JPS5921957A - Absorption cold and hot water machine - Google Patents

Absorption cold and hot water machine

Info

Publication number
JPS5921957A
JPS5921957A JP13137582A JP13137582A JPS5921957A JP S5921957 A JPS5921957 A JP S5921957A JP 13137582 A JP13137582 A JP 13137582A JP 13137582 A JP13137582 A JP 13137582A JP S5921957 A JPS5921957 A JP S5921957A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
temperature regenerator
hot water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13137582A
Other languages
Japanese (ja)
Inventor
荻原 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP13137582A priority Critical patent/JPS5921957A/en
Publication of JPS5921957A publication Critical patent/JPS5921957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)発明の技術分野 本発明は冷温水同時取り出し型の吸収冷温水機に関し、
特に凝縮器に収納した冷却水管と冷媒蒸気との然交換面
槓を調節する機構に関するものである。
[Detailed description of the invention] (a) Technical field of the invention The present invention relates to an absorption chiller/heater that can take out cold and hot water simultaneously;
In particular, it relates to a mechanism for adjusting the natural exchange surface between the cooling water pipe housed in the condenser and the refrigerant vapor.

(ロ)従 来 技 術 第1図は、冷温水同時取り出し型吸収冷温水機の従来例
を示したもので、(1)は高温再生器、(2)は低温再
生器、(3)は凝縮器、(4)は蒸発器、(5)は、吸
収器、(6)、(7)は夫々低温、高温溶液熱交換器並
びに(8)は高温再生器に付設した温水器で、これらは
冷媒導管(9)、冷媒液流下管(10)、冷媒ポンプ(
11)を有する冷媒循環路(15).冷媒液ドレン管(
13)、溶液ポンプ(14)を有する稀液管(15)、
中間液管(16)並びに濃液管(17)で配管接続され
て冷媒と吸収液の循環サイクルを形成し、蒸発器に収納
した管(18)から冷水を得、温水器(8)に収納した
水管(19)から温水を得ている。そして、前記管(1
8)に配設した温度検出器(20)の信号により前記冷
媒導管(9)に配設した冷媒制御弁(21)の開度制御
を行なって冷水負荷の大小を対応させて蒸発器(4)へ
の冷媒供給量を調節し、また、前記水管(19)に配設
した温度検出器(22)の信号により前記冷媒液ドレン
管(13)に配設したドレン制御弁(23)の開度制御
を行ない、温水器(8)内の水管(19)と冷媒蒸気と
の熱交換面積を調節して負荷に対応する温水を取り出す
ようにし、かつ、前記両検出器(20)と(22)との
信号を加算演算する制御器(21)を介して、これら信
号を高温再生器(1)の燃焼加熱室(25)への燃料制
御弁(26)に入力して該制御弁を開度制御することに
より、冷温水の両負荷に対応した高温再生器(1)への
加熱量制御を行なっている。
(b) Conventional technology Figure 1 shows a conventional example of an absorption chiller/heater that takes out cold and hot water simultaneously. (1) is a high temperature regenerator, (2) is a low temperature regenerator, and (3) is a low temperature regenerator. (4) is an evaporator, (5) is an absorber, (6) and (7) are low temperature and high temperature solution heat exchangers, respectively, and (8) is a water heater attached to a high temperature regenerator. are refrigerant conduit (9), refrigerant liquid flow down pipe (10), refrigerant pump (
11) with a refrigerant circuit (15). Refrigerant liquid drain pipe (
13), a diluted liquid tube (15) with a solution pump (14),
The pipes are connected by an intermediate liquid pipe (16) and a concentrated liquid pipe (17) to form a circulation cycle of refrigerant and absorption liquid, and cold water is obtained from the pipe (18) stored in the evaporator and stored in the water heater (8). Hot water is obtained from the water pipe (19). Then, the tube (1
The opening degree of the refrigerant control valve (21) installed in the refrigerant conduit (9) is controlled based on the signal from the temperature detector (20) installed in the refrigerant pipe (9), and the evaporator (4) is adjusted to correspond to the magnitude of the chilled water load. ), and also controls the opening of the drain control valve (23) installed in the refrigerant liquid drain pipe (13) based on the signal from the temperature sensor (22) installed in the water pipe (19). temperature control is carried out to adjust the heat exchange area between the water pipe (19) in the water heater (8) and the refrigerant vapor to take out hot water corresponding to the load, and both the detectors (20) and (22) ), these signals are input to the fuel control valve (26) for the combustion heating chamber (25) of the high temperature regenerator (1) to open the control valve. By controlling the temperature, the amount of heating to the high temperature regenerator (1) corresponding to both cold and hot water loads is controlled.

(ハ)従来技術の問題点 上記従来技術においては、例えば冬期のように温水負荷
が大きく、冷水負荷が小さい場合には、冷媒導管(9)
内の冷媒流量を少くして低温再生器(2)での冷媒発生
を抑制しているにも拘わらず高温再生器(1)から低温
再生器(2)へ流入した中間液が自己蒸発し、この自己
蒸発による潜熱が凝縮器(3)に収納されている冷却水
管(27)内を流れる冷却水によって機外へ無駄に棄て
られ、吸収冷温水機の成績係数が低下する問題点がある
。何故なら、冬期には外気温の低下に伴なって冷却水温
が低下することに加え、冷水負荷が小さい場合は蒸発器
(4)への冷媒供給量が少くなるように前記冷媒制御弁
(21)の開度を制御して吸収器(5)での冷媒吸収量
を減少させ、冷凍能力を低下せしめる制御を行なうため
に、吸収器(5)での冷媒吸収熱の発生量が減少する結
果、凝縮器(3)内に流入する冷却水温が低くなり、該
凝縮器内の圧力が低下する一方、温水負荷が大きいので
、高温再生器(1)へ加えられる加熱量は大であり、該
再生器から流入する中間液温度が高いからである。
(c) Problems with the prior art In the prior art described above, when the hot water load is large and the chilled water load is small, for example in winter, the refrigerant conduit (9)
Even though refrigerant generation in the low-temperature regenerator (2) is suppressed by reducing the flow rate of refrigerant in the refrigerant, the intermediate liquid flowing from the high-temperature regenerator (1) to the low-temperature regenerator (2) self-evaporates. There is a problem in that the latent heat due to self-evaporation is wastefully discarded outside the machine by the cooling water flowing in the cooling water pipe (27) housed in the condenser (3), resulting in a decrease in the coefficient of performance of the absorption chiller/heater. This is because in winter, the cooling water temperature decreases as the outside air temperature decreases, and when the chilled water load is small, the refrigerant control valve (21) is adjusted to reduce the amount of refrigerant supplied to the evaporator (4). ) to reduce the amount of refrigerant absorbed by the absorber (5), thereby reducing the refrigerating capacity.As a result, the amount of heat generated by refrigerant absorption in the absorber (5) decreases. , the temperature of the cooling water flowing into the condenser (3) becomes lower, and the pressure inside the condenser decreases, while the hot water load is large, so the amount of heating applied to the high temperature regenerator (1) is large. This is because the temperature of the intermediate liquid flowing from the regenerator is high.

(ニ)問題点と解決するための手段 本発明は、斯る問題点に鑑み、上記従来の吸収冷温水機
において、凝縮器から蒸発器への冷媒液流量を冷水負荷
の大小に応じて増減する構成を用い、冷水負荷が小さい
ときには凝縮器内に滞溜する冷媒液位を高めて凝縮器内
の冷却水管と冷媒蒸気との熱交換面積を減少させること
により、冷媒蒸気の凝縮潜熱の冷却水による機外放出を
少くするど共に凝縮器内圧の低下を防止して中間液の自
己蒸発を防ぎ、特に冬期等温水負荷が大で、冷水負荷が
小である場合の吸収冷温水機の成績係数向上を達成した
ものである。
(d) Problems and means for solving them In view of these problems, the present invention, in the above-mentioned conventional absorption chiller/heater, increases or decreases the flow rate of refrigerant liquid from the condenser to the evaporator in accordance with the magnitude of the chilled water load. When the chilled water load is small, the refrigerant level accumulated in the condenser is increased to reduce the heat exchange area between the cooling water pipes in the condenser and the refrigerant vapor, thereby reducing the latent heat of condensation of the refrigerant vapor. Performance of absorption chiller/heater, especially in winter when the isothermal water load is large and the chilled water load is small, by reducing the amount of water released outside the machine, and also by preventing the drop in the internal pressure of the condenser and preventing self-evaporation of the intermediate liquid. This achieved an improvement in the coefficient.

(ホ)実 施 例 第2図は、本発明の一実施例を示したもので、第1図に
示した構成要素と同様のものは同一の図番を付している
。第2図において、(28)は前記冷媒液流下管(10
)配設した冷媒液制御弁で、該制御弁は、前記温度検出
器(20)の信号により、冷水温度が低下即ち冷水負荷
が減少すると開度を減じ、冷水温度が上昇即ち冷水負荷
が増大すると開度を増すように制御される。
(E) Embodiment FIG. 2 shows an embodiment of the present invention, and components similar to those shown in FIG. 1 are given the same reference numbers. In FIG. 2, (28) is the refrigerant liquid down pipe (10
), the control valve reduces its opening when the chilled water temperature decreases, that is, the chilled water load decreases, and the chilled water temperature rises, that is, the chilled water load increases, according to the signal from the temperature detector (20). Then, the opening is controlled to increase.

而して、冷水負荷が減少すると、前記温度検出器(20
)の信号により、前記冷媒制御弁(21)の開度を減じ
て冷媒導管(9)を流れる冷媒流量を減じ、低温再生器
(2)での冷媒発生量と高温再生器(1)から凝縮器(
3)への冷媒流量を減じて、該凝縮器への冷媒流入量を
減らすと同時に冷媒液制御弁(28)の開度を減じて冷
媒液流下管(10)を流れる冷媒液流量を減じ、凝縮器
(3)内に滞溜する冷媒液位を上昇させて該凝縮器内の
冷却水管(27)と冷媒蒸気との熱交換面積を減らし、
凝縮器(3)での冷媒凝縮量を減じる。その結果、凝縮
器(3)内圧力の低下が防止されて中間液の自己蒸発が
減少し、この蒸発潜熱が冷却水によって機外へ棄てられ
ると云う熱ロスも減少し、かつ、蒸発機(4)の冷媒液
供給量が減って冷凍能力が抑制されるので、冷水負荷の
減少に応じた冷房用冷水を効率良く得られる。又、冷水
負荷が増大すると、冷水負荷が減少した場合とは逆に、
冷媒制御弁(21)と冷媒液制御弁(28)の開度を負
荷増大に対応させて増すことにより、冷水負荷の増大に
応じた冷房用冷水を効率良く得られる。
Therefore, when the cold water load decreases, the temperature sensor (20
), the opening degree of the refrigerant control valve (21) is reduced to reduce the flow rate of refrigerant flowing through the refrigerant conduit (9), thereby increasing the amount of refrigerant generated in the low-temperature regenerator (2) and the amount of refrigerant condensed from the high-temperature regenerator (1). vessel(
3) to reduce the amount of refrigerant flowing into the condenser, and at the same time reduce the opening degree of the refrigerant liquid control valve (28) to reduce the amount of refrigerant flowing through the refrigerant liquid down pipe (10); Raise the refrigerant liquid level accumulated in the condenser (3) to reduce the heat exchange area between the cooling water pipe (27) in the condenser and the refrigerant vapor,
Reduce the amount of refrigerant condensed in the condenser (3). As a result, a drop in the internal pressure of the condenser (3) is prevented, self-evaporation of the intermediate liquid is reduced, and heat loss due to the latent heat of vaporization being discarded outside the machine by cooling water is also reduced. 4) Since the amount of refrigerant liquid supplied is reduced and the refrigeration capacity is suppressed, cold water for cooling can be efficiently obtained in accordance with the reduction in the chilled water load. Also, when the chilled water load increases, contrary to the case where the chilled water load decreases,
By increasing the opening degrees of the refrigerant control valve (21) and the refrigerant liquid control valve (28) in response to an increase in load, chilled water for cooling can be efficiently obtained in accordance with an increase in chilled water load.

温水負荷の増減に対するドレン制御弁(23)の開度制
御及び冷温水両負荷の増減に対する燃料制御弁(23)
の開度制御は第1図に示した従来例と同様なので、省略
する。
Opening control of the drain control valve (23) in response to increases and decreases in hot water load and fuel control valve (23) in response to increases and decreases in both cold and hot water loads
Since the opening degree control is the same as that of the conventional example shown in FIG. 1, the explanation thereof will be omitted.

尚、図示しないか、負荷の検出に前記温度検出器(20
)、(22)の代りにカロリーメータを用いても良く、
また冷水負荷検出器の信号によって稀液流量を調節する
機構を設けても良い。
Although not shown, the temperature detector (20) is used to detect the load.
), a calorimeter may be used instead of (22),
Further, a mechanism may be provided to adjust the flow rate of the diluted liquid based on the signal from the chilled water load detector.

(ヘ)発明の効果 以上のように、本発明は、二重効用吸収冷凍機の高温再
生器に温水器を付設し、冷温水両負荷の大小に応じて高
温再生器へ加熱量を増減制御するようにした冷温水同時
取り出し型吸収冷温水機において、冷水負荷の大小に応
じて高温再生器から低温再生型を経て凝縮器へ至る冷媒
流量と、該凝縮器から蒸発器へ至る冷媒流量とを増減制
御する機構を備え、蒸発器への冷媒供給量を調整して冷
凍能力を調整すると同時に凝縮器内圧力を調整して低温
再生器へ流入する中間液の自己蒸発による熱ロスを防止
したものであるから、負荷に応じた冷水を効率良く得ら
れ、特に冬期等冷却水温が低い上に温水負荷が大きく、
冷水負荷が小さい場合に、高温再生器への加熱入力に対
し中間液の自己蒸発による熱ロス等凝縮器からの熱放出
が抑制されて効率良く冷温水出力を得ることができ、吸
収冷温水機の成績係数が向上する効果を有する。
(f) Effects of the invention As described above, the present invention attaches a water heater to the high-temperature regenerator of a dual-effect absorption refrigerator, and controls the amount of heating to the high-temperature regenerator depending on the magnitude of both cold and hot water loads. In an absorption chiller/heater with simultaneous extraction of cold and hot water, the refrigerant flow rate from the high temperature regenerator to the condenser via the low temperature regenerator and the refrigerant flow rate from the condenser to the evaporator are determined depending on the magnitude of the chilled water load. Equipped with a mechanism to increase or decrease the amount of refrigerant supplied to the evaporator, it adjusts the refrigerating capacity and at the same time adjusts the pressure inside the condenser to prevent heat loss due to self-evaporation of the intermediate liquid flowing into the low-temperature regenerator. Because of this, it is possible to efficiently obtain cold water according to the load, especially in winter when the cooling water temperature is low and the hot water load is large.
When the chilled water load is small, heat loss from the condenser, such as heat loss due to self-evaporation of the intermediate liquid, is suppressed in response to the heating input to the high-temperature regenerator, making it possible to efficiently obtain chilled and hot water output. It has the effect of improving the coefficient of performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸収冷温水機の従来例を示した回路構成概略説
明図、第2図は本発明吸収冷温水機の一実施例を示した
回路構成概略説明図である。 (1)・・・高温再生器、(2)・・・低温再生器、(
3)・・・凝縮器、(8)・・・温水器、(20)、(
22)・・・温度検出器、(21)・・・冷媒制御弁、
(23)・・・ドレン制御弁、(24)・・・制御器、
(26)・・・燃料制御弁、(27)・・・冷却水管、
(28)・・・冷媒液制御弁。
FIG. 1 is a schematic explanatory diagram of a circuit configuration showing a conventional example of an absorption chiller/heater, and FIG. 2 is a schematic explanatory diagram of a circuit configuration showing an embodiment of the absorption chiller/heater of the present invention. (1)...High temperature regenerator, (2)...Low temperature regenerator, (
3)... Condenser, (8)... Water heater, (20), (
22)... Temperature detector, (21)... Refrigerant control valve,
(23)...Drain control valve, (24)...Controller,
(26)...Fuel control valve, (27)...Cooling water pipe,
(28)...Refrigerant liquid control valve.

Claims (1)

【特許請求の範囲】[Claims] (1)二重効用吸収冷凍機の高温再生型に温水器を付設
し、冷水と温水との両負荷の大小に応じて高温再生器へ
の加熱量を増減制御するようにした吸収冷温水器におい
て、冷水負荷の大水に応じて高温再生器から低温再生器
を経て凝縮器へ至る冷媒流量と該凝縮器から蒸発器へ至
る冷媒流量とを増減制御する機構を備えたことを特徴と
する吸収冷温水機。
(1) A water heater is attached to the high-temperature regeneration type of the dual-effect absorption chiller, and the amount of heating to the high-temperature regenerator is controlled to increase or decrease depending on the magnitude of both cold and hot water loads. The method is characterized by comprising a mechanism for increasing or decreasing the refrigerant flow rate from the high temperature regenerator to the condenser via the low temperature regenerator and the refrigerant flow rate from the condenser to the evaporator in accordance with the large chilled water load. Absorption cold water machine.
JP13137582A 1982-07-27 1982-07-27 Absorption cold and hot water machine Pending JPS5921957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13137582A JPS5921957A (en) 1982-07-27 1982-07-27 Absorption cold and hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13137582A JPS5921957A (en) 1982-07-27 1982-07-27 Absorption cold and hot water machine

Publications (1)

Publication Number Publication Date
JPS5921957A true JPS5921957A (en) 1984-02-04

Family

ID=15056466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13137582A Pending JPS5921957A (en) 1982-07-27 1982-07-27 Absorption cold and hot water machine

Country Status (1)

Country Link
JP (1) JPS5921957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08110114A (en) * 1994-10-14 1996-04-30 Yazaki Corp Absorption type refrigerating machine
WO1999039140A1 (en) * 1998-01-29 1999-08-05 Sanyo Electric Co., Ltd. Absorption type refrigerating machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08110114A (en) * 1994-10-14 1996-04-30 Yazaki Corp Absorption type refrigerating machine
WO1999039140A1 (en) * 1998-01-29 1999-08-05 Sanyo Electric Co., Ltd. Absorption type refrigerating machine
US6192694B1 (en) 1998-01-29 2001-02-27 Sanyo Electric Co., Ltd. Absorption type refrigerating machine

Similar Documents

Publication Publication Date Title
JPH11108486A (en) Double effect absorption water cooler/heater
JPS5921957A (en) Absorption cold and hot water machine
JPS6021721Y2 (en) Absorption chiller control device
JPS5844182B2 (en) absorption refrigerator
JP2883372B2 (en) Absorption chiller / heater
JPH0222312B2 (en)
JPH08145494A (en) Absorption type heat pump
JPS5828508B2 (en) Absorption cold/hot water supply device
JPS6117319Y2 (en)
JPH0783530A (en) Water and lithium bromide absorption refrigerator
JP2654009B2 (en) Absorption refrigerator
JPH10122692A (en) Absorption water cooler/heater for double effect
JP2858921B2 (en) Control device for absorption refrigerator
US2151451A (en) Refrigeration
JPH0356861Y2 (en)
JPH0668426B2 (en) Air-cooled absorption chiller / heater
JPS6223229B2 (en)
JPS5986876A (en) Controller for double effect absorption refrigerator
JPS6246790B2 (en)
JPH0979685A (en) Absorbing type freezer
JPS63223465A (en) Absorption refrigerator
JPS5837459A (en) Controller for direct-firing absorption refrigerator
JPS5862468A (en) Absorption heat pump
JPS63204080A (en) Absorption refrigerator
JPS6134058B2 (en)