JP3762542B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3762542B2
JP3762542B2 JP10479298A JP10479298A JP3762542B2 JP 3762542 B2 JP3762542 B2 JP 3762542B2 JP 10479298 A JP10479298 A JP 10479298A JP 10479298 A JP10479298 A JP 10479298A JP 3762542 B2 JP3762542 B2 JP 3762542B2
Authority
JP
Japan
Prior art keywords
liquid phase
liquid
outdoor unit
phase pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10479298A
Other languages
Japanese (ja)
Other versions
JPH11211150A (en
Inventor
雅士 泉
伸浩 出射
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10479298A priority Critical patent/JP3762542B2/en
Publication of JPH11211150A publication Critical patent/JPH11211150A/en
Application granted granted Critical
Publication of JP3762542B2 publication Critical patent/JP3762542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空調装置に関するものであり、特に詳しくは室外機と、全数もしくは過半数が室外機より下方に設置された複数の室内機との間で、相変化可能な冷媒を液相と気相との比重差と、液相管に設置した冷房用補助ポンプの吐出力とを利用して循環させ、各室内機において冷房運転を可能に構成した装置に関する。
【0002】
【従来の技術】
従来から、相変化可能な冷媒、すなわち潜熱を出し入れすることによって液体と気体との間で状態が変化する冷媒の搬送動力を必要としない空調装置として、例えば図6に示されるような装置があるが、この装置は凝縮器として機能する室外機1を建物の高所位置に設置し、この室外機1と、これより低い位置にある被空調室に設置の室内機の熱交換器5との間を液相管6と気相管7とで連結し、室外機1の熱交換器2で放熱・凝縮した液体をその自重によって室内機の熱交換器5に液相管6を介して供給する一方、室内機の熱交換器5で温度の高い室内空気と熱交換して吸熱・蒸発した気体を、冷媒が凝縮して低圧となっている室外機1に気相管7を介して流入させることで循環を可能とするものであから、電動ポンプなどの搬送動力が不要となり、ランニングコストが抑制できると云った利点がある。なお、11は流量調整弁、18は送風機である。
【0003】
また、液相管6にレシーバタンク8と電動ポンプ9とを破線で示したように直列に組み込み、レシーバタンク8に溜った相変化が可能な冷媒の液面レベルに基づいて、電動ポンプ9をオン/オフ制御し、一部の室内機を室外機1と同じ高さに設置したり、さらに高い位置にも設置しても、相変化可能な冷媒が循環し得るように構成した空調装置も周知である。
【0004】
【発明が解決しようとする課題】
しかし、上記構成の空調装置においては、相変化可能な冷媒の回路内圧力は冷房の負荷変動などにより絶えず変化しており、圧力が低下したときには液相管内の冷媒の一部が気化して気泡が発生することがある。
【0005】
特に、冷房運転を開始する時などは、液相管が断熱材によって被覆されていても、液相冷媒の温度は外気により加熱されて比較的高くなっているので、室外機が冷却を開始して回路内圧力が急激に低下すると、この圧力低下に応答して液相管内で冷媒が一斉に泡立つことがある。また、冷房負荷が小さく、循環している冷媒の量が少ないときにも外気の影響を受け易く、このような部分負荷運転では圧力の少しの低下でも液相管内で冷媒が泡立つことがある。さらに、配管途中に設けてある機器に外気より進入する熱によっても気泡が発生することがある。
【0006】
そして、このようにして発生した気泡は、液相冷媒の循環を不安定にしたり、各室内機への液相冷媒の分流を不安定なものにする。その結果、極端な場合には冷媒が流れない室内機が生じ、室内を充分に冷房することができないと云った事態も起こっている。
【0007】
しかも、上記構成の空調装置においては、室外機で放熱して凝縮した液相冷媒は室内機に入って蒸発し、その後室外機へ戻る一方通行路しかないため、途中で気泡が発生した場合はそれをなかなか排除することが困難であり、長時間その悪影響下から抜け出すことができず、大きな影響を受けると云った欠点がある。すなわち、各階の室内機の入口に溜った気泡は、膨張弁を一旦全開にして出口側に排除するような処置を採らなければならないが、このような処置を講じると、気泡だけでなく液相冷媒も室内機の出口側に排出され、気相管に液相冷媒が滞留するいわゆる液バックが生じ、やはり冷媒の循環不良などの原因となっている。
【0008】
したがって、液相管において気泡が発生し難く、且つ、気泡が発生しても容易に排除できるようにする必要があり、これが解決すべきが課題となっていた。
【0009】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するため、室外機と、全数もしくは過半数が室外機より下方に設置された複数の室内機との間を、冷房用補助ポンプを備えた液相管と、気相管とで連結し、相変化可能な冷媒を液相と気相との比重差と、冷房用補助ポンプの吐出力とを利用して室外機、液相管、室内機、気相管の順に循環させ、各室内機において冷媒の液相から気相への相変化を利用して冷房運転を可能に構成した空調装置において、室外機に対して最も下方の室内機に至る液相管の下方から、室外機に至る第2の液相管を設け、この第2の液相管に前記冷媒を前記室外機に搬送する第2の液体ポンプを設け、冷房運転の際に前記室外機で凝縮液化された冷媒を前記液相管を介して前記室内機へと供給すると共に、前記第2の液体ポンプを運転させて前記第2の液相管へも流通させて、前記液相管内を循環する前記冷媒の循環量を増大させると共に、該液相管内に生じた気泡を前記室外機に還流可能に構成した空調装置を提供するものである。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態について、図1(冷房運転時)と図2に基づいて説明する。なお、理解を容易にするため、これらの図においても前記図6において説明した部分と同様の機能を有する部分には、同一の符号を付した。
【0012】
図1において1は冷熱と温熱を選択的に発生させることができる、例えば吸収式冷凍機などからなる室外機であり、建物の例えば屋上にある機械室などに設置され、例えば蒸発器の内部に配管した熱交換器2を介して、閉回路3に封入した相変化が可能な冷媒、例えば低温度でも圧力が低下すると容易に蒸発し得る、R−134aと熱の授受を行う。
【0013】
5は、建物の各階・各部屋に設置した室内機の熱交換器であり、室外機1の熱交換器2とは、図のように液相管6と気相管7とで接続されて前記閉回路3を形成している。
【0014】
そして、冷房運転時に室外機1の熱交換器2で放熱し、凝縮して吐出した液体のR−134aを開閉弁15a(冷房運転時に開弁する)を有する液管20を介して溜めるためのレシーバタンク8と、このタンクに溜ったR−134aを室内機に供給するための、冷房用補助ポンプとして機能する電動ポンプ9と、冷房運転時に開弁し、暖房運転時に閉弁する冷暖切替弁10とが直列に介在して、各膨張弁11を介してそれぞれの室内機に至る第1の液相管6Aと、この第1液相管6Aの下方部分から分岐・延設し、途中の最も低い部分において液体のR−134aを溜めるためのレシーバタンク12と、このタンクに溜ったR−134aを室外機1に戻すための電動ポンプ13と、逆止弁14とが直列に介在し、この逆止弁14を通った液体のR−134aが冷房運転時には熱交換器2の中間に供給される第2の液相管6Bとからなる。
【0015】
なお、第1の液相管6Aの電動ポンプ9は、大半が室外機1より下方に設置された室内機に、冷房運転時、室外機1で放熱して凝縮した液体のR−134aを搬送するものであるから、小型のポンプが使用される。一方、第2の液相管6Bの電動ポンプ13は、暖房運転時、室内機で放熱して凝縮した液体のR−134aを上方の室外機1まで搬送するためのポンプであるので、大型のポンプが使用される。
【0016】
また、レシーバタンク8・電動ポンプ9・冷暖切替弁10・開閉弁15a・開閉弁15bは、室外機1の内部に組み込まれている。そして、レシーバタンク8の気相部と気相管7とは開閉弁15bを有する細い均圧管16を介して連通し、且つ、熱交換器2におけるR−134aの液面を検出するための液面センサ17も設けてある。
【0017】
また、室外機1は冷房運転時には熱交換器2で冷却作用を受けて液相管6に吐出するR−134aの温度が所定温度、例えば7℃になるように投入熱量を制御する機能を備え、室内機は熱交換器5を介して冷房作用を果たし、温度上昇して気相管7に吐出するR−134aの温度が所定温度、例えば12℃になるように流量調整弁11の開度を調節する機能を備えている。
【0018】
そして、閉回路3に封入したR−134aの冷房運転時における循環サイクルを説明すると、R−134aは室外機1で発生した冷熱により熱交換器2の管壁を介して冷却されて凝縮し、第1の液相管6Aに吐出してレシーバタンク8に溜り、電動ポンプ9の吐出力によって、一部は各室内機の熱交換器5に所定温度で供給されて冷房作用を果たすと共に、残部は第1の液相管6Aの下方部分から分岐した2の液相管6Bを経由して熱交換器2に戻される。
【0019】
すなわち、室外機1で放熱して凝縮した液体のR−134aは、一部が各室内機の熱交換器5に開弁した流量調整弁11から供給されて冷房作用を果たすと共に、残部は常に第2の液相管6Bを経由して熱交換器2に戻されているので、部分負荷運転時などで室内機に循環供給する液体のR−134aの量が少ないときにも、第2の液相管6Bに至る第1の液相管6Aを流れるR−134aの量は多く、したがって外気温度の影響は相対的に小さくなり、この部分で液体のR−134aに気泡が発生することは少ない。しかも、例え気泡が発生したとしても、R−134aは第2の液相管6Bを介して室外機1の熱交換器2に戻されて再凝縮されるので、気泡が冷房運転に悪影響を及ぼすことがない。
【0020】
また、冷房運転の開始時などで室外機1が冷却を開始して閉回路3内の圧力が急激に低下し、液相管6内で液体のR−134aが一斉に泡立ったときには、電動ポンプ13を運転することで、泡立ったR−134aを第2の液相管6Bを介して室外機1の熱交換器2に戻す循環力が高まるので、泡立ったR−134aは速やかに熱交換器2に流入して放熱・凝縮する。これにより液相管6内のR−134aから気泡は速やかに消滅する。
【0021】
そして、電動ポンプ13は、液相管6内で液体のR−134aが一斉に泡立ったときには、気泡の容積相当分が室外機1に押し出されて、熱交換器2内での液面レベルが上昇し、気泡が消滅すると上昇分が液相管6に戻ってその液面レベルが下がるので、液面センサ17が第1の所定レベルより高い液面を検出したときに起動し、第1の所定レベルより低い第2の所定レベルより低い液面を検出したときに停止するように、例えば図2に示したように制御される。
【0022】
すなわち、先ず液面センサ17によってR−134aの液面レベルを検出し(ステップS1)、次にその液面が第1の所定レベルより高いか否かを判定し(ステップS2)、高いときにはフラグが立っているか否かを判定する(ステップS3)。そして、フラグが立っていないときにはフラグを立てて(ステップS4)、電動ポンプ13を起動し(ステップS5)、ステップS1に戻る。また、ステップS3でフラグが立っていると判定されたときにもステップS1に戻る。
【0023】
一方、ステップS2で液面が第1の所定レベルより高くないと判定されたときには、ステップS6に移行して液面が第2の所定レベルより低いか否かを判定し、低いときにはフラグが立っているか否かを判定し(ステップS7)、フラグが立っているときにはフラグを消して(ステップS8)、電動ポンプ13を停止し(ステップS9)、ステップS1に戻る。また、ステップS6で液面が第2の所定レベルより低くないと判定されたときと、ステップS7でフラグが立っていないと判定されたときにも、ステップS1に戻る。
【0024】
なお、室内機に開弁した流量調整弁11から流入し、送風機によって強制搬送されている温度の高い室内空気から熱交換器5の管壁を介して熱を奪うことで冷房作用を行い、蒸発した気体のR−134aは、冷却されて凝縮・液化し低圧になっている室外機1の熱交換器2に気相管7を通って流入し、再びここで放熱して凝縮されると云った従来周知の循環を行う。
【0025】
図3(a)、(b)は図1に示した熱交換器2に吸収式冷凍機の蒸発器を用いた際の蒸発器2の概略図であり、複数の伝熱管22a、22bはその両端に形成された空間21a、21b、21cを介して気相管7、第の液相管6B、液管20に接続されている。
気相管7から戻る蒸発した気体は空間21a、複数の伝熱管22a、空間21c、複数の伝熱管22b、空間21bを経て液管20へ供給される。このとき伝熱管22a、22bの外周面に滴下される冷媒の蒸発作用によって伝熱管22a、22b内を流れる気体のR−134aが液化する。
電動ポンプ13から供給される液のR−134aは空間21aへ供給される。
【0026】
図4(a)、(b)は図3に示した熱交換器2の他の実施例を示す概略図であり、複数の伝熱管22はその両端に形成された空間21a、21cを介して気相管7、第の液相管6B、液管20に接続されている。
気相管7から戻る蒸発した気体は空間21a、複数の伝熱管22、空間21cを経て液管20へ供給される。このとき伝熱管22の外周面に滴下される冷媒の蒸発作用によって伝熱管22内を流れる気体のR−134aが液化する。
電動ポンプ13から供給される液体のR−134aは、図示するように空間21aの中間へ供給される。
【0027】
図5は暖房運転の際の概略図であり、電動ポンプ9の運転を停止し、冷暖切替弁10、開閉弁15a、15bを閉弁した状態で、室外機1で温熱を発生しながら第2の液相管6Bの電動ポンプ13を運転する。
【0028】
すなわち、室外機1で発生した温熱によって、閉回路3のR−134aは熱交換器2の管壁を介して加熱されて蒸発し、この蒸発したR−134aが気相管7を介して各室内機の熱交換器5に所定温度、例えば55℃で供給され、各熱交換器5においては、送風機によって強制的に供給された温度の低い室内空気にR−134aが放熱して凝縮・液化し、この凝縮・液化時に暖房作用が行なわれる。そして、熱交換器5で凝縮したR−134aの液体は流量調整弁11を通ってレシーバタンク12に流れ込み、このR−134aが電動ポンプ13の搬送力によってレシーバタンク8に供給され、室外機1の熱交換器2に戻される。
【0029】
すなわち、図1、図5に示した本発明の空調装置は、冷/暖房の何れか一方の空調が選択実施可能に構成したものである。なお、蒸発器に配管した熱交換器2から冷熱を供給したり、温熱を供給することができる吸収式冷凍機としては、例えば特開平7−318189号公報などに開示されたものが使用できる。
【0030】
ところで、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0031】
そして、閉回路3に封入する相変化可能な冷媒としては、R−134aの他にも、温度と圧力の制御によって容易に相変化するR−407c、R−404A、R−410cなどであっても良い。
【0032】
【発明の効果】
以上説明したように、本発明の空調装置によれば、冷房の部分負荷運転時などのように室内機に循環供給する液相冷媒の量が少ないときにも、気泡の生成が抑制される。また、例え気泡が生成した場合にも、室外機に第2の液相管を介して戻されて再凝縮されるので、気泡が冷房運転に悪影響を及ぼすことがない。
【0033】
特に、冷房運転の開始時などで室外機が冷却を開始して回路内圧力が急激に低下し、液相管内で一斉に泡立ったようなときにも、第2の液体ポンプを運転することで、泡立った液相冷媒を第2の液相管を介して室外機に戻す循環力が高まるので、速やかに室外機に流入して放熱・凝縮する。これにより液相管内の冷媒から気泡を速やかに消滅させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す説明図である。
【図2】第2の液相管に設ける電動ポンプの制御例を示すフローチャートである。
【図3】図1に示した蒸発器の概略図である。
【図4】図1に示した蒸発器の他の実施例を示す概略図である。
【図5】暖房運転の際の冷媒の流れを示す概略図である。
【図6】従来技術の説明図である。
【符号の説明】
1 室外機
2 熱交換器
3 閉回路
4 室内機
5 熱交換器
6 液相管
6A 第1の液相管
6B 第2の液相管
7 気相管
8 レシーバタンク
9 電動ポンプ
10 冷暖切替弁
11 流量調整弁
12 レシーバタンク
13 電動ポンプ
14 逆止弁
15a 開閉弁
15b 開閉弁
16 均圧管
17 液面センサ
18 送風機
20 液管
21a 空間
21b 空間
21c 空間
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an air conditioner, and more specifically, a refrigerant capable of phase change between an outdoor unit and a plurality of indoor units, the total number or majority of which is installed below the outdoor unit, is divided into a liquid phase and a gas phase. It is related with the apparatus which made it circulate using the specific gravity difference of this, and the discharge force of the auxiliary pump for cooling installed in the liquid phase pipe | tube, and enabled the cooling operation in each indoor unit.
[0002]
[Prior art]
Conventionally, there is an apparatus as shown in FIG. 6, for example, as an air conditioner that does not require a transfer power of a phase changeable refrigerant, that is, a refrigerant whose state changes between liquid and gas by taking in and out latent heat. However, this apparatus installs the outdoor unit 1 functioning as a condenser at the high position of the building, and the outdoor unit 1 and the heat exchanger 5 of the indoor unit installed in the air-conditioned room at a lower position. The liquid phase pipe 6 and the gas phase pipe 7 are connected to each other, and the liquid radiated and condensed by the heat exchanger 2 of the outdoor unit 1 is supplied to the heat exchanger 5 of the indoor unit through the liquid phase pipe 6 by its own weight. On the other hand, the heat absorbed and evaporated by heat exchange with the indoor air having a high temperature in the heat exchanger 5 of the indoor unit flows into the outdoor unit 1 having a low pressure due to the condensation of the refrigerant through the gas phase pipe 7. Therefore, it is possible to circulate so Next, there is an advantage that the running cost is said that can be suppressed. In addition, 11 is a flow control valve and 18 is a blower.
[0003]
In addition, a receiver tank 8 and an electric pump 9 are incorporated in series in the liquid phase pipe 6 as indicated by a broken line, and the electric pump 9 is connected to the liquid tank 6 based on the liquid level of the refrigerant accumulated in the receiver tank 8 and capable of phase change. There is also an air conditioner configured to be able to circulate a phase-changeable refrigerant even if some indoor units are installed at the same height as the outdoor unit 1 or installed at a higher position, with on / off control. It is well known.
[0004]
[Problems to be solved by the invention]
However, in the air conditioner configured as described above, the in-circuit pressure of the phase-changeable refrigerant is constantly changing due to a change in cooling load, etc., and when the pressure decreases, a part of the refrigerant in the liquid-phase tube is vaporized and bubbles are generated. May occur.
[0005]
In particular, when the cooling operation is started, even if the liquid phase tube is covered with a heat insulating material, the temperature of the liquid phase refrigerant is heated by the outside air and is relatively high, so the outdoor unit starts cooling. When the pressure in the circuit suddenly drops, the refrigerant may foam all at once in the liquid phase tube in response to the pressure drop. In addition, even when the cooling load is small and the amount of circulating refrigerant is small, it is easily affected by outside air, and in such a partial load operation, the refrigerant may foam in the liquid phase tube even if the pressure drops slightly. Further, bubbles may be generated by heat entering from the outside air into equipment provided in the middle of the piping.
[0006]
And the bubble produced | generated in this way makes the circulation of a liquid phase refrigerant | coolant unstable, or makes the branch flow of the liquid phase refrigerant | coolant to each indoor unit unstable. As a result, in an extreme case, an indoor unit in which the refrigerant does not flow occurs, and there is a situation in which the room cannot be sufficiently cooled.
[0007]
In addition, in the air conditioner configured as described above, the liquid-phase refrigerant that has dissipated heat and condensed in the outdoor unit enters the indoor unit, evaporates, and then returns to the outdoor unit. There is a drawback that it is difficult to eliminate it, it is difficult to get out of the adverse effect for a long time, and it is greatly affected. In other words, the air bubbles accumulated at the entrance of the indoor unit on each floor must be taken such that the expansion valve is once fully opened and removed to the outlet side. The refrigerant is also discharged to the outlet side of the indoor unit, so that a so-called liquid back in which the liquid phase refrigerant stays in the gas phase pipe is generated, which also causes a circulation failure of the refrigerant.
[0008]
Accordingly, it is difficult for bubbles to be generated in the liquid phase tube, and it is necessary to be able to easily eliminate the bubbles even if they are generated.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems of the prior art, the present invention provides a liquid-phase pipe provided with an auxiliary pump for cooling between an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit, A refrigerant that can be phase-changed by connecting with a gas phase pipe, using the difference in specific gravity between the liquid phase and the gas phase and the discharge force of the auxiliary pump for cooling, an outdoor unit, a liquid phase pipe, an indoor unit, and a gas phase pipe In the air conditioner configured to circulate in this order and enable the cooling operation using the phase change from the liquid phase to the gas phase of each refrigerant in each indoor unit, the liquid phase tube that reaches the lowest indoor unit relative to the outdoor unit Is provided with a second liquid phase pipe extending from the lower side to the outdoor unit, and a second liquid pump for conveying the refrigerant to the outdoor unit is provided in the second liquid phase pipe, and the outdoor unit is provided during cooling operation. Supplying the refrigerant condensed and liquefied to the indoor unit via the liquid phase pipe, and the second liquid pump The refrigerant is circulated to the second liquid phase pipe to increase the circulation amount of the refrigerant circulating in the liquid phase pipe, and the bubbles generated in the liquid phase pipe can be returned to the outdoor unit. The air conditioner which did it is provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 (during cooling operation) and FIG. In order to facilitate understanding, in these drawings, the same reference numerals are given to the portions having the same functions as those described in FIG .
[0012]
In FIG. 1, reference numeral 1 denotes an outdoor unit that can selectively generate cold and hot heat, for example, an absorption refrigerator, and is installed in a machine room on the roof of a building, for example, inside an evaporator. Heat is exchanged with a refrigerant capable of phase change enclosed in the closed circuit 3, for example, R-134a, which can be easily evaporated when the pressure drops even at a low temperature, through the piped heat exchanger 2.
[0013]
Reference numeral 5 denotes an indoor unit heat exchanger installed on each floor / room of the building, and is connected to the heat exchanger 2 of the outdoor unit 1 by a liquid phase pipe 6 and a gas phase pipe 7 as shown in the figure. The closed circuit 3 is formed.
[0014]
Then, the R-134a of the liquid that is radiated, condensed and discharged by the heat exchanger 2 of the outdoor unit 1 during the cooling operation is stored through the liquid pipe 20 having the on-off valve 15a (opened during the cooling operation). Receiver tank 8, electric pump 9 functioning as a cooling auxiliary pump for supplying R-134a accumulated in the tank to the indoor unit, and cooling / heating switching valve that opens during cooling operation and closes during heating operation 10 is interposed in series, and the first liquid phase pipe 6A that reaches each indoor unit via each expansion valve 11 is branched and extended from a lower portion of the first liquid phase pipe 6A. A receiver tank 12 for storing the liquid R-134a in the lowest part, an electric pump 13 for returning the R-134a stored in the tank to the outdoor unit 1, and a check valve 14 are interposed in series. Liquid that passes through the check valve 14 R-134a is composed of a second liquid phase pipe 6B which is supplied to the intermediate heat exchanger 2 during the cooling operation.
[0015]
The electric pump 9 of the first liquid phase pipe 6A transports the liquid R-134a, which is radiated and condensed by the outdoor unit 1 to the indoor unit that is mostly installed below the outdoor unit 1 during cooling operation. Therefore, a small pump is used. On the other hand, the electric pump 13 of the second liquid phase pipe 6B is a pump for transporting the liquid R-134a that is radiated and condensed by the indoor unit to the upper outdoor unit 1 during the heating operation . A pump is used.
[0016]
The receiver tank 8, the electric pump 9, the cooling / heating switching valve 10, the on-off valve 15 a, and the on-off valve 15 b are incorporated in the outdoor unit 1. The gas phase section of the receiver tank 8 and the gas phase pipe 7 communicate with each other via a thin pressure equalizing pipe 16 having an on-off valve 15b, and a liquid for detecting the liquid level of R-134a in the heat exchanger 2 is used. A surface sensor 17 is also provided.
[0017]
The outdoor unit 1 also has a function of controlling the amount of input heat so that the temperature of the R-134a that is cooled by the heat exchanger 2 and discharged to the liquid phase pipe 6 during cooling operation is a predetermined temperature, for example, 7 ° C. The indoor unit performs a cooling operation via the heat exchanger 5, and the opening degree of the flow control valve 11 is adjusted so that the temperature of the R-134a discharged to the gas phase pipe 7 rises to a predetermined temperature, for example, 12 ° C. It has a function to adjust.
[0018]
And, explaining the circulation cycle at the time of cooling operation of R-134a enclosed in the closed circuit 3, R-134a is cooled and condensed through the tube wall of the heat exchanger 2 by the cold generated in the outdoor unit 1, The liquid is discharged to the first liquid phase pipe 6A and accumulated in the receiver tank 8, and a part of the electric pump 9 is supplied to the heat exchanger 5 of each indoor unit at a predetermined temperature to perform the cooling operation, and the remaining part Is returned to the heat exchanger 2 via the second liquid phase pipe 6B branched from the lower part of the first liquid phase pipe 6A.
[0019]
That is, a part of the liquid R-134a condensed by releasing heat in the outdoor unit 1 is supplied from the flow rate adjusting valve 11 opened to the heat exchanger 5 of each indoor unit and performs the cooling operation, and the remaining part is always Since the liquid is returned to the heat exchanger 2 via the second liquid phase pipe 6B, the second R-134a is circulated to the indoor unit during partial load operation or the like. The amount of R-134a flowing through the first liquid phase pipe 6A reaching the liquid phase pipe 6B is large, and therefore the influence of the outside air temperature is relatively small, and bubbles are generated in the liquid R-134a in this portion. Few. Moreover, even if bubbles are generated, R-134a is returned to the heat exchanger 2 of the outdoor unit 1 through the second liquid phase pipe 6B and recondensed, so that the bubbles have an adverse effect on the cooling operation. There is nothing.
[0020]
In addition, when the outdoor unit 1 starts cooling at the start of the cooling operation or the like, the pressure in the closed circuit 3 suddenly decreases, and the liquid R-134a bubbles in the liquid phase pipe 6 all at once. Since the circulating force for returning the foamed R-134a to the heat exchanger 2 of the outdoor unit 1 through the second liquid phase pipe 6B is increased by operating the No. 13, the foamed R-134a is quickly replaced by the heat exchanger. It flows into 2 and dissipates and condenses. Thereby, bubbles disappear from the R-134a in the liquid phase tube 6 quickly.
[0021]
Then, when the liquid R-134a bubbles all at once in the liquid phase pipe 6, the electric pump 13 pushes out the volume corresponding to the volume of the bubbles to the outdoor unit 1, and the liquid level in the heat exchanger 2 is increased. When the bubble rises and the bubble disappears, the rise is returned to the liquid phase tube 6 and the liquid level is lowered. Therefore, when the liquid level sensor 17 detects a liquid level higher than the first predetermined level, the first level is activated. Control is performed as shown in FIG. 2, for example, so as to stop when a liquid level lower than a second predetermined level lower than the predetermined level is detected.
[0022]
That is, first, the liquid level of the R-134a is detected by the liquid level sensor 17 (step S1), and then it is determined whether or not the liquid level is higher than the first predetermined level (step S2). Is determined (step S3). When the flag is not set, the flag is set (step S4), the electric pump 13 is activated (step S5), and the process returns to step S1. Moreover, it returns to step S1 also when it determines with the flag standing in step S3.
[0023]
On the other hand, when it is determined in step S2 that the liquid level is not higher than the first predetermined level, the process proceeds to step S6 to determine whether or not the liquid level is lower than the second predetermined level. (Step S7), when the flag is set, the flag is turned off (step S8), the electric pump 13 is stopped (step S9), and the process returns to step S1. Also, when it is determined in step S6 that the liquid level is not lower than the second predetermined level and when it is determined in step S7 that the flag is not raised, the process returns to step S1.
[0024]
In addition, it cools by depriving heat from the high-temperature indoor air that flows into the indoor unit through the flow control valve 11 and is forcibly conveyed by the blower through the tube wall of the heat exchanger 5, and evaporates. The gas R-134a is cooled, condensed and liquefied, flows into the heat exchanger 2 of the outdoor unit 1 through the gas phase pipe 7, and is again radiated and condensed here. Conventionally known circulation is performed.
[0025]
3 (a) and 3 (b) are schematic views of the evaporator 2 when an evaporator of an absorption refrigeration machine is used for the heat exchanger 2 shown in FIG. 1, and a plurality of heat transfer tubes 22a and 22b are shown in FIG. The gas pipe 7, the second liquid phase pipe 6 </ b> B, and the liquid pipe 20 are connected to each other through spaces 21 a, 21 b, and 21 c formed at both ends.
The evaporated gas returning from the gas phase tube 7 is supplied to the liquid tube 20 through the space 21a, the plurality of heat transfer tubes 22a, the space 21c, the plurality of heat transfer tubes 22b, and the space 21b. At this time, the gas R-134a flowing in the heat transfer tubes 22a and 22b is liquefied by the evaporating action of the refrigerant dropped on the outer peripheral surfaces of the heat transfer tubes 22a and 22b.
Liquids of R-134a which is supplied from the electric pump 13 is supplied to the space 21a.
[0026]
4 (a) and 4 (b) are schematic views showing another embodiment of the heat exchanger 2 shown in FIG. 3, and a plurality of heat transfer tubes 22 are provided through spaces 21a and 21c formed at both ends thereof. The gas phase pipe 7, the second liquid phase pipe 6 </ b > B, and the liquid pipe 20 are connected.
The vaporized gas returning from the gas phase tube 7 is supplied to the liquid tube 20 through the space 21a, the plurality of heat transfer tubes 22, and the space 21c. At this time, the gas R-134a flowing in the heat transfer tube 22 is liquefied by the evaporation of the refrigerant dripped onto the outer peripheral surface of the heat transfer tube 22 .
The liquid R-134a supplied from the electric pump 13 is supplied to the middle of the space 21a as shown.
[0027]
FIG. 5 is a schematic diagram of the heating operation. The operation of the electric pump 9 is stopped, the cooling / heating switching valve 10 and the on-off valves 15a and 15b are closed, and the second temperature is generated while the outdoor unit 1 generates heat. The electric pump 13 of the liquid phase pipe 6B is operated.
[0028]
That is, the R-134a of the closed circuit 3 is heated and evaporated through the tube wall of the heat exchanger 2 due to the heat generated in the outdoor unit 1, and the evaporated R-134a passes through the gas phase tubes 7. It is supplied to the heat exchanger 5 of the indoor unit at a predetermined temperature, for example, 55 ° C., and in each heat exchanger 5, R-134a dissipates heat to the low-temperature indoor air forcibly supplied by the blower to condense / liquefy. However, a heating operation is performed during the condensation and liquefaction. The R-134a liquid condensed in the heat exchanger 5 flows into the receiver tank 12 through the flow rate adjusting valve 11, and this R-134a is supplied to the receiver tank 8 by the conveying force of the electric pump 13. The heat exchanger 2 is returned.
[0029]
That is, the air conditioner of the present invention shown in FIG. 1 and FIG. 5 is configured such that either air conditioning of cooling / heating can be selected and executed. In addition, as an absorption refrigerating machine which can supply cold heat from the heat exchanger 2 piped to the evaporator or can supply warm heat, for example, the one disclosed in JP-A-7-318189 can be used.
[0030]
By the way, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit described in the claims.
[0031]
In addition to the R-134a, the phase changeable refrigerant sealed in the closed circuit 3 includes R-407c, R-404A, R-410c, etc. that easily change phase by controlling temperature and pressure. Also good.
[0032]
【The invention's effect】
As described above, according to the air conditioner of the present invention, the generation of bubbles is suppressed even when the amount of liquid-phase refrigerant circulated and supplied to the indoor unit is small, such as during partial load operation of cooling. Further, even when bubbles are generated, they are returned to the outdoor unit via the second liquid phase tube and recondensed, so that the bubbles do not adversely affect the cooling operation.
[0033]
In particular, when the outdoor unit starts cooling at the start of the cooling operation, the pressure in the circuit suddenly drops, and even when the bubbles in the liquid phase tube all at once, the second liquid pump is operated. Since the circulating force for returning the foamed liquid phase refrigerant to the outdoor unit through the second liquid phase tube is increased, it quickly flows into the outdoor unit and radiates and condenses. Thereby, bubbles can be quickly eliminated from the refrigerant in the liquid phase tube.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an embodiment of the present invention.
FIG. 2 is a flowchart showing a control example of an electric pump provided in a second liquid phase pipe.
FIG. 3 is a schematic diagram of the evaporator shown in FIG. 1;
FIG. 4 is a schematic view showing another embodiment of the evaporator shown in FIG. 1;
FIG. 5 is a schematic view showing a refrigerant flow during heating operation.
FIG. 6 is an explanatory diagram of a conventional technique.
[Explanation of symbols]
1 outdoor unit 2 heat exchanger 3 closed circuit 4 indoor unit 5 heat exchanger 6 liquid phase pipe 6A first liquid phase pipe 6B second liquid phase pipe 7 gas phase pipe 8 receiver tank 9 electric pump 10 cooling / heating switching valve 11 Flow control valve 12 Receiver tank 13 Electric pump 14 Check valve 15a Open / close valve 15b Open / close valve 16 Pressure equalizing pipe 17 Liquid level sensor 18 Blower 20 Liquid pipe 21a Space 21b Space 21c Space

Claims (1)

室外機と、全数もしくは過半数が室外機より下方に設置された複数の室内機との間を、冷房用補助ポンプを備えた液相管と、気相管とで連結し、相変化可能な冷媒を液相と気相との比重差と、冷房用補助ポンプの吐出力とを利用して室外機、液相管、室内機、気相管の順に循環させ、各室内機において冷媒の液相から気相への相変化を利用して冷房運転を可能に構成した空調装置において、室外機に対して最も下方の室内機に至る前記液相管の下方部分から、室外機に至る第2の液相管を設け、この第2の液相管に前記冷媒を前記室外機に搬送する第2の液体ポンプを設け、冷房運転の際に前記室外機で凝縮液化された冷媒を前記液相管を介して前記室内機へと供給すると共に、前記第2の液体ポンプを運転させて前記第2の液相管へも流通させて、前記液相管内を循環する前記冷媒の循環量を増大させると共に、該液相管内に生じた気泡を前記室外機に還流可能に構成したことを特徴とする空調装置。A refrigerant capable of phase change by connecting between an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit, with a liquid phase pipe having a cooling auxiliary pump and a gas phase pipe. Is circulated in the order of the outdoor unit, the liquid phase pipe, the indoor unit, and the gas phase pipe using the difference in specific gravity between the liquid phase and the gas phase and the discharge force of the cooling auxiliary pump. from the air-conditioning apparatus configured to be capable of cooling operation using a phase change to a gas phase, from the lower portion of the liquid phase pipe leading to the lowermost of the indoor unit relative to the outdoor unit, the second leading to the outdoor unit A liquid phase pipe is provided , and a second liquid pump for transporting the refrigerant to the outdoor unit is provided in the second liquid phase pipe, and the refrigerant condensed and liquefied by the outdoor unit during cooling operation is supplied to the liquid phase pipe. Is supplied to the indoor unit via the second liquid pump, and the second liquid pump is operated to flow to the second liquid phase pipe. Allowed to, the increasing circulation amount of the refrigerant circulating through the liquid phase pipe, the air conditioner, wherein a bubble generated in the liquid phase tube was refluxed configured to be capable of the outdoor unit.
JP10479298A 1997-11-19 1998-04-15 Air conditioner Expired - Fee Related JP3762542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10479298A JP3762542B2 (en) 1997-11-19 1998-04-15 Air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-318589 1997-11-19
JP31858997 1997-11-19
JP10479298A JP3762542B2 (en) 1997-11-19 1998-04-15 Air conditioner

Publications (2)

Publication Number Publication Date
JPH11211150A JPH11211150A (en) 1999-08-06
JP3762542B2 true JP3762542B2 (en) 2006-04-05

Family

ID=26445178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10479298A Expired - Fee Related JP3762542B2 (en) 1997-11-19 1998-04-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP3762542B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631624B1 (en) * 2000-11-10 2003-10-14 Rocky Research Phase-change heat transfer coupling for aqua-ammonia absorption systems

Also Published As

Publication number Publication date
JPH11211150A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JPH1019305A (en) Cooling system
KR100502283B1 (en) Air conditioning system
JP2004156806A (en) Warm/cold thermal system
JP3762542B2 (en) Air conditioner
KR100538557B1 (en) Air conditioning system and method for operating air conditioning system
JP2524817B2 (en) Air conditioning system
US5924480A (en) Air conditioning system
JP3615353B2 (en) Operation control method for air conditioner
JP3630892B2 (en) Air conditioner
JP3772290B2 (en) Air conditioner
JP3599980B2 (en) Operating method of air conditioner
JP3568380B2 (en) Operating method of air conditioner
JPH11148680A (en) Air conditioner
KR100502233B1 (en) Air conditioning system
JPH11148694A (en) Method for controlling operation of air conditioner
JP3594426B2 (en) Air conditioner
JPH10170179A (en) Air conditioning apparatus
JP3594453B2 (en) Operating method of air conditioner
JP3663028B2 (en) Air conditioner
JPH11148679A (en) Air conditioner
JPH10339476A (en) Air conditioner
JPH11148681A (en) Air conditioner
JPH11148744A (en) Air conditioner
JPH10132334A (en) Air conditioner
JP3663029B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051206

TRDD Decision of grant or rejection written
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees