JPH0243105B2 - - Google Patents

Info

Publication number
JPH0243105B2
JPH0243105B2 JP57226658A JP22665882A JPH0243105B2 JP H0243105 B2 JPH0243105 B2 JP H0243105B2 JP 57226658 A JP57226658 A JP 57226658A JP 22665882 A JP22665882 A JP 22665882A JP H0243105 B2 JPH0243105 B2 JP H0243105B2
Authority
JP
Japan
Prior art keywords
refrigerant
amount
temperature
heat
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57226658A
Other languages
Japanese (ja)
Other versions
JPS59119161A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP22665882A priority Critical patent/JPS59119161A/en
Publication of JPS59119161A publication Critical patent/JPS59119161A/en
Publication of JPH0243105B2 publication Critical patent/JPH0243105B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸収冷凍機において溶液の結晶化を
防止する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for preventing crystallization of a solution in an absorption refrigerator.

〔従来の技術〕[Conventional technology]

従来、吸収冷凍機においては、例えば冷却水温
度の変化の大きい場合、或いは凝縮温度の変化が
大きい場合は溶液が結晶化するおそれがある。
Conventionally, in absorption refrigerators, there is a risk that the solution will crystallize, for example, when there is a large change in cooling water temperature or when there is a large change in condensation temperature.

冷却水温度変化が大きい例を挙げれば、ヒート
ポンプとして用いるとき、起動時の冷却水温度
は、定常運転時の冷却水温度とは大幅に異なる。
このため同一熱源温度、例えば一蒸気温度を用い
ても、発生器の伝熱量が大きく異なり、起動時に
は多量の冷媒が発生器より放出され、発生器出口
の溶液は非常に高濃度となり結晶の危険があるこ
とが知られている。
To give an example of a large change in cooling water temperature, when used as a heat pump, the cooling water temperature at startup is significantly different from the cooling water temperature during steady operation.
Therefore, even if the same heat source temperature is used, for example, the temperature of one steam, the amount of heat transfer in the generator will vary greatly, and at startup, a large amount of refrigerant will be released from the generator, and the solution at the generator outlet will be extremely concentrated, resulting in the risk of crystal formation. It is known that there is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来では、第1図に示す例において、凝縮温度
80℃、発生器出口溶液温度140℃程度で設計され
たLiBr−H2O系の吸収式ヒートポンプでは、定
常運転ではAの如きサイクルとなり、発生器出口
溶液は63%の温度でバランスする。そして、起動
後にもしばらくの間冷却水温度が低く(特に蓄熱
槽を用いている場合や冷却水、即ち温水保有量の
多い場合には長時間かかる)、凝縮器温度が40℃
程度までしか上昇していない場合に、熱源が同一
で、蒸気圧が一定となるときに、発生器出口温度
が120℃程度以上となると、サイクルBの如くな
り、発生器出口では溶融温度が70%を越えて73%
程度にもなり、吸収器に戻るまでに結晶線Kに達
して結晶してしまう。このケースでは、サイクル
AとサイクルBとでは平均濃度がほとんど同じで
あり、蒸発器の冷媒液面から溶液温度を推定して
結晶防止をしようとする従来方法は、有効な結晶
防止とはならない。
Conventionally, in the example shown in Figure 1, the condensation temperature
In a LiBr-H 2 O absorption heat pump designed with a temperature of 80°C and a solution temperature at the generator outlet of about 140°C, a cycle like A occurs during steady operation, and the temperature of the generator outlet solution is balanced at 63%. Even after startup, the cooling water temperature remains low for a while (especially when a heat storage tank is used or when there is a large amount of cooling water, i.e., hot water, it takes a long time), and the condenser temperature remains at 40℃.
When the heat source is the same and the vapor pressure is constant, if the generator outlet temperature rises to about 120℃ or higher, cycle B will occur, and the melting temperature at the generator outlet will rise to 70℃. over 73%
It reaches the crystal line K and crystallizes by the time it returns to the absorber. In this case, the average concentration is almost the same in cycle A and cycle B, and the conventional method of trying to prevent crystallization by estimating the solution temperature from the refrigerant liquid level in the evaporator is not effective in preventing crystallization.

しかも、凝縮温度変化の大きい例でも、冷却水
系が汚れていて、多量のスケールの付着が予想さ
れる場合、スケールが付着している状態で安定の
能力が出るように冷凍機が設計されている。この
ような場合スケール付着の前後の凝縮温度の変化
が大きく、新設時又はスケール除去直後は凝縮温
度が低く冷媒が多量に発生し溶液濃度が高くなり
結晶の危険を招くし、また発生器の加熱用熱源温
度の変化が激しい場合も、激しい加熱の折に冷媒
が多量に発生し溶液温度が高まり結晶の危険を招
くなどの欠点があつた。
Moreover, even in cases where the condensing temperature changes significantly, if the cooling water system is dirty and a large amount of scale is expected to adhere, the chiller is designed to provide stable performance even when scale is attached. . In such cases, there is a large change in condensation temperature before and after scale adhesion, and when a new installation is installed or immediately after scale removal, the condensation temperature is low and a large amount of refrigerant is generated, increasing the solution concentration and causing the risk of crystal formation. When the temperature of the heat source changes rapidly, a large amount of refrigerant is generated during intense heating, which increases the temperature of the solution and poses a risk of crystal formation.

本発明は、これらの従来の方法の欠点を除き、
起動時や、据付当初など過負荷がかかつて溶液が
過濃縮されることを防ぎ、結晶のおそれをなくす
ことができる吸収冷凍機の結晶防止方法を提供す
ることを目的とするものである。
The present invention eliminates the drawbacks of these conventional methods and
The object of the present invention is to provide a method for preventing crystallization in an absorption refrigerator, which prevents a solution from becoming overconcentrated when overloaded such as during startup or at the time of installation, and eliminates the risk of crystallization.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、吸収器、発生器、凝縮器、蒸発器及
びこれらの機器を接続する溶液経路、冷媒経路を
有し、発生器における加熱用の熱源熱量を制御す
る熱源熱量制御弁を有する吸収冷凍機の結晶防止
方法において、前記凝縮器から蒸発器までの冷媒
経路中の冷媒液溜りに設けた絞り機構を経て冷媒
液を流出すると共に、前記凝縮器で凝縮する凝縮
冷媒液の凝縮冷媒量を検出し、その検出値が設定
値を越えたときに、熱源熱量制御弁の開度を制限
することを特徴とする吸収冷凍機の結晶防止方法
である。
The present invention provides an absorption refrigeration system that has an absorber, a generator, a condenser, an evaporator, a solution path and a refrigerant path that connect these devices, and a heat source heat amount control valve that controls the heat source heat amount for heating in the generator. In a method for preventing crystallization in a machine, the refrigerant liquid flows out through a throttling mechanism provided in a refrigerant liquid reservoir in the refrigerant path from the condenser to the evaporator, and the amount of condensed refrigerant in the condensed refrigerant liquid condensed in the condenser is reduced. A method for preventing crystallization in an absorption refrigerator, which is characterized by detecting crystallization and limiting the opening degree of a heat source calorie control valve when the detected value exceeds a set value.

〔作用〕[Effect]

本発明は吸収冷凍機において、温度水製造を行
う場合、定常運転時においては温度検出器24に
よる温水(冷却水)出口温度の信号により制御器
25を介して熱源熱量調節弁13の開度を調節し
温水の温度制御を行う。第3図においてV0は全
開開度、V1,V2,V3……は部分負荷時の開度と
する。
In the absorption refrigerator of the present invention, when temperature water is produced, the opening degree of the heat source calorie control valve 13 is controlled via the controller 25 in response to a signal of the hot water (cooling water) outlet temperature from the temperature detector 24 during steady operation. Adjust and control the temperature of hot water. In Fig. 3, V 0 is the full opening degree, and V 1 , V 2 , V 3 . . . are the opening degrees at partial load.

起動時や据付当初などにおいて前述の如く、温
水(冷却水)温度が低かつたり、温水チユーブ
(冷却水管18)の伝熱係数が高かつたりして過
負荷がかかると、凝縮器Cにおける冷媒凝縮量が
増大し液面が上昇し、冷媒液溜りの液面もオリフ
イスを経て流出しているにも拘らず上昇する。こ
のとき、液面計23にて検出された液面上昇の高
さ(即ち凝縮冷媒量)に応じて第3図のMライン
に示す如く開度制限を行う。例えば全負荷におけ
る起動時など、起動後しばらくすると前述の如く
発生器Gにおける蒸気の発生及び凝縮が盛んに行
われ凝縮器C内の液面が上昇して冷媒液溜りの液
面も上昇する。その液面上昇に応じて弁開度がM
ラインにより制御を受け絞られ、加熱量が減る。
すると凝縮量も減り、配管11による流下により
液面は下がり、Mラインにより開度が少し開く。
As mentioned above, at startup or at the beginning of installation, if an overload is applied due to low hot water (cooling water) temperature or high heat transfer coefficient of the hot water tube (cooling water tube 18), the refrigerant in condenser C The amount of condensation increases and the liquid level rises, and the liquid level in the refrigerant reservoir also rises even though it is flowing out through the orifice. At this time, the opening degree is limited as shown by line M in FIG. 3 in accordance with the height of the liquid level rise (ie, the amount of condensed refrigerant) detected by the liquid level gauge 23. For example, during startup under full load, shortly after startup, steam is actively generated and condensed in the generator G as described above, and the liquid level in the condenser C rises, causing the liquid level in the refrigerant reservoir to rise as well. The valve opening degree changes according to the rise in the liquid level.
It is controlled and throttled by the line, reducing the amount of heating.
Then, the amount of condensation decreases, the liquid level falls due to the flow down through the pipe 11, and the M line opens slightly.

このようにして起動時は第3図のMラインに沿
つて上方に移動し、定常液面の高さH0に達する
と熱源熱量調節弁13は全開V0となるので、起
動時域いは熱源温度の変化の激しいときなど、こ
のようにして加熱量を制御することにより冷媒の
凝縮量を制約し、温度の上昇を抑制して結晶化を
防ぐことができる。
In this way, at the time of startup, it moves upward along the M line in FIG . By controlling the amount of heating in this manner, such as when the heat source temperature changes rapidly, it is possible to restrict the amount of refrigerant condensation, suppress the temperature rise, and prevent crystallization.

〔実施例〕〔Example〕

本発明の実施例を第2図例で説明すれば、第2
図に示す如く、吸収器A、発生器G、凝縮器C、
蒸発器E、溶液熱交換器X、溶液ポンプSP、冷
媒ポンプRPが備えられ、溶液経路として配管1,
2,3,4,5、スプレー管6、オーバーフロー
管7を備え、冷媒経路として配管8,9、スプレ
ー管10、配管11が前記各機器を接続して冷凍
サイクルを形成している。
If the embodiment of the present invention is explained using the example of FIG.
As shown in the figure, absorber A, generator G, condenser C,
It is equipped with an evaporator E, a solution heat exchanger X, a solution pump SP, and a refrigerant pump RP.
2, 3, 4, 5, a spray pipe 6, and an overflow pipe 7, and pipes 8, 9, a spray pipe 10, and a pipe 11 as refrigerant paths connect the above-mentioned devices to form a refrigeration cycle.

12は加熱管、13は熱源熱量調節弁である。
冷却水系統としては、冷却ポンプ14、配管1
5、冷却水管16、配管17、冷却水管18、配
管19が備えられ、吸収器A及び凝縮器Cを冷却
するようになつている。冷却水に代えて空気で冷
却する方法もある。この場合、冷却ポンプ14の
代わりに冷却フアンを用いる。20は冷水管で、
配管21,22により蒸発器Eに冷水を導くもの
である。
12 is a heating tube, and 13 is a heat source heat amount control valve.
The cooling water system includes a cooling pump 14 and piping 1.
5, a cooling water pipe 16, a pipe 17, a cooling water pipe 18, and a pipe 19 are provided to cool the absorber A and the condenser C. There is also a method of cooling with air instead of cooling water. In this case, a cooling fan is used instead of the cooling pump 14. 20 is the cold water pipe,
Cold water is guided to the evaporator E through pipes 21 and 22.

23は冷媒液溜り30内の冷媒液面の高さを検
出する液面計、24は凝縮器Cの冷却水の出口温
度を検出する温度検出器、25は制御器で液面計
23及び温度検出器24からの信号を受けて熱源
熱量調節弁13を操作する。この場合、凝縮器C
からの冷媒経路中の冷媒液溜り30内の液溜りの
液面高さを検知することにより冷凍機内で凝縮す
る冷媒量を検知することができる。
23 is a liquid level gauge that detects the height of the refrigerant liquid level in the refrigerant liquid reservoir 30, 24 is a temperature detector that detects the outlet temperature of the cooling water of the condenser C, and 25 is a controller that includes the liquid level gauge 23 and the temperature. In response to the signal from the detector 24, the heat source heat amount control valve 13 is operated. In this case, condenser C
The amount of refrigerant condensed within the refrigerator can be detected by detecting the liquid level height of the refrigerant liquid reservoir 30 in the refrigerant path from the refrigerator.

第4図は別の実施例で、冷房運転時の例であ
る。定常運転時は冷水出口温度を温度検出器26
により検出し、制御器25を介して熱源熱量調節
弁13を調節して冷水温度制御を行う。このケー
スでは凝縮冷媒量を冷却水の凝縮器出入口温度に
より検知し、より正確にはさらに冷却水量をも検
知し、その温度差に応じて第3図のMラインの如
く(グラフの横軸を熱源媒体からの伝熱量とす
る)開度制限が行われる。
FIG. 4 shows another embodiment, which is an example during cooling operation. During steady operation, the temperature detector 26 measures the cold water outlet temperature.
is detected, and the heat source heat amount control valve 13 is adjusted via the controller 25 to control the cold water temperature. In this case, the amount of condensed refrigerant is detected by the temperature at the condenser inlet and outlet of the cooling water, and more precisely, the amount of cooling water is also detected, and the amount of refrigerant is detected according to the temperature difference, as shown in the M line in Figure 3 (the horizontal axis of the graph is The opening is limited by the amount of heat transferred from the heat source medium.

また、熱源の伝熱量は発生器Gにおける冷媒蒸
発量、即ち冷媒凝縮量に対応するので、発生器G
における伝熱量を基に弁の開度制限をしてもよ
い。顕熱変化をする加熱媒体(例えば高温水)の
場合、加熱媒体の入口温度がほぼ一定なら、戻り
温度を知ることにより、発生器Gにおける伝熱量
がわかる。即ち、熱源熱量調節弁13の開きによ
つて流量が分るので、発生器Gにおける加熱媒体
の戻り温度を検知することにより加熱量(伝熱
量)を検知することができるし、また潜熱を伝え
る加熱媒体(例えば蒸気)の場合、この発生器に
おける伝熱量は蒸発ドレン量によつても検知する
ことができる。
In addition, since the heat transfer amount of the heat source corresponds to the amount of refrigerant evaporation in the generator G, that is, the amount of refrigerant condensation, the amount of heat transferred from the generator G
The opening degree of the valve may be limited based on the amount of heat transfer. In the case of a heating medium that changes sensible heat (for example, high-temperature water), if the inlet temperature of the heating medium is approximately constant, the amount of heat transferred in the generator G can be determined by knowing the return temperature. That is, since the flow rate can be determined by the opening of the heat source heat amount control valve 13, the amount of heating (heat transfer amount) can be detected by detecting the return temperature of the heating medium in the generator G, and the latent heat can be transferred. In the case of a heating medium (for example steam), the amount of heat transferred in this generator can also be determined by the amount of evaporative drainage.

前記冷媒液溜り30としては、第5図例に示す
ように冷媒液溜り30内の凝縮冷媒量を絞り機構
としてのをオリフイス28と、液面計23との組
せにより検出して制御器25で熱源熱量調節弁1
3を制御するものである。
As shown in the example in FIG. Heat source heat amount control valve 1
3.

二重効用吸収冷凍機の場合は、高温発生器で発
生し、低温発生器の加熱側にて凝縮する冷媒量を
検出し熱源熱量調節弁の開度制限を行えばよく、
或いは凝縮器における冷媒液量を検出し熱源熱量
調節弁の開度制限を行つて濃度上昇を制約し、、
結晶を防止する。
In the case of a dual-effect absorption refrigerator, the amount of refrigerant generated in the high-temperature generator and condensed on the heating side of the low-temperature generator can be detected and the opening degree of the heat source heat amount control valve can be limited.
Alternatively, the amount of refrigerant liquid in the condenser is detected and the opening degree of the heat source heat amount control valve is restricted to restrict the increase in concentration.
Prevent crystals.

〔発明の効果〕 本発明は、凝縮器から蒸発器までの冷媒経路中
の冷媒液溜りに設けた絞り機構を経て冷媒液を流
出すると共に前記凝縮器で凝縮する凝縮冷媒液の
凝縮冷媒量を検出し、その検出値が設定値を越え
たときに、熱源熱量制御弁の開度を制限すること
により、起動時や据付当初時など、過負荷による
溶液濃度の上昇を抑制して結晶のおそれがなく安
全な吸収冷凍機の運転を可能能とすることができ
る。
[Effects of the Invention] The present invention allows the refrigerant to flow out through a throttling mechanism provided in a refrigerant reservoir in the refrigerant path from the condenser to the evaporator, and also to reduce the amount of condensed refrigerant in the condensed refrigerant that is condensed in the condenser. By limiting the opening degree of the heat source heat control valve when the detected value exceeds the set value, it suppresses the increase in solution concentration due to overload, such as during startup or initial installation, and prevents the risk of crystal formation. It is possible to operate the absorption chiller safely without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸収冷凍機のサイクル線図、第2図は
本発明の実施例のフロー図、第3図は弁開度制御
を示すグラフ、第4図は別の実施例のフロー図、
第5図は一部のフロー図である。 A……吸収器、G……発生器、C……凝縮器、
E……蒸発器、X……溶液熱交換器、SP……溶
液ポンプ、RP……冷媒ポンプ、1,2,3,4,
5……配管、6……スプレー管、7……オーバー
フロー管、8,9……配管、10……スプレー
管、11……配管、12……加熱管、13……熱
源熱量調節弁、14……冷却水ポンプ、15……
配管、16……冷却水管、17……配管、18…
…冷却水管、19……配管、20……冷水管、2
1,22……配管、23……液面計、24……温
度検出器、25……制御器、26……温度検出
器、28……オリフイス、30……冷媒液溜り。
FIG. 1 is a cycle diagram of an absorption refrigerator, FIG. 2 is a flow diagram of an embodiment of the present invention, FIG. 3 is a graph showing valve opening control, and FIG. 4 is a flow diagram of another embodiment.
FIG. 5 is a partial flow diagram. A...absorber, G...generator, C...condenser,
E...Evaporator, X...Solution heat exchanger, SP...Solution pump, RP...Refrigerant pump, 1, 2, 3, 4,
5... Piping, 6... Spray pipe, 7... Overflow pipe, 8, 9... Piping, 10... Spray pipe, 11... Piping, 12... Heating tube, 13... Heat source heat amount control valve, 14 ...Cooling water pump, 15...
Piping, 16... Cooling water pipe, 17... Piping, 18...
...Cooling water pipe, 19...Piping, 20...Cold water pipe, 2
1, 22...Piping, 23...Liquid level gauge, 24...Temperature detector, 25...Controller, 26...Temperature detector, 28...Orifice, 30...Refrigerant liquid reservoir.

Claims (1)

【特許請求の範囲】 1 吸収器、発生器、凝縮器、蒸発器及びこれら
の機器を接続する溶液経路、冷媒経路を有し、発
生器における加熱用の熱源熱量を制御する熱源熱
量制御弁を有する吸収冷凍機の結晶防止方法にお
いて、前記凝縮器から蒸発器までの冷媒経路中の
冷媒液溜りに設けた絞り機構を経て冷媒液を流出
すると共に、前記凝縮器で凝縮する凝縮冷媒液の
凝縮冷媒量を検出し、その検出値が設定値を越え
たときに、熱源熱量制御弁の開度を制限すること
を特徴とする吸収冷凍機の結晶防止方法。 2 前記凝縮冷媒量の検出が、前記冷媒液溜りに
おける冷媒液の液面高さの検出により行われる特
許請求の範囲第1項記載の方法。 3 前記凝縮冷媒量の検出が、前記発生器におけ
る熱源の伝熱量の検知により行われる特許請求の
範囲第1項記載の方法。
[Claims] 1. A heat source heat amount control valve that has an absorber, a generator, a condenser, an evaporator, a solution path and a refrigerant path that connect these devices, and controls the heat source heat amount for heating in the generator. In the method for preventing crystallization of an absorption refrigerator, the refrigerant liquid flows out through a throttling mechanism provided in a refrigerant liquid reservoir in the refrigerant path from the condenser to the evaporator, and the condensed refrigerant liquid condenses in the condenser. 1. A method for preventing crystallization in an absorption refrigerator, comprising detecting the amount of refrigerant and limiting the opening degree of a heat source heat amount control valve when the detected amount exceeds a set value. 2. The method according to claim 1, wherein the amount of condensed refrigerant is detected by detecting the level of the refrigerant liquid in the refrigerant reservoir. 3. The method according to claim 1, wherein the amount of condensed refrigerant is detected by detecting the amount of heat transferred from a heat source in the generator.
JP22665882A 1982-12-27 1982-12-27 Method of preventing crystallization of absorption refrigerator Granted JPS59119161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22665882A JPS59119161A (en) 1982-12-27 1982-12-27 Method of preventing crystallization of absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22665882A JPS59119161A (en) 1982-12-27 1982-12-27 Method of preventing crystallization of absorption refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20730891A Division JPH0660771B2 (en) 1991-07-25 1991-07-25 Absorption refrigerator crystal prevention method

Publications (2)

Publication Number Publication Date
JPS59119161A JPS59119161A (en) 1984-07-10
JPH0243105B2 true JPH0243105B2 (en) 1990-09-27

Family

ID=16848623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22665882A Granted JPS59119161A (en) 1982-12-27 1982-12-27 Method of preventing crystallization of absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS59119161A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794934B2 (en) * 1987-03-19 1995-10-11 三洋電機株式会社 Absorption heat pump capacity controller
JPH07110171A (en) * 1993-10-12 1995-04-25 Tokyo Gas Co Ltd Air conditioner using absorption type freezer machine
JP6871015B2 (en) * 2017-02-27 2021-05-12 矢崎エナジーシステム株式会社 Absorption refrigeration system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127006A (en) * 1974-08-09 1976-03-06 Oki Electric Ind Co Ltd MACHIAWASESET SUZOKUHOSHIKI
JPS5787573A (en) * 1980-11-21 1982-06-01 Ebara Mfg Absorption refrigerating machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127006A (en) * 1974-08-09 1976-03-06 Oki Electric Ind Co Ltd MACHIAWASESET SUZOKUHOSHIKI
JPS5787573A (en) * 1980-11-21 1982-06-01 Ebara Mfg Absorption refrigerating machine

Also Published As

Publication number Publication date
JPS59119161A (en) 1984-07-10

Similar Documents

Publication Publication Date Title
JP2000171123A (en) Triple-effect absorption refrigerating machine
JPH0243105B2 (en)
JPH0660771B2 (en) Absorption refrigerator crystal prevention method
JPS62186178A (en) Absorption refrigerator
JPH0320671B2 (en)
JPH0240948B2 (en)
JPS59125366A (en) Method of preventing crystallization of absorption refrigerator
JP2858922B2 (en) Absorption chiller / heater controller
JPS5857668B2 (en) Absorption liquid crystal prevention device for absorption refrigerators
JP2956362B2 (en) Absorption refrigerator
JP2639969B2 (en) Absorption refrigerator
JPH05312429A (en) Absorption water cooling/heating apparatus
JPH06347126A (en) Absorption freezer
JP2883372B2 (en) Absorption chiller / heater
JPS63223465A (en) Absorption refrigerator
JPH07280384A (en) Double effect absorption chilled and warm water machine
JP2567663B2 (en) Air-cooled double-effect absorption refrigerator
JPS604045Y2 (en) Cavitation prevention device for absorption liquid pump
JPS63223462A (en) Absorption refrigerator
JPH0379631B2 (en)
JPS5960162A (en) Controller for absorption refrigerator
JPS5921957A (en) Absorption cold and hot water machine
JPH046856B2 (en)
JPH0868572A (en) Dual-effect absorption refrigerator
JPS63282460A (en) Absorption refrigerator