷として出力するように構成することもできる。
【0044】
また、閉回路3に封入する相変化可能な流体としては、R−134aの他にも、R−407c、R−404A、R−410cなど、潜熱による熱移動が可能なものであっても良い。
【0046】
【発明の効果】
以上説明したように、請求項の発明によれば、室外機に相変化が可能な液体が多量に溜って室内機に循環する量が不足すると云ったことが回避される。
【0047】
また、請求項の発明によれば、蒸発器として機能している室外機から気相管に相変化可能な流体が液体のまま流入すると云った事態が回避でき、さらに、室外機における空焚きが回避される。
【図面の簡単な説明】
【図1】装置構成の説明図である。
【図2】冷房用補助ポンプの制御の説明図である。
【図3】過冷却を防止する制御の説明図である。
【図4】相変化可能な流体の循環量不足を防ぐ制御の説明図である。
【図5】暖房用ポンプの制御の説明図である。
【図6】相変化可能な流体が気相管に液体で流入するのを防ぐ制御の説明図である。
【図7】室外機における空焚きを防ぐ制御例の説明図である。
【図8】従来技術の説明図である。
【符号の説明】
1 室外機
2 熱交換器
3 閉回路
4 室内機
5 熱交換器
6 液相管
7 気相管
8 流量調整弁
9 送風機
10 レシーバタンク
11 電動ポンプ
12 開閉弁
13 レシーバタンク
14 電動ポンプ
15 開閉弁
16〜19 液面センサ
20 液面検知管
21・22 液面センサ
23 燃料調整弁
24 バーナ
25 圧力センサ
26〜29 温度センサ
30 室外制御装置
31 室内制御装置
32 リモコン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner, and more particularly, mainly a liquid capable of changing phase between an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit. It is related to the control of the apparatus that is circulated by utilizing the difference in specific gravity and configured to be capable of cooling at least in each indoor unit.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is an apparatus as shown in FIG. 8 as an air conditioner that does not require power for transporting a phase changeable fluid, that is, a fluid whose state changes between liquid and gas by putting in and out latent heat. However, this apparatus installs the outdoor unit 1 functioning as a condenser at a high position in the building, the outdoor unit 1, and the heat exchanger 5 of the indoor unit 4 installed in the air-conditioned room at a lower position. The liquid phase pipe 6 and the gas phase pipe 7 are connected to each other, and the heat radiated and condensed in the outdoor unit 1 is supplied to the heat exchanger 5 of the indoor unit 4 through the liquid phase pipe 6 by its own weight. The heat exchanged with the indoor air having a high temperature in the heat exchanger 5 of the indoor unit 4 is recirculated through the gas phase pipe 7 to the outdoor unit 1 having a low pressure due to the condensation of the fluid. This makes it possible to circulate, so it does not require transport power such as an electric pump. , There is an advantage that the running cost is said that can be suppressed. In addition, 8 is a flow regulating valve and 9 is a blower.
[0003]
[Problems to be solved by the invention]
However, in this type of air conditioner, if the pressure of the enclosed fluid that can change the phase changes suddenly, boiling or bubble generation may occur and smooth circulation may not be possible, resulting in malfunction of the air conditioning. there were. In addition, there is a problem in that the amount of fluid that can change phase during cooling operation may accumulate in the outdoor unit in a liquid state and circulate to the indoor unit may be insufficient. It was.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems of the prior art, the present invention provides a fluid capable of phase change between an outdoor unit composed of an absorption chiller and a plurality of indoor units, all or a majority of which are installed below the outdoor unit. Circulation using the specific gravity difference between the liquid phase and the gas phase and the discharge force of the cooling auxiliary pump installed in the liquid phase pipe is configured to allow cooling in each indoor unit, and the intake of the cooling auxiliary pump The heating pump discharge side is connected to the discharge side of the cooling auxiliary pump via an open / close valve that opens during heating operation and closes during cooling operation. Connected between the indoor unit and the open / close valve that opens during cooling operation and closes during heating operation, and introduces the gas absorbed and evaporated by the outdoor unit to the indoor unit to dissipate and condense, The condensed liquid is returned to the outdoor unit by the discharge force of the heating pump. In the air conditioner configured to be capable of heating in each indoor unit, the first and second receiver tanks having liquid level detecting means are provided on the suction side of the cooling auxiliary pump and the heating pump, respectively, and the fluid flowing through the outdoor unit The liquid level detection means for detecting the liquid level of the first receiver tank is provided during cooling operation, and the cooling auxiliary pump is activated when the liquid level of the first receiver tank exceeds a predetermined level. And the operation control method of the first configuration in which the heat source input in the outdoor unit is stopped when the fluid level of the fluid in the outdoor unit exceeds a predetermined level;
[0006]
The difference in specific gravity between the liquid phase and the gas phase and the liquid phase of the fluid capable of phase change between an outdoor unit composed of an absorption refrigerator and a plurality of indoor units, all or a majority of which are installed below the outdoor unit. It is circulated using the discharge force of the cooling auxiliary pump installed in the pipe so that it can be cooled in each indoor unit, and is opened on the suction side of the cooling auxiliary pump at the time of heating operation, and at the time of cooling operation The discharge side of the heating pump is connected via an on-off valve that closes, and the suction side of the heating pump is provided on the discharge side of the cooling auxiliary pump, and is opened during the cooling operation, and during the heating operation. Connected between the on-off valve that closes the valve and the indoor unit, the gas absorbed by the outdoor unit is introduced into the indoor unit to dissipate and condense, and the condensed liquid is discharged by the discharge power of the heating pump. The air conditioner is configured so that it can be heated in each indoor unit. In addition, first and second receiver tanks having liquid level detection means are provided on the suction side of the cooling auxiliary pump and the heating pump, respectively, and liquid level detection means for detecting the liquid level of the fluid flowing through the outdoor unit is provided. The heating pump is activated when the liquid level of the second receiver tank reaches a predetermined level or more during heating operation, and the heating pump is stopped when the liquid level of the second receiver tank falls below the predetermined level, and the fluid level of the fluid in the outdoor unit Stops the operation of the heating pump when the temperature becomes equal to or higher than the first predetermined level, and stops the input of the heat source in the outdoor unit when the fluid level in the outdoor unit becomes equal to or lower than the second predetermined level lower than the first predetermined level. An operation control method of the second configuration as described above;
Is to provide.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. In order to facilitate understanding, in these drawings, the same reference numerals are given to the portions having the same functions as those described in FIG.
[0008]
FIG. 1 shows an example of the configuration of an air conditioner controlled by an operation control method according to the present invention. 1 is composed of, for example, an absorption refrigerator that can selectively generate cold or warm heat. An outdoor unit that is installed in a machine room on the roof of a building, for example, a fluid capable of phase change enclosed in a closed circuit 3 via a heat exchanger 2 piped inside the evaporator, for example, a low temperature However, it exchanges heat with R-134a, which can easily evaporate when the pressure drops.
[0009]
In addition, as an absorption refrigerating machine which can supply cold heat from the heat exchanger 2 piped to the evaporator or can supply warm heat, for example, the one disclosed in JP-A-7-318189 can be used.
[0010]
Reference numeral 5 denotes a heat exchanger of the indoor unit 4 installed in each room of the building. The heat exchanger 2 of the outdoor unit 1 is separated by a liquid phase pipe 6, a gas phase pipe 7 and a flow rate adjusting valve 8 as shown in the figure. The closed circuit 3 is formed by piping and connection.
[0011]
The liquid phase pipe 6 has a receiver tank 10 for storing the R-134a of the liquid that has been radiated by the heat exchanger 2 of the outdoor unit 1 and condensed and flowed out, and the R-134a stored in the tank is stored indoors. The electric pump 11 for conveying to the machine 4 and the on-off valve 12 are installed in series, and in parallel with this path, the heat exchanger 5 of the indoor unit 4 performs heating to condense and flow out of the liquid. Receiver tank 13 for storing the R-134a, an electric pump 14 for returning the R-134a stored in the tank to the outdoor unit 1, and an on-off valve 15 are installed in series in the receiver tanks 10 and 13. Are provided with sensors 16 and 17, 18 and 19, respectively, for detecting the liquid level at two locations above and below.
[0012]
In addition, the inlet / outlet portion of the heat exchanger 2 of the outdoor unit 1 is communicated, and a liquid level detecting tube 20 is installed in this portion, and liquid level sensors 21 and 22 are also installed at two places above and below the liquid level detecting tube 20. It is provided.
[0013]
Reference numeral 23 denotes a fuel adjusting valve provided in a fuel pipe connected to a burner 24 for evaporating and separating refrigerant vapor by evaporating and absorbing refrigerant (not shown), and reference numeral 25 denotes R− which flows out from the heat exchanger 2 to the liquid phase pipe 6. A pressure sensor for detecting the pressure of 134a, 26 to 29 are temperature sensors for detecting the temperature of R-134a circulating in the closed circuit 3, and the temperature sensors 26 and 27 are the inlet / outlet of the heat exchanger 2. The temperature sensors 28 and 29 are provided at the outlet of the heat exchanger 5, respectively.
[0014]
The outdoor unit 1 is provided with an outdoor control device 30, and the indoor unit 4 is provided with an indoor control device 31. Then, the outdoor control device 30 receives the pressure of the R-134a detected by the pressure sensor 25 during the cooling operation, that is, the pressure of the R-134a that is condensed by receiving the cooling action in the heat exchanger 2 and discharged to the liquid phase pipe 6. Has a function of adjusting the opening of the fuel regulating valve 23 so that the equilibrium pressure is about 7.5 Pa when R-134a condenses at 7 ° C., and the R− detected by the temperature sensor 27. The fuel adjustment valve 23 is closed when the temperature of the R-134a is condensed to a predetermined temperature, that is, cooled by the heat exchanger 2 and discharged to the liquid phase pipe 6, for example, to 5 ° C. or lower. The temperature of the R-134a detected by the temperature sensor 26 during the heating operation, that is, the temperature of the R-134a that evaporates by being heated by the heat exchanger 2 and discharged to the gas phase pipe 6 is a predetermined temperature, For example, 55 ° C As described above, the indoor control device 31 has a function of adjusting the opening degree of the fuel adjustment valve 23, and the indoor control device 31 performs the cooling operation via the heat exchanger 5 through the temperature of the R-134 a detected by the temperature sensor 29 during the cooling operation. Evaporates, rises in temperature, and has a function of adjusting the opening degree of the flow rate adjustment valve 8 so that the temperature of the R-134a discharged to the gas phase pipe 7 becomes a predetermined temperature, for example, 12 ° C. The temperature of the R-134a detected by the temperature sensor 28, that is, the temperature of the R-134a that is condensed by performing heating operation via the heat exchanger 5 and is discharged to the liquid phase pipe 6 after the temperature is lowered, for example, A function of adjusting the opening of the flow rate adjusting valve 8 so as to be 50 ° C. is provided.
[0015]
In addition, remote controllers 32 that can communicate with the indoor control device 31 and can specify cooling and heating, start and stop operation, select the intensity of air flow, set temperature, and the like are installed corresponding to each indoor unit 4.
[0016]
In the outdoor unit 1, when the opening of the fuel adjustment valve 23 is increased during operation in the cooling mode and the fuel supplied to the burner 24 is increased to increase the thermal power, the refrigerant that evaporates and separates from the absorption liquid (not shown). The amount increases. The increased refrigerant vapor is dissipated and condensed by a condenser (not shown), becomes a liquid, is supplied to the periphery of the heat exchanger 2, and evaporates by taking heat from the R-134a flowing in the heat exchanger 2. The function of cooling the R-134a flowing in the heat exchanger 2 is strengthened, and the temperature drop width is expanded if the flow rate is the same. Conversely, if the opening of the fuel adjustment valve 23 is reduced to reduce the heating power of the burner 24, the function of cooling the R-134a flowing in the heat exchanger 2 is weakened, and the temperature drop is reduced. On the other hand, when the opening degree of the fuel adjustment valve 23 is increased during operation in the heating mode and the fuel supplied to the burner 24 is increased to increase the thermal power, the amount of refrigerant that is evaporated and separated from the absorbing liquid (not shown) increases. The increased refrigerant vapor and the absorption liquid that has been heated to evaporate and separate the refrigerant are supplied to the periphery of the heat exchanger 2 and dissipate heat to the R-134a flowing in the heat exchanger 2, so that the heat exchanger 2 The function of heating the R-134a flowing through is strengthened, and if the flow rate is the same, the temperature increase range is expanded. On the contrary, if the opening degree of the fuel adjustment valve 23 is reduced to reduce the heating power of the burner 24, the function of heating the R-134a flowing in the heat exchanger 2 is weakened, and the temperature rise is reduced.
[0017]
On the other hand, in the indoor unit 4, if the opening degree of the flow rate adjusting valve 8 is the same, the temperature difference of R-134a detected by the temperature sensors 28 and 29 increases as the air conditioning load increases, and the air conditioning load decreases as the air conditioning load decreases. The temperature difference is reduced.
[0018]
Next, the circulation cycle of R-134a enclosed in the closed circuit 3 will be described. In the cooling operation, the on-off valve 15 is closed based on the control signal output from the outdoor control device 30, and the operation of the electric pump 14 is stopped. In this state, the on-off valve 12 is opened and the electric pump 11 is activated. In the outdoor unit 1, cold heat is generated as described above, and R-134a is cooled by the cold heat through the tube wall of the heat exchanger 2 and condensed to a liquid phase at 7.5 Pa and 7 ° C. It discharges to the pipe | tube 6, accumulates in the receiver tank 10, and is supplied to each indoor unit 4 with the conveyance force of the electric pump 11. FIG.
[0019]
The operation of the electric pump 11 is controlled by the outdoor control device 30 as shown in FIG. That is, when the liquid level sensor 17 installed on the upper side of the receiver tank 10 detects R-134a, the electric pump 11 is operated, and the liquid level sensor 16 installed on the lower side does not detect R-134a. Sometimes the operation of the electric pump 11 is stopped, and when the liquid level sensor 16 detects R-134a and the liquid level sensor 17 does not detect R-134a, the operation is continued if the electric pump 11 is in operation. If it is stopped, it is controlled to continue the stop.
[0020]
On the other hand, in each indoor unit 4, high-temperature indoor air is forcibly supplied to the heat exchanger 5 by the blower 9, so that the liquid R-134a supplied from the outdoor unit 1 at 7 ° C. is room air. Removes heat from the water and evaporates to provide cooling.
[0021]
The gas R-134a is cooled, condensed and liquefied, and flows into the heat exchanger 2 of the outdoor unit 1 having a low pressure through the gas phase pipe 7.
[0022]
In this circulation of R-134a, when the cooling load in an indoor unit 4 increases (or decreases) and the temperature of R-134a detected by the temperature sensor 29 of the indoor unit 4 increases (or decreases), the temperature rises. In order to eliminate (or decrease in temperature), the opening of the corresponding flow rate adjusting valve 8 is increased (or decreased) in response to the control signal from the indoor control device 31, and the heat of the indoor unit 4 whose cooling load has increased. Since the amount of R-134a flowing into the exchanger 5 increases (or decreases), the temperature increase (or decrease) of the R-134a detected by the temperature sensor 29 is eliminated.
[0023]
Changes in the pressure and temperature of the R-134a in the indoor unit 4 due to fluctuations in the cooling load immediately affect the R-134a pressure detected by the pressure sensor 25 in the outdoor unit 1. In other words, the temperature sensor 27 detects the temperature change of the R-134a only after the R-134a whose temperature has changed in the indoor unit 4 actually flows into the outdoor unit 1 (the circulation speed of R-134a). In comparison, the heat conduction can be ignored), but the change in the pressure of R-134a in the indoor unit 4 is quickly transmitted to the outdoor unit 1.
[0024]
And the opening degree of the fuel adjustment valve 23 is controlled based on the pressure of R-134a excellent in the responsiveness which the pressure sensor 25 detects. Specifically, when a change appears in the pressure of R-134a detected by the pressure sensor 25, the opening degree of the fuel adjustment valve 23 is capacity-controlled by the outdoor control device 30 so as to eliminate the change.
[0025]
The fuel adjustment valve 23 is also controlled by the output of the temperature sensor 27. That is, the outdoor control device 30 is also connected to the temperature sensor 27. For example, as shown in FIG. 3, the temperature of the R-134a detected by the temperature sensor 27, that is, the R-134a cooled and condensed by the heat exchanger 2. When the temperature of the fuel is higher than a predetermined temperature, for example, 5 ° C., the continuation of the heating by the burner 24 is instructed, but when the temperature of the R-134a becomes 5 ° C. or less, the fuel adjustment valve 23 is instructed to close the combustion. And stop.
[0026]
When the fuel adjustment valve 23 is closed and the heating by the burner 24 is stopped, the amount of liquid refrigerant supplied to the periphery of the heat exchanger 2 is rapidly reduced, thereby rapidly reducing the amount of cold generated. Then, after the elapse of a predetermined time, for example, 3 minutes, the temperature detection of the R-134a by the temperature sensor 27 is repeated.
[0027]
By performing the above control, the outdoor unit 1 is configured while controlling the opening degree of the fuel adjustment valve 23, that is, the amount of cold generated to cool the R-134a based on the pressure that is more responsive than the temperature. It is possible to avoid a situation in which the refrigerant (water) of the absorption chiller that has been frozen causes a supercooling phenomenon and freezes.
[0028]
Further, the fuel adjustment valve 23 is also controlled based on the liquid level of R-134a condensed in the heat exchanger 2. That is, the outdoor control device 30 is also connected to the liquid level sensor 21 installed on the lower side of the liquid level detection tube 20, for example, when the liquid level sensor 21 does not detect R-134a as shown in FIG. Then, the continuation of heating by the burner 24 is instructed, but when the liquid level sensor 21 detects R-134a, the closing of the fuel adjustment valve 23 is instructed to stop the combustion, and the generation of cold is stopped.
[0029]
When the fuel adjustment valve 23 is closed and heating by the burner 24 is stopped, the amount of liquid refrigerant supplied to the periphery of the heat exchanger 2 is rapidly reduced as described above, and the temperature of R-134a is increased. For this reason, the pressure of this part rises, and it becomes easy to discharge R-134a in the heat exchanger 2 to the liquid phase pipe | tube 6 by this. Then, the detection of R-134a by the liquid level sensor 21 is repeated after waiting for a predetermined time, for example, 3 minutes.
[0030]
By performing the above-described control, it is avoided that a large amount of R-134a liquid is accumulated in the outdoor unit 1 and the R-134a circulating to the indoor unit 4 is insufficient.
[0031]
Next, in the state where the on-off valve 12 is closed and the operation of the electric pump 11 is stopped, the on-off valve 15 is opened, and the R-134a circulation cycle at the time of heating operation performed by starting the electric pump 14, Device control at that time will be described.
[0032]
In the outdoor unit 1, the heat is generated as described above, and R-134a is heated through the tube wall of the heat exchanger 2 by the heat, is evaporated, and is discharged to the gas phase tube 7. Each heat exchanger 5 is supplied at a predetermined temperature, for example, 55 ° C.
[0033]
In each indoor unit 4, low-temperature indoor air is forcibly supplied to the heat exchanger 5 by the blower 9, so that the gas R-134a supplied from the outdoor unit 1 at 55 ° C. radiates heat to the indoor air. Then, it condenses and performs heating.
[0034]
The R-134a condensed into liquid is accumulated in the receiver tank 13 and is sent to the heat exchanger 2 of the outdoor unit 1 through the liquid phase pipe 6 by the electric pump 14.
[0035]
At this time, the electric pump 14 is controlled by the outdoor control device 30, for example, as shown in FIG. That is, when the liquid level sensor 19 installed on the upper side of the receiver tank 13 detects R-134a, the electric pump 14 is operated, and the liquid level sensor 18 installed on the lower side does not detect R-134a. Sometimes the operation of the electric pump 14 is stopped, and when the liquid level sensor 18 detects R-134a and the liquid level sensor 19 does not detect R-134a, the operation is continued if the electric pump 14 is in operation. If it is stopped, it is controlled to continue the stop.
[0036]
Furthermore, the electric pump 14 is also controlled based on the liquid level of R-134a that is heated and evaporated by the heat exchanger 2. That is, the outdoor control device 30 is also connected to the liquid level sensor 22 installed on the upper side of the liquid level detection tube 20, for example, when the liquid level sensor 22 does not detect R-134a as shown in FIG. The operation of the electric pump 14 is instructed, but when the liquid level sensor 22 detects R-134a, the operation stop of the electric pump 14 is instructed.
[0037]
By controlling the electric pump 14 in this way, a situation where the liquid R-134a flows into the gas phase pipe 7 is avoided. Then, the detection of R-134a by the liquid level sensor 22 is repeated after waiting for a predetermined time, for example, 1 minute.
[0038]
In the circulation of R-134a, when the heating load in a certain indoor unit 4 increases (or decreases) and the temperature of R-134a detected by the temperature sensor 28 of the indoor unit 4 decreases (or increases), In order to eliminate the temperature drop (or temperature rise), the indoor unit 4 in which the opening degree of the corresponding flow rate adjustment valve 8 increases (or decreases) in response to the control signal from the indoor control device 31 and the heating load increases. Since the amount of R-134a flowing into the heat exchanger 5 increases (or decreases), the temperature decrease (or increase) of R-134a detected by the temperature sensor 29 is eliminated.
[0039]
Then, R-134a whose temperature has changed due to fluctuations in the heating load flows into the outdoor unit 1 or the flow rate of R-134a that flows into the outdoor unit 1 changes, and the R- detected by the temperature sensor 26. When a change occurs in the temperature of 134a, the opening degree of the fuel adjustment valve 23 is controlled by the outdoor control device 30 so as to eliminate the change.
[0040]
The fuel adjustment valve 23 is also controlled by the output of the liquid level sensor 21. That is, the fuel adjustment valve 23 is instructed by the outdoor control device 30 to continue heating by the burner 24 when the liquid level sensor 21 detects R-134a as shown in FIG. When the liquid level sensor 21 does not detect R-134a, the fuel adjustment valve 23 is closed and heating by the burner 24 is instructed to stop.
[0041]
By the above control, heating by the burner 24 when the liquid R-134a is insufficient, so-called emptying is avoided. Then, the detection of R-134a by the liquid level sensor 21 is repeated after waiting for a predetermined time, for example, 3 minutes.
[0042]
In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.
[0043]
For example, the temperature sensors 28 and 29 are installed so that the temperature change of the indoor air blown to the heat exchanger 5 can be detected, or instead of the temperature sensors 28 and 29, the R-134a at the inlet / outlet portion of the heat exchanger 5 is installed. A pressure sensor capable of detecting a pressure difference can be installed and output to the indoor control device 31 as an air conditioning load.
[0044]
In addition to R-134a, the phase changeable fluid enclosed in the closed circuit 3 may be a fluid capable of heat transfer due to latent heat, such as R-407c, R-404A, and R-410c. .
[0046]
【The invention's effect】
As described above , according to the first aspect of the present invention, it is avoided that a large amount of liquid capable of phase change is accumulated in the outdoor unit and the amount circulating to the indoor unit is insufficient.
[0047]
According to the invention of claim 2 , it is possible to avoid a situation in which a fluid capable of changing phase from the outdoor unit functioning as an evaporator flows into the gas phase pipe as a liquid. Is avoided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an apparatus configuration.
FIG. 2 is an explanatory diagram of control of a cooling auxiliary pump.
FIG. 3 is an explanatory diagram of control for preventing overcooling;
FIG. 4 is an explanatory diagram of control for preventing insufficient circulation of a phase-changeable fluid.
FIG. 5 is an explanatory diagram of control of a heating pump.
FIG. 6 is an explanatory diagram of control for preventing a fluid capable of phase change from flowing into the gas phase pipe as a liquid;
FIG. 7 is an explanatory diagram of a control example for preventing emptying in the outdoor unit.
FIG. 8 is an explanatory diagram of the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Heat exchanger 3 Closed circuit 4 Indoor unit 5 Heat exchanger 6 Liquid phase pipe 7 Gas phase pipe 8 Flow control valve 9 Blower 10 Receiver tank 11 Electric pump 12 On-off valve 13 Receiver tank 14 Electric pump 15 On-off valve 16 -19 Liquid level sensor 20 Liquid level detection tubes 21 and 22 Liquid level sensor 23 Fuel adjustment valve 24 Burner 25 Pressure sensor 26-29 Temperature sensor 30 Outdoor control device 31 Indoor control device 32 Remote control

Claims (2)

吸収式冷凍機からなる室外機と、全数もしくは過半数が室外機より下方に設置された複数の室内機との間で、相変化可能な流体を液相と気相との比重差と、液相管に設置した冷房用補助ポンプの吐出力とを利用して循環させ、各室内機において冷房可能に構成すると共に、前記冷房用補助ポンプの吸入側に、暖房運転時に開弁し、冷房運転時に閉弁する開閉弁を介して暖房用ポンプの吐出側を連結し、且つ、この暖房用ポンプの吸入側を前記冷房用補助ポンプの吐出側に設けた、冷房運転時に開弁し、暖房運転時に閉弁する開閉弁と室内機との間に連結し、室外機で吸熱して蒸発した気体を室内機に導入して放熱・凝縮させ、この凝縮した液体を前記暖房用ポンプの吐出力によって室外機に戻し、各室内機において暖房可能に構成した空調装置において、冷房用補助ポンプと暖房用ポンプの吸入側にそれぞれ液面検知手段を有する第1・第2のレシーバタンクを設けると共に、室外機を流れる前記流体の液面を検出する液面検知手段を設け、冷房運転時に、第1のレシーバタンクの液面が所定レベル以上になると冷房用補助ポンプを起動し、所定レベル以下になると冷房用補助ポンプの運転を停止し、室外機における前記流体の液面が所定レベル以上になると室外機における熱源投入を停止することを特徴とする空調装置の運転制御方法。The difference in specific gravity between the liquid phase and the gas phase and the liquid phase of the fluid capable of phase change between an outdoor unit composed of an absorption refrigerator and a plurality of indoor units, all or a majority of which are installed below the outdoor unit. It is circulated using the discharge force of the cooling auxiliary pump installed in the pipe so that it can be cooled in each indoor unit, and is opened on the suction side of the cooling auxiliary pump at the time of heating operation, and at the time of cooling operation The discharge side of the heating pump is connected via an on-off valve that closes, and the suction side of the heating pump is provided on the discharge side of the cooling auxiliary pump, and is opened during the cooling operation, and during the heating operation. Connected between the on-off valve that closes the valve and the indoor unit, the gas absorbed by the outdoor unit is introduced into the indoor unit to dissipate and condense, and the condensed liquid is discharged by the discharge power of the heating pump. The air conditioner is configured so that it can be heated in each indoor unit. In addition, first and second receiver tanks having liquid level detection means are provided on the suction side of the cooling auxiliary pump and the heating pump, respectively, and liquid level detection means for detecting the liquid level of the fluid flowing through the outdoor unit is provided. The cooling auxiliary pump is activated when the liquid level of the first receiver tank exceeds a predetermined level during cooling operation, and the cooling auxiliary pump is stopped when the liquid level of the first receiver tank falls below the predetermined level. An operation control method for an air conditioner, characterized in that when a surface exceeds a predetermined level, the heat source input in the outdoor unit is stopped. 吸収式冷凍機からなる室外機と、全数もしくは過半数が室外機より下方に設置された複数の室内機との間で、相変化可能な流体を液相と気相との比重差と、液相管に設置した冷房用補助ポンプの吐出力とを利用して循環させ、各室内機において冷房可能に構成すると共に、前記冷房用補助ポンプの吸入側に、暖房運転時に開弁し、冷房運転時に閉弁する開閉弁を介して暖房用ポンプの吐出側を連結し、且つ、この暖房用ポンプの吸入側を前記冷房用補助ポンプの吐出側に設けた、冷房運転時に開弁し、暖房運転時に閉弁する開閉弁と室内機との間に連結し、室外機で吸熱して蒸発した気体を室内機に導入して放熱・凝縮させ、この凝縮した液体を前記暖房用ポンプの吐出力によって室外機に戻し、各室内機において暖房可能に構成した空調装置において、冷房用補助ポンプと暖房用ポンプの吸入側にそれぞれ液面検知手段を有する第1・第2のレシーバタンクを設けると共に、室外機を流れる前記流体の液面を検出する液面検知手段を設け、暖房運転時に、第2のレシーバタンクの液面が所定レベル以上になると暖房用ポンプを起動し、所定レベル以下になると暖房用ポンプの運転を停止すると共に、室外機における前記流体の液面が第1の所定レベル以上になると暖房用ポンプの運転を停止し、室外機における前記流体液面が前記第1の所定レベルより低い第2の所定レベル以下になると室外機における熱源投入を停止することを特徴とする空調装置の運転制御方法。The difference in specific gravity between the liquid phase and the gas phase and the liquid phase of the fluid capable of phase change between an outdoor unit composed of an absorption refrigerator and a plurality of indoor units, all or a majority of which are installed below the outdoor unit. It is circulated using the discharge force of the cooling auxiliary pump installed in the pipe so that it can be cooled in each indoor unit, and is opened on the suction side of the cooling auxiliary pump at the time of heating operation, and at the time of cooling operation The discharge side of the heating pump is connected via an on-off valve that closes, and the suction side of the heating pump is provided on the discharge side of the cooling auxiliary pump, and is opened during the cooling operation, and during the heating operation. It is connected between the on-off valve that closes the valve and the indoor unit, and the gas absorbed and evaporated by the outdoor unit is introduced into the indoor unit to dissipate heat and condense, and the condensed liquid is discharged outside by the discharge force of the heating pump. The air conditioner is configured so that it can be heated in each indoor unit. In addition, first and second receiver tanks having liquid level detection means are provided on the suction side of the cooling auxiliary pump and the heating pump, respectively, and liquid level detection means for detecting the liquid level of the fluid flowing through the outdoor unit is provided. The heating pump is activated when the liquid level of the second receiver tank reaches a predetermined level or more during heating operation, and the heating pump is stopped when the liquid level of the second receiver tank falls below the predetermined level, and the fluid level of the fluid in the outdoor unit Stops the operation of the heating pump when the temperature becomes equal to or higher than the first predetermined level, and stops the input of the heat source in the outdoor unit when the fluid level in the outdoor unit becomes equal to or lower than the second predetermined level lower than the first predetermined level. An operation control method for an air conditioner.
JP15390897A 1996-12-04 1997-06-11 Operation control method for air conditioner Expired - Fee Related JP3615353B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15390897A JP3615353B2 (en) 1997-06-11 1997-06-11 Operation control method for air conditioner
US08/984,017 US5966954A (en) 1996-12-04 1997-12-03 Air conditioning system
CNB971208352A CN1149357C (en) 1996-12-04 1997-12-04 Air-conditioning apparatus
KR1019970065880A KR100502283B1 (en) 1996-12-04 1997-12-04 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15390897A JP3615353B2 (en) 1997-06-11 1997-06-11 Operation control method for air conditioner

Publications (2)

Publication Number Publication Date
JPH112472A JPH112472A (en) 1999-01-06
JP3615353B2 true JP3615353B2 (en) 2005-02-02

Family

ID=15572742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15390897A Expired - Fee Related JP3615353B2 (en) 1996-12-04 1997-06-11 Operation control method for air conditioner

Country Status (1)

Country Link
JP (1) JP3615353B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415838B2 (en) * 2005-02-26 2008-08-26 Lg Electronics Inc Second-refrigerant pump driving type air conditioner

Also Published As

Publication number Publication date
JPH112472A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JPH1019305A (en) Cooling system
GB2218499A (en) Air-cooled cooling apparatus
JP3615353B2 (en) Operation control method for air conditioner
JPH0552441A (en) Method and device for controlling absorption type heater cooler
KR19990045377A (en) Air conditioner
JP3448680B2 (en) Absorption air conditioner
US5924480A (en) Air conditioning system
JPH062982A (en) Absorption room cooling/heating system and controlling method therefor
JP3762542B2 (en) Air conditioner
JP3568380B2 (en) Operating method of air conditioner
JPH11148694A (en) Method for controlling operation of air conditioner
JP3594453B2 (en) Operating method of air conditioner
JP3594426B2 (en) Air conditioner
JP3604869B2 (en) Operation control method of air conditioner
JP3630892B2 (en) Air conditioner
JPH037859A (en) Controlling method of adsorptive type freezer
JPH11148744A (en) Air conditioner
JP3599980B2 (en) Operating method of air conditioner
JP4219060B2 (en) Air conditioner
JP2780546B2 (en) Heat transfer device
JPH10170179A (en) Air conditioning apparatus
JPH10339476A (en) Air conditioner
JPH10132334A (en) Air conditioner
JPH11148745A (en) Method of controlling air conditioner
JP3663028B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041029

LAPS Cancellation because of no payment of annual fees