JP3594426B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3594426B2
JP3594426B2 JP31092996A JP31092996A JP3594426B2 JP 3594426 B2 JP3594426 B2 JP 3594426B2 JP 31092996 A JP31092996 A JP 31092996A JP 31092996 A JP31092996 A JP 31092996A JP 3594426 B2 JP3594426 B2 JP 3594426B2
Authority
JP
Japan
Prior art keywords
indoor unit
indoor
outdoor unit
heat exchanger
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31092996A
Other languages
Japanese (ja)
Other versions
JPH10153334A (en
Inventor
秀俊 有馬
敏男 久保
守 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31092996A priority Critical patent/JP3594426B2/en
Priority to US08/961,303 priority patent/US6006528A/en
Priority to CN97125959.3A priority patent/CN1119575C/en
Publication of JPH10153334A publication Critical patent/JPH10153334A/en
Application granted granted Critical
Publication of JP3594426B2 publication Critical patent/JP3594426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空調装置に関するものであり、特に詳しくは室外機と、全数もしくは過半数が室外機より下方に設置された複数の室内機との間で、相変化可能な流体を液体用ポンプにより循環させ、各室内機において暖房可能に構成した装置に関するものである。
【0002】
【従来の技術】
この種の装置として、例えば図2に示した構成の空調装置が、例えば特開平7−151359号公報に開示されている。図中1は冷水または温水が供給できる室外熱交換器(以下、室外機)、4は室外機1より下層の階に設置された室内機、5は室内機の熱交換器、8は流量調整弁、11は電動ポンプ、22〜25は開閉弁であり、これらを液相管6と気相管7とで図のように配管接続して閉回路3を形成し、閉回路3に封入した冷媒が室外機1と室内機4との間で循環して、室内機4において冷/暖房が行えるようになっている。なお、26は室外機1の側面に設置された液レベルセンサであり、暖房運転時に室外機1に溜った冷媒液が一定となるように電動ポンプ11を制御する。
【0003】
すなわち、上記構成の空調装置においては、室内機4が設置されている室内空気の温度が高いときに、電動ポンプ11を停止した状態で、開閉弁22・23を閉じて開閉弁24・25を開けると共に、流量調整弁8も開け、室外機1において発生させる冷熱によって閉回路3に封入した冷媒を冷却して凝縮させると、室外機1で凝縮した冷媒液は液相管6を自重で流下し、開閉弁24・25および流量調整弁8を介して熱交換器5に流入する。
【0004】
そして、熱交換器5に流入した冷媒液は、熱交換器の管壁を介して室内空気から熱を奪って冷房作用を行うと共に、冷媒自身は蒸発して気相管7に流入し、冷媒が凝縮して低圧となっている室外機1に還流すると云った自然循環が起こるので、電力消費量が年間を通じて最大となる夏期に電動ポンプ11を駆動する電力が不要であり、ランニングコストが削減できると云った利点がある。
【0005】
また、開閉弁22・25を閉じて開閉弁23・24を開けると共に、流量調整弁8も開け、電動ポンプ11を起動して、室外機1において発生させる冷熱によって閉回路3に封入した冷媒を冷却して凝縮させると、室外機1で凝縮した冷媒液は自重と電動ポンプ11の吐出力とで液相管6を流下し、流量調整弁8を通って熱交換器5に入り、冷房作用を行う冷媒の循環が強制的に行われる。
【0006】
このように、電動ポンプ11を起動して冷房を行う場合は、室外機1の直ぐ下に当たる上層階に設置した熱交換器5にも十分な量の冷媒液が供給できると云った利点がある。
【0007】
一方、室内機4が設置されている室内空気の温度が低いときに、開閉弁23・24を閉じて開閉弁22・25を開けると共に、流量調整弁8も開け、電動ポンプ11を起動した状態で、室外機1において発生させる温熱によって閉回路3に封入した冷媒を加熱して蒸発させると、室外機1で蒸発した冷媒蒸気は気相管7を介して熱交換器5に流入する。
【0008】
そして、熱交換器5に流入した冷媒蒸気は、熱交換器の管壁を介して室内空気に放熱して暖房作用を行うと共に、冷媒自身は凝縮して液相管6に流入し、開閉弁25・22を介して電動ポンプ11により室外機1に還流すると云った循環が起こり、室内機4における暖房運転が継続されるようになっている。
【0009】
【発明が解決しようとする課題】
しかし、上記構成の空調装置にあっては、室外機で加熱生成した冷媒蒸気をその蒸気圧によって室内機の熱交換器に供給しているので、暖房起動時に急激な熱負荷が発生すると冷媒蒸気の供給が間に合わなくなり、室内機の熱交換器に凝縮した冷媒が滞留する、いわゆる冷媒の寝込み現象が発生して室内には冷風が吹き出し、且つ、この閉回路に封入されている冷媒の量は一定であることから、電動ポンプの停止、あるいは室外機に室内機からの冷媒液が戻らないことが考えられ、これによって閉回路の圧力が局部的に必要以上に上昇すると云った問題点があり、これら問題点の解決が課題となっていた。
【0010】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するため、室外機と、全数もしくは過半数が室外機より下方に設置された複数の室内機との間を気相管と液相管とで連結し、室内機で放熱して凝縮した液体を室内機から室外機に液相管に設けたポンプによって搬送し、室外機で吸熱して蒸発した気体を室内機に流入させ、各室内機において暖房可能に構成した装置において、室内機毎に設置して該室内機に供給する前記流体の量を調整する弁の開度を、暖房起動時には所定時間に渡って所定の大きい開度に保持するとともに、特に、下層階に設置された室内機の弁ほど、暖房起動時に所定時間に渡って大きい開度に保持するようにした構成の空調装置を提供するものである。
【0012】
【発明の実施の形態】
以下、本発明の実施形態について、図1を参照して説明する。なお、理解を容易にするため、これらの図においても前記図2において説明した部分と同様の機能を有する部分には、同一の符号を付した。
【0013】
図中1は所望時に冷熱または温熱を発生させることができる、例えば吸収式冷凍機などからなる室外機であり、建物の例えば屋上にある機械室などに設置され、例えば蒸発器の内部に配管した熱交換器2を介して、閉回路3に封入した相変化が可能な流体、例えば低温度でも圧力が低下すると容易に蒸発し得る、R−134aと熱の授受を行って、相変化を起こさせる。
【0014】
室外機1の熱交換器2と、建物の各部屋に設置した室内機4の熱交換器5とは、図のように液相管6・気相管7および流量調整弁8によって配管・接続されて閉回路3を形成している。
【0015】
9は液相管6の共通部6Aに設けた冷暖切替弁(開閉弁)、6Bは冷暖切替弁9をバイパスするように液相管共通部6Aに接続したバイパス管、10と11はこのバイパス管6Bに設けたレシーバタンクと暖房用の電動ポンプである。
【0016】
なお、12は、室内空気を熱交換器5に吹き付けて室内に還流させるための送風機、13と14はR−134aの温度を検出するために熱交換器5のR−134aの出入口に設けた温度センサであり、空調負荷が大きいほど入口側の温度センサ13と出口側の温度センサ14との温度差が大きくなり、空調負荷が小さいほど前記温度差は小さくなる。
【0017】
また、この室外機1には室外制御装置15を、室内機4には室内制御装置16を設けてある。そして、室内制御装置16には、流量調整弁8の弁開度および温度センサ13・14が検出した温度情報を通信信号に変換可能であると共に、外部から受信した通信信号を所要の制御信号に変換することのできる信号変換器(図示せず)を内蔵して、室外制御装置15と室内制御装置16とを通信線17によって接続し、室外制御装置15が出力する制御信号を室内制御装置16が受けて流量調整弁8の開度が制御されるように構成してある。また、室内制御装置16と通信可能で、冷暖房の起動/停止、送風の強弱選択、温度設定などが行えるリモコン18を各室内機4に対応して設置してある。
【0018】
上記構成の空調装置においては、室外機1で温熱を発生しながら冷暖切替弁9を閉弁し、電動ポンプ11を運転すると、室外機1で発生した温熱によって閉回路3のR−134aが熱交換器2の管壁を介して加熱されるので、R−134aは蒸発して気相管7に入り、各室内機4の熱交換器5に供給される。
【0019】
各熱交換器5においては、送風機12によって温度の低い室内空気が強制的に供給されているので、R−134aは室内空気に放熱して凝縮し、暖房作用を行なう。
【0020】
そして、凝縮・液化したR−134aは流量調整弁8を通って下方のレシーバタンク10に入り、電動ポンプ11によって室外機1の熱交換器2に戻されると云った循環が行われる。
【0021】
しかし、発明の課題の所で説明したように、暖房起動時に急激な熱負荷が発生すると、室外機1で蒸発したR−134aの室内機4の熱交換器5への供給が間に合わなくなり、熱交換器5では凝縮したR−134aが滞留する、いわゆる冷媒の寝込み現象が発生して室内に冷風が吹き出し、且つ、この閉回路3に封入しているR−134aの量は一定であることから、電動ポンプ11の停止、あるいは室外機1に室内機4からのR−134aが戻らないことが考えられ、これによって閉回路3の圧力が局部的に必要以上に上昇すると云った問題も起こる。
【0022】
したがって、暖房運転の起動時には、室外制御装置15から通信線17を介して各室内制御装置16に出力する制御信号によって、所定時間、例えば30秒間は、流量調整弁8の開度を高いレベル、例えば全開度に対して開度75%に固定するなどの設定を行う。
【0023】
このため、暖房運転の起動時に空調負荷が急増し、熱交換器5におけるR−134aの放熱量が急に増えても、室外機1から供給されるR−134aの量が多いので、熱交換器5の入口側でもR−134aが凝縮してしまって冷風が室内に吹き出すと云った不都合は回避される。
【0024】
なお、熱交換器5で凝縮したR−134aの液体は、下層階に設置されている熱交換器5ほどレシーバタンク10との上下差が小さいため、レシーバタンク10の側に排出され難い。また、下層階に設置されている熱交換器5ほど、室外機1の熱交換器2で蒸発したR−134aは圧力低下した状態で作用するので、下層階に設置されている熱交換器5ほど凝縮したR−134aの液体は排出され難い。このため、下層階に設置されている熱交換器5ほど、流量調整弁8の開度を大きく開いて暖房運転を開始する。
【0025】
また、流量調整弁8を通って熱交換器5から排出されるR−134aの量は、上記したように開度が同じであっても上層階に設置されている室内機4ほど多く、下層階に設置されている室内機4ほど少なくなる傾向にあるので、温度センサ13・14が検出した温度情報が同じであるからと云って、流量調整弁8に同じ制御信号を出力してその開度制御を行ったのでは、暖房負荷に応じたR−134aの適量供給が困難となる。
【0026】
したがって、起動運転時を除く通常運転時においても、温度センサ13・14が検出した温度情報が同じであっても、室外制御装置15には室内機4が設置されている階によって異なった制御信号、すなわち下の階に設置されている室内機4ほど流量調整弁8の開度を大きく開ける所定の制御プログラム、例えば室内機4を10の階に分けて設置した空調装置の場合には、例えば一番高い階に設置した室内機4の補正係数を1とし、1階下がる毎に1に0.05を加えた数値をその階の補正係数とし、温度センサ13・14が検出した温度情報に基づいて先ず無補正時の流量調整弁8の開度を求め、さらにこの開度に所要の補正係数を乗算して室内機4に実際に出力する流量調整弁8の開度を求め、このようにして求めた開度に室内機4の流量調整弁8の開度を調整するための制御信号を出力する制御プログラムを室外制御装置15に記憶して、この制御プログラムに基づいて室内機4それぞれの流量調整弁8の開度を制御するように構成する。
【0027】
このため、室外制御装置15は、温度センサ13・14が検出した温度情報を通信回線17を介して室内制御装置16から受け取ると、それが何階に設置された室内機4から送信された信号であるかを先ず確認してその補正係数を求め、このようにして求めた補正係数を考慮して流量調整弁8の開度を所定のプログラムにより算出し、所要の制御信号を通信回線17を介して該当する室内制御装置16に出力し、設置階に応じた開度に流量調整弁8の開度を調整する。
【0028】
また、上記構成になる本発明の空調装置は、室内温度が高いときに、電動ポンプ11を運転せずに冷暖切替弁9を開き、室外機1において冷熱を発生させると、室外機1で発生した冷熱によって閉回路3のR−134aは熱交換器2の管壁を介して冷却されるので、R−134aは凝縮して下流側の液相管6に溜り、室内機4の流量調整弁8を介して各熱交換器5に供給される。
【0029】
そして、各熱交換器5においては、送風機12によって温度の高い室内空気が強制的に供給されているので、R−134aは室内空気から熱を奪って蒸発し、冷房作用を行なう。
【0030】
そして、R−134aが冷却されて凝縮・液化し、低圧になっている室外機1の熱交換器2に気体還流管7を通って還流すると云った循環が自然に起こる。
【0031】
なお、図1に破線で示したように、レシーバタンク19と電動ポンプ20とを設置した構成とすることも可能である。
【0032】
このように構成すると、R−134aの液体と気体の比重差に加えて電動ポンプ20による搬送力が加算されるので、室内機4の一部を室外機1と同じフロアもしくは室外機1より高い位置に設置しても、R−134aの冷房運転のための循環が確実に行われる。この場合、暖房運転時に開弁し、冷房運転時に閉弁する冷暖切替弁(開閉弁)21を備えたバイパス管6Cを、液相管共通部6Aに破線で示すように接続することが好ましい。
【0033】
なお、蒸発器に配管した熱交換器2から冷熱を供給したり、温熱を供給することができる吸収式冷凍機としては、例えば特開平7−318189号公報などに開示されたものが使用できる。
【0034】
また、温度センサ13・14は、熱交換器5に吹き付ける室内空気の温度変化が検出できるように設置したり、温度センサ13・14に代えて、熱交換器5の出入口部におけるR−134aの圧力差が検出できる圧力センサを設置して、室外制御装置15に空調負荷として出力するように構成することもできる。
【0035】
また、閉回路3に封入する相変化可能な流体としては、R−134aの他にも、R−407c、R−404A、R−410cなど、潜熱による熱移動が可能なものであっても良い。
【0036】
【発明の効果】
以上説明したように、本発明の空調装置は、室内機毎に設置して該室内機に供給する相変化が可能な流体の量を調整する流量調整弁の開度を、暖房運転の起動時には所定時間に渡って所定の大きい開度に保持するので、起動時に暖房負荷が急増しても前記流体の供給量が不足することがない。
【0037】
このため、従来技術のような、室内機の熱交換器入口側でも前記流体が凝縮してしまって冷風が室内に吹き出すと云った不都合は起こらない。
【0038】
また、実施形態で示したようにガスや油を燃焼して冷熱や温熱を発生することができる吸収式冷温水機を室外機として使用した空調装置においては、冷房時の電力としては制御関係に消費される電力を除いて使用されないので、発電量が年間を通して最大となる盛夏時の電力ピークカットに効果がある。
【図面の簡単な説明】
【図1】冷/暖房が可能に構成した一実施形態の説明図である。
【図2】従来技術の説明図である。
【符号の説明】
1 室外機
2 熱交換器
3 閉回路
4 室内機
5 熱交換器
6 液相管
6A 液相管共通部
6B・6C バイパス管
7 気相管
8 流量調整弁
9 冷暖切替弁
10 レシーバタンク
11 電動ポンプ
12 送風機
13・14 温度センサ
15 室外制御装置
16 室内制御装置
17 通信線
18 リモコン
19 レシーバタンク
20 電動ポンプ
21 冷暖切替弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner, and in particular, circulates a phase-changeable fluid by a liquid pump between an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit. The present invention relates to a device configured to be able to heat each indoor unit.
[0002]
[Prior art]
As this type of device, for example, an air conditioner having the configuration shown in FIG. 2 is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-151359. In the figure, 1 is an outdoor heat exchanger capable of supplying cold or hot water (hereinafter referred to as an outdoor unit), 4 is an indoor unit installed on a floor lower than the outdoor unit 1, 5 is a heat exchanger of the indoor unit, and 8 is flow rate adjustment Valves, 11 are electric pumps, 22 to 25 are on-off valves, which are connected by piping with the liquid phase pipe 6 and the gas phase pipe 7 as shown in the figure to form a closed circuit 3 and sealed in the closed circuit 3. The refrigerant circulates between the outdoor unit 1 and the indoor unit 4 so that the indoor unit 4 can perform cooling / heating. Reference numeral 26 denotes a liquid level sensor installed on the side surface of the outdoor unit 1, and controls the electric pump 11 so that the refrigerant liquid accumulated in the outdoor unit 1 during heating operation is constant.
[0003]
That is, in the air conditioner having the above configuration, when the temperature of the indoor air in which the indoor unit 4 is installed is high, the on-off valves 22 and 23 are closed and the on-off valves 24 and 25 are closed while the electric pump 11 is stopped. When opened, the flow control valve 8 is also opened, and the refrigerant sealed in the closed circuit 3 is cooled and condensed by the cold generated in the outdoor unit 1, and the refrigerant liquid condensed in the outdoor unit 1 flows down the liquid phase pipe 6 by its own weight. Then, it flows into the heat exchanger 5 via the opening / closing valves 24 and 25 and the flow regulating valve 8.
[0004]
The refrigerant liquid that has flowed into the heat exchanger 5 removes heat from the indoor air through the pipe wall of the heat exchanger to perform a cooling action, and the refrigerant itself evaporates and flows into the gas-phase pipe 7, where Circulates back to the outdoor unit 1, which is condensed and has a low pressure, so that there is no need for power to drive the electric pump 11 in summer when power consumption is maximum throughout the year, and running costs are reduced. There is an advantage that can be done.
[0005]
In addition, the on-off valves 22 and 25 are closed and the on-off valves 23 and 24 are opened, and the flow control valve 8 is also opened to start the electric pump 11 to cool the refrigerant sealed in the closed circuit 3 by the cold generated in the outdoor unit 1. When cooled and condensed, the refrigerant liquid condensed in the outdoor unit 1 flows down the liquid phase tube 6 by its own weight and the discharge force of the electric pump 11, enters the heat exchanger 5 through the flow control valve 8, and performs a cooling operation. Is forcedly circulated.
[0006]
As described above, when the electric pump 11 is activated to perform cooling, there is an advantage that a sufficient amount of the refrigerant liquid can be supplied to the heat exchanger 5 installed on the upper floor immediately below the outdoor unit 1. .
[0007]
On the other hand, when the temperature of the indoor air in which the indoor unit 4 is installed is low, the on-off valves 23 and 24 are closed and the on-off valves 22 and 25 are opened, and the flow control valve 8 is also opened to start the electric pump 11. Then, when the refrigerant enclosed in the closed circuit 3 is heated and evaporated by the heat generated in the outdoor unit 1, the refrigerant vapor evaporated in the outdoor unit 1 flows into the heat exchanger 5 through the gas phase pipe 7.
[0008]
The refrigerant vapor that has flowed into the heat exchanger 5 radiates heat to room air through the pipe wall of the heat exchanger to perform a heating action, and the refrigerant itself condenses and flows into the liquid phase pipe 6, and the on-off valve Circulation, such as reflux to the outdoor unit 1 by the electric pump 11 via 25 and 22, occurs, and the heating operation in the indoor unit 4 is continued.
[0009]
[Problems to be solved by the invention]
However, in the air conditioner having the above configuration, the refrigerant vapor generated by heating in the outdoor unit is supplied to the heat exchanger of the indoor unit by its vapor pressure. Supply cannot be made in time, the refrigerant condensed in the heat exchanger of the indoor unit stays. Since the pressure is constant, it is conceivable that the electric pump is stopped or the refrigerant liquid from the indoor unit does not return to the outdoor unit, which causes a problem that the pressure in the closed circuit locally increases more than necessary. The solution of these problems has been an issue.
[0010]
[Means for Solving the Problems]
The present invention, in order to solve the above-described problems of the prior art, an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit, are connected by a gas phase pipe and a liquid phase pipe, Liquid condensed by radiating heat from the unit is transported from the indoor unit to the outdoor unit by the pump provided in the liquid phase pipe, and the gas absorbed by the outdoor unit and evaporated is flown into the indoor unit, and each indoor unit can be heated. In the device, the opening degree of the valve installed for each indoor unit and adjusting the amount of the fluid to be supplied to the indoor unit is maintained at a predetermined large opening degree over a predetermined time at the time of heating activation , and in particular, An object of the present invention is to provide an air conditioner having a configuration in which a valve of an indoor unit installed on a lower floor is maintained at a large opening degree for a predetermined time when heating is started .
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG. In these figures, the same reference numerals are given to the portions having the same functions as those described in FIG. 2 in order to facilitate understanding.
[0013]
In the figure, reference numeral 1 denotes an outdoor unit that can generate cold or warm heat when desired, such as an absorption refrigerator, and is installed in, for example, a machine room on a rooftop of a building, and is installed, for example, inside an evaporator. Through the heat exchanger 2, heat is exchanged with R-134a, which is a phase-changeable fluid sealed in the closed circuit 3, for example, R-134a, which can easily evaporate when the pressure is lowered even at a low temperature, causing a phase change. Let it.
[0014]
The heat exchanger 2 of the outdoor unit 1 and the heat exchanger 5 of the indoor unit 4 installed in each room of the building are connected and connected by a liquid phase pipe 6, a gas phase pipe 7, and a flow control valve 8 as shown in the figure. Thus, a closed circuit 3 is formed.
[0015]
9 is a cooling / heating switching valve (open / close valve) provided in the common part 6A of the liquid phase pipe 6, 6B is a bypass pipe connected to the liquid phase pipe common part 6A so as to bypass the cooling / heating switching valve 9, and 10 and 11 are this bypass pipe. It is a receiver tank provided in the pipe 6B and an electric pump for heating.
[0016]
In addition, 12 is a blower for blowing indoor air to the heat exchanger 5 to recirculate the indoor air, and 13 and 14 are provided at the entrance and exit of R-134a of the heat exchanger 5 to detect the temperature of R-134a. The temperature difference between the inlet-side temperature sensor 13 and the outlet-side temperature sensor 14 increases as the air-conditioning load increases, and the temperature difference decreases as the air-conditioning load decreases.
[0017]
The outdoor unit 1 is provided with an outdoor control device 15, and the indoor unit 4 is provided with an indoor control device 16. The indoor control device 16 can convert the valve opening of the flow control valve 8 and the temperature information detected by the temperature sensors 13 and 14 into a communication signal, and convert the communication signal received from the outside into a required control signal. A signal converter (not shown) capable of conversion is built in, the outdoor control device 15 and the indoor control device 16 are connected by a communication line 17, and a control signal output from the outdoor control device 15 is transmitted to the indoor control device 16. And the opening degree of the flow control valve 8 is controlled. In addition, a remote controller 18 that can communicate with the indoor control device 16 and can start / stop cooling / heating, select the intensity of ventilation, set a temperature, and the like is provided for each indoor unit 4.
[0018]
In the air conditioner having the above configuration, when the outdoor unit 1 generates heat and closes the cooling / heating switching valve 9 and operates the electric pump 11, the heat generated in the outdoor unit 1 heats the R-134 a of the closed circuit 3. Since the R-134a is heated through the tube wall of the exchanger 2, the R-134a evaporates and enters the gas phase pipe 7, and is supplied to the heat exchanger 5 of each indoor unit 4.
[0019]
In each of the heat exchangers 5, since the low-temperature indoor air is forcibly supplied by the blower 12, the R-134a releases heat to the indoor air and condenses, thereby performing a heating action.
[0020]
The condensed and liquefied R-134a enters the lower receiver tank 10 through the flow control valve 8, and is circulated by the electric pump 11 to be returned to the heat exchanger 2 of the outdoor unit 1.
[0021]
However, as described in the section of the subject of the invention, when a sudden heat load occurs at the time of starting heating, the supply of the R-134a evaporated in the outdoor unit 1 to the heat exchanger 5 of the indoor unit 4 cannot be made in time, and In the exchanger 5, the condensed R-134a stays, that is, a so-called refrigerant stagnation phenomenon occurs, cool air is blown into the room, and the amount of R-134a sealed in the closed circuit 3 is constant. It is conceivable that the electric pump 11 is stopped or the R-134a from the indoor unit 4 does not return to the outdoor unit 1, which causes a problem that the pressure in the closed circuit 3 locally increases more than necessary.
[0022]
Therefore, when the heating operation is started, the opening degree of the flow control valve 8 is set to a high level for a predetermined time, for example, 30 seconds by a control signal output from the outdoor control device 15 to each indoor control device 16 via the communication line 17, For example, a setting is made such that the opening is fixed at 75% with respect to the full opening.
[0023]
For this reason, even if the air-conditioning load suddenly increases at the time of starting the heating operation and the amount of heat released from the R-134a in the heat exchanger 5 suddenly increases, the amount of R-134a supplied from the outdoor unit 1 is large. The inconvenience that R-134a condenses on the inlet side of the vessel 5 and cool air blows out into the room is avoided.
[0024]
The liquid of R-134a condensed in the heat exchanger 5 is less likely to be discharged to the receiver tank 10 side because the heat exchanger 5 installed on the lower floor has a smaller vertical difference from the receiver tank 10. Further, as the heat exchanger 5 installed on the lower floor, the R-134a evaporated in the heat exchanger 2 of the outdoor unit 1 operates in a state where the pressure is reduced, the heat exchanger 5 installed on the lower floor is lower. The more condensed R-134a liquid is difficult to discharge. For this reason, as the heat exchanger 5 is installed on the lower floor, the opening of the flow control valve 8 is greatly increased, and the heating operation is started.
[0025]
Further, the amount of R-134a discharged from the heat exchanger 5 through the flow control valve 8 is larger for the indoor unit 4 installed on the upper floor, even if the opening degree is the same as described above, Since the number of indoor units 4 installed on the floor tends to be smaller, the same control signal is output to the flow rate regulating valve 8 to open it, because the temperature information detected by the temperature sensors 13 and 14 is the same. If the degree control is performed, it becomes difficult to supply an appropriate amount of R-134a according to the heating load.
[0026]
Therefore, even in the normal operation except the start-up operation, even if the temperature information detected by the temperature sensors 13 and 14 is the same, the outdoor control device 15 outputs different control signals depending on the floor where the indoor unit 4 is installed. In other words, in the case of an air conditioner in which the indoor unit 4 installed on the 10th floor is divided into ten floors, for example, a predetermined control program for opening the flow control valve 8 more widely as the indoor unit 4 is installed on the lower floor. The correction coefficient of the indoor unit 4 installed on the highest floor is set to 1, and a value obtained by adding 0.05 to 1 every time the floor goes down is set as a correction coefficient for that floor, and the temperature information detected by the temperature sensors 13 and 14 is used as the correction coefficient. First, the opening of the flow control valve 8 at the time of no correction is obtained, and the opening is further multiplied by a required correction coefficient to obtain the opening of the flow control valve 8 that is actually output to the indoor unit 4. Flow of the indoor unit 4 A control program for outputting a control signal for adjusting the opening degree of the adjustment valve 8 is stored in the outdoor control device 15, and the opening degree of each flow adjustment valve 8 of each indoor unit 4 is controlled based on the control program. To be configured.
[0027]
Therefore, when the outdoor control device 15 receives the temperature information detected by the temperature sensors 13 and 14 from the indoor control device 16 via the communication line 17, the outdoor control device 15 transmits the signal transmitted from the indoor unit 4 on which floor Is first determined to determine the correction coefficient, the opening degree of the flow control valve 8 is calculated by a predetermined program in consideration of the correction coefficient thus determined, and a required control signal is transmitted to the communication line 17. The flow is output to the corresponding indoor control device 16 via the controller, and the opening of the flow control valve 8 is adjusted to the opening corresponding to the installation floor.
[0028]
Further, in the air conditioner of the present invention having the above-described configuration, when the indoor temperature is high, the cooling / heating switching valve 9 is opened without operating the electric pump 11 and the outdoor unit 1 generates cold heat. Since the R-134a of the closed circuit 3 is cooled through the pipe wall of the heat exchanger 2 by the generated cold, the R-134a condenses and accumulates in the liquid phase pipe 6 on the downstream side, and the flow control valve of the indoor unit 4 8 to each heat exchanger 5.
[0029]
In each of the heat exchangers 5, since the high temperature indoor air is forcibly supplied by the blower 12, the R-134a removes heat from the indoor air and evaporates to perform a cooling operation.
[0030]
Then, the R-134a is cooled, condensed and liquefied, and naturally circulates by returning to the heat exchanger 2 of the outdoor unit 1 at a low pressure through the gas recirculation pipe 7.
[0031]
In addition, as shown by a broken line in FIG. 1, a configuration in which the receiver tank 19 and the electric pump 20 are provided may be employed.
[0032]
With such a configuration, the transport force of the electric pump 20 is added to the difference in specific gravity between the liquid and the gas of R-134a, so that a part of the indoor unit 4 is on the same floor as the outdoor unit 1 or higher than the outdoor unit 1. Even if installed at the position, the circulation for the cooling operation of R-134a is reliably performed. In this case, it is preferable to connect a bypass pipe 6C provided with a cooling / heating switching valve (open / close valve) 21 that opens during the heating operation and closes during the cooling operation to the liquid phase pipe common part 6A as shown by a broken line.
[0033]
In addition, as an absorption refrigerating machine that can supply cold heat or hot heat from the heat exchanger 2 piped to the evaporator, for example, the one disclosed in JP-A-7-318189 can be used.
[0034]
Further, the temperature sensors 13 and 14 are installed so as to be able to detect a change in the temperature of the indoor air blown to the heat exchanger 5, and instead of the temperature sensors 13 and 14, R-134a at the entrance and exit of the heat exchanger 5 is used. It is also possible to provide a pressure sensor capable of detecting a pressure difference and output the air conditioning load to the outdoor control device 15.
[0035]
The phase-changeable fluid sealed in the closed circuit 3 may be a fluid capable of transferring heat by latent heat, such as R-407c, R-404A, and R-410c, in addition to R-134a. .
[0036]
【The invention's effect】
As described above, the air conditioner of the present invention is installed in each indoor unit and adjusts the opening degree of the flow control valve that adjusts the amount of the phase changeable fluid supplied to the indoor unit when the heating operation is started. Since the opening degree is maintained at a predetermined large value over a predetermined time, the supply amount of the fluid does not run short even if the heating load suddenly increases at the time of startup.
[0037]
For this reason, the disadvantage that the fluid is condensed at the heat exchanger inlet side of the indoor unit and the cool air blows into the room does not occur as in the related art.
[0038]
Further, as shown in the embodiment, in an air conditioner using an absorption type chiller / heater that can generate cold or warm heat by burning gas or oil as an outdoor unit, the electric power during cooling has a control relationship. Since it is not used except for the consumed power, it is effective in cutting the peak of power during the high summer months when the amount of power generation is maximized throughout the year.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment configured to allow cooling / heating.
FIG. 2 is an explanatory diagram of a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Heat exchanger 3 Closed circuit 4 Indoor unit 5 Heat exchanger 6 Liquid phase pipe 6A Liquid phase pipe common part 6B / 6C Bypass pipe 7 Gas phase pipe 8 Flow control valve 9 Cooling / heating switching valve 10 Receiver tank 11 Electric pump 12 Blowers 13 and 14 Temperature sensor 15 Outdoor control device 16 Indoor control device 17 Communication line 18 Remote control 19 Receiver tank 20 Electric pump 21 Cooling / heating switching valve

Claims (1)

室外機と、全数もしくは過半数が室外機より下方に設置された複数の室内機との間を気相管と液相管とで連結し、室内機で放熱して凝縮した液体を室内機から室外機に液相管に設けたポンプによって搬送し、室外機で吸熱して蒸発した気体を室内機に流入させ、各室内機において暖房可能に構成した装置であって、室内機毎に設置して該室内機に供給する前記気体の量を調整する弁の開度を、暖房起動時には所定時間に渡って所定の大きい開度に保持するとともに、特に、下層階に設置された室内機の弁ほど、暖房起動時に所定時間に渡って大きい開度に保持することを特徴とする空調装置。A gas phase pipe and a liquid phase pipe are connected between the outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit, and the liquid condensed by radiating heat in the indoor unit is removed from the outdoor unit. It is a device configured to be conveyed by a pump provided in a liquid phase pipe to the machine, to absorb the gas absorbed by the outdoor unit and evaporate and flow into the indoor unit, and to be capable of heating in each indoor unit, and installed for each indoor unit. The opening degree of the valve for adjusting the amount of the gas supplied to the indoor unit is maintained at a predetermined large opening degree for a predetermined time at the time of heating activation , and in particular, as the valve of the indoor unit installed on the lower floor, An air conditioner characterized by maintaining a large opening degree for a predetermined time when heating is started .
JP31092996A 1996-10-31 1996-11-21 Air conditioner Expired - Fee Related JP3594426B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31092996A JP3594426B2 (en) 1996-11-21 1996-11-21 Air conditioner
US08/961,303 US6006528A (en) 1996-10-31 1997-10-30 Air conditioning system
CN97125959.3A CN1119575C (en) 1996-10-31 1997-10-31 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31092996A JP3594426B2 (en) 1996-11-21 1996-11-21 Air conditioner

Publications (2)

Publication Number Publication Date
JPH10153334A JPH10153334A (en) 1998-06-09
JP3594426B2 true JP3594426B2 (en) 2004-12-02

Family

ID=18011091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31092996A Expired - Fee Related JP3594426B2 (en) 1996-10-31 1996-11-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP3594426B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245510B2 (en) * 2008-04-18 2013-07-24 ダイキン工業株式会社 Air conditioning system and outdoor unit of air conditioning system

Also Published As

Publication number Publication date
JPH10153334A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP5129972B2 (en) Water heater with heat recovery path
JP3594426B2 (en) Air conditioner
JP2524817B2 (en) Air conditioning system
JP4169454B2 (en) Hot water storage hot water source
JP4169453B2 (en) Hot water storage hot water source
JPH062982A (en) Absorption room cooling/heating system and controlling method therefor
JP3630892B2 (en) Air conditioner
JP3599980B2 (en) Operating method of air conditioner
JPH10170179A (en) Air conditioning apparatus
JP4144996B2 (en) Hot water storage hot water source
JP3594453B2 (en) Operating method of air conditioner
JPH11148694A (en) Method for controlling operation of air conditioner
JP3299414B2 (en) Refrigerant circulation type air conditioning system
JP3568380B2 (en) Operating method of air conditioner
JP2002295899A (en) Hot-water storage type water-heating heat source
JP3604869B2 (en) Operation control method of air conditioner
JP3663028B2 (en) Air conditioner
JP3663029B2 (en) Air conditioner
JP3615353B2 (en) Operation control method for air conditioner
JP3846755B2 (en) Refrigerant circulation type air conditioning system
KR100502233B1 (en) Air conditioning system
JP4183345B2 (en) Air conditioner
JPH10132334A (en) Air conditioner
JP2000039229A (en) Air conditioner
JP2004125300A (en) Hot water storage type water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees