JPS63176965A - Double effect air-cooling type water chiller and heater - Google Patents

Double effect air-cooling type water chiller and heater

Info

Publication number
JPS63176965A
JPS63176965A JP814887A JP814887A JPS63176965A JP S63176965 A JPS63176965 A JP S63176965A JP 814887 A JP814887 A JP 814887A JP 814887 A JP814887 A JP 814887A JP S63176965 A JPS63176965 A JP S63176965A
Authority
JP
Japan
Prior art keywords
temperature
air
cooled
pressure
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP814887A
Other languages
Japanese (ja)
Other versions
JPH0810090B2 (en
Inventor
黒沢 茂吉
永岡 義一
閑納 真一
竹本 貞寿
杉本 滋郎
大内 富久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP814887A priority Critical patent/JPH0810090B2/en
Publication of JPS63176965A publication Critical patent/JPS63176965A/en
Publication of JPH0810090B2 publication Critical patent/JPH0810090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔竜業上の利用分野〕 本発明は、二重効用空冷吸収式冷温水機に係り。[Detailed description of the invention] [Field of industrial use] The present invention relates to a dual-effect air-cooled absorption type water chiller/heater.

特に、水を冷媒とし、リチウムブロマイドを吸収剤とし
、外気温が異常上昇したときにも運転するのに好適な二
重効用空冷吸収式冷温水機に関するものである。
In particular, the present invention relates to a dual-effect air-cooled absorption type water chiller/heater that uses water as a refrigerant and lithium bromide as an absorbent, and is suitable for operation even when the outside temperature rises abnormally.

〔従来の技術〕[Conventional technology]

従来、広く用いられτいた水冷式の二重効用吸収式冷凍
機は、クーリングタワーを始めとする冷却水系の据付工
事、保守および水管理にコストがかかるという問題があ
り、二重効用空冷吸収式冷凍機のUば発が急速に進めら
れるに至った。
Conventionally, the water-cooled dual-effect absorption chiller that has been widely used has the problem of high costs for installation, maintenance, and water management of the cooling water system, including the cooling tower. The plane's U-departure proceeded rapidly.

そこで、水を冷媒とし、リチウムブロマイドを吸収剤と
する空冷吸収式冷水機として、例えば、特開昭61−4
9970号公報記載の技術が開発された。
Therefore, as an air-cooled absorption water chiller using water as a refrigerant and lithium bromide as an absorbent, for example, JP-A-61-4
A technique described in Japanese Patent No. 9970 was developed.

すなわち、当該公報記載のものは、吸収器、凝縮器を、
ファンによる空気の流れで冷却するように、垂1龜管の
管外にフィンを設けた構成のものとし。
That is, the thing described in the publication has an absorber, a condenser,
It has a structure in which fins are provided outside the vertical tube so that it is cooled by air flow from a fan.

一方、高圧再生器内度を上昇させて凝縮器での冷媒の過
冷却度を増大させ、空冷吸収器を出た溶液または冷媒蒸
気が混在する溶液を、凝縮器で液化した前記過冷却冷媒
で冷却するようにして、空冷吸収式冷水機を実現し又い
る すなわち、外気乾球温度が33℃程度においては1機内
圧力が大気圧以上となり、溶液温度も実用的な範囲にお
さまつ工運転できる二重効用空冷吸収式冷温水機が提供
された。
On the other hand, the internal temperature of the high-pressure regenerator is increased to increase the degree of supercooling of the refrigerant in the condenser, and the solution exiting the air-cooled absorber or the solution containing refrigerant vapor is treated with the supercooled refrigerant liquefied in the condenser. In other words, when the outside air dry bulb temperature is around 33°C, the pressure inside one machine is above atmospheric pressure, and the solution temperature is within a practical range. A dual-effect air-cooled absorption chiller-heater is provided.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、例えば特開昭61−49970号公報記
載の技術では、吸収サイクル、や、空冷吸収器。
As mentioned above, for example, the technique described in JP-A-61-49970 uses an absorption cycle or an air-cooled absorber.

空冷凝縮器に特別の工夫がなされているが、外気温が異
常に烏くなったときの配慮がなされていなかった。
Special measures have been taken for the air-cooled condenser, but no consideration was taken when the outside temperature becomes abnormally cold.

一般に外気乾球温度は、夏期における日中最高気温の月
別平均値では東京で30.8℃であり、上記技術による
二重効用空冷吸収式冷温水機の運転はn(能である。し
かし、sL期における外気温の最高値は、気象統計によ
ると東バで38.4 ℃に上昇することになり、このよ
うに外気温が!A?fに高くなると、空冷吸収器内溶液
温度が高くなり。
Generally, the outside air dry-bulb temperature is 30.8°C in Tokyo, which is the monthly average of the maximum daytime temperature in summer, and the operation of the dual-effect air-cooled absorption type water chiller/heater using the above technology is n (capable).However, According to meteorological statistics, the maximum outside temperature during the sL period will rise to 38.4 degrees Celsius in Toba.If the outside temperature rises to !A?f like this, the solution temperature in the air-cooled absorber will rise. Become.

機内(特に高圧再生器内)の圧力が大気圧以上となり、
もつとも冷房の必要なときに冷凍運転ができないという
不具合が発生する問題があった。また、高圧再生器内の
溶液温度が高くなり、リチウムブロマイドによる腐食の
問題も生じる。
The pressure inside the machine (especially inside the high-pressure regenerator) becomes higher than atmospheric pressure,
However, there was a problem in that the refrigeration operation could not be performed when cooling was required. Furthermore, the temperature of the solution in the high-pressure regenerator becomes high, causing the problem of corrosion due to lithium bromide.

本発明は、前述の従来技術の問題点を解決するためにな
されたもので、外気温が異常に上昇したときにも、空冷
吸収器内溶液温度をドげ、高温再生器内圧力が大気圧を
超えることがなく運転が継続できる二重効用空冷吸収式
冷温水機を提供することを、その目的としている。
The present invention was made to solve the problems of the prior art described above, and even when the outside temperature rises abnormally, the solution temperature in the air-cooled absorber is lowered, and the pressure in the high-temperature regenerator is reduced to atmospheric pressure. The purpose is to provide a dual-effect air-cooled absorption chiller-heater that can continue to operate without exceeding the limit.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明に係る二重効用空冷
吸収式冷温水機の構成は、蒸発器、空冷吸収器、空冷凝
縮器、低温再生器、高温再生器。
In order to achieve the above object, the dual-effect air-cooled absorption type water chiller/heater according to the present invention includes an evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, and a high-temperature regenerator.

溶液熱交換器、溶液ポンプ、冷媒ポンプ、およびこれら
を作動的に接続する配管系からなり、前記空冷吸収器、
空冷凝縮器へ冷却空気を供給するファンを備えた二重効
用空冷吸収式冷温水機において、前記高温再生器に対す
る熱源供給系に加熱電制aII#−を設け、前記冷却空
気の温度に対応して前記力U熱量ルJ御弁を[jiJ 
12)する制御手段を設けたものである。
Consisting of a solution heat exchanger, a solution pump, a refrigerant pump, and a piping system that operatively connects these, the air-cooled absorber,
In a dual-effect air-cooled absorption type water chiller-heater equipped with a fan that supplies cooling air to an air-cooled condenser, a heating electric current control aII#- is provided in the heat source supply system for the high-temperature regenerator to correspond to the temperature of the cooling air. [jiJ
12) A control means is provided.

なお、本発明を開発した考え方を付記すると。In addition, I would like to add the idea behind developing the present invention.

次のとおりである。It is as follows.

水を冷媒とし、リチウムブロマイドを吸収剤とする二重
効用空冷吸収式冷凍機の機内圧力、特に高温再生器内圧
力を決定するのは、低温再生器内の溶液温度であり、こ
の溶液温度は空冷凝縮器内の冷媒凝縮温度により決定さ
れる。
In a dual-effect air-cooled absorption chiller that uses water as a refrigerant and lithium bromide as an absorbent, the pressure inside the unit, especially the pressure inside the high-temperature regenerator, is determined by the solution temperature inside the low-temperature regenerator. Determined by the refrigerant condensation temperature in the air-cooled condenser.

また、空冷式は、冷却空気の出入口温度差が大きく、冷
却量が若干域ると大11」に圧カ、温度が低ドする。し
たがっ又、品温再生器内の加熱量をわずかに絞ることに
より冷却空気温度の出入口部1ぼ差が小さくなる。その
結果、空冷吸収器内溶液温度がドることと、空冷凝縮器
内の凝縮温度がドることのため、機内圧力の低ドが2重
に効き、機内圧力(高温再生器内圧力)が大幅に低トす
る。
In addition, in the air-cooled type, the temperature difference between the inlet and outlet of the cooling air is large, and when the amount of cooling is within a certain range, the pressure and temperature will drop to 11''. Therefore, by slightly reducing the amount of heating in the temperature regenerator, the difference in temperature of the cooling air between the inlet and the outlet becomes smaller. As a result, the solution temperature in the air-cooled absorber and the condensation temperature in the air-cooled condenser are reduced, so the low internal pressure has a double effect, and the internal pressure (pressure in the high-temperature regenerator) increases. significantly lower.

〔作用〕[Effect]

上記の動作を、第4図の溶液′a度縁線図参照して説明
する6 第4図は、二重効用空冷吸収式冷温水機の溶液濃度線図
であり、吸収溶液濃度をパラメータとして、空冷吸収サ
イクルを示したものであり、加熱量制御弁を制御しなか
った場合を破線、加熱量制御弁を制御し加熱量を絞った
場合を実線で示している。
The above operation will be explained with reference to the solution 'a edge diagram in Figure 4.6 Figure 4 is a solution concentration diagram for a dual-effect air-cooled absorption type water chiller/heater, with absorption solution concentration as a parameter. , which shows an air-cooled absorption cycle, where the broken line shows the case where the heating amount control valve is not controlled, and the solid line shows the case where the heating amount control valve is controlled and the heating amount is reduced.

第4図は、横軸に温度をとり、基準となる外気温度、空
冷吸収器溶液温度を示している。また。
In FIG. 4, temperature is plotted on the horizontal axis, and the reference outside air temperature and air-cooled absorber solution temperature are shown. Also.

縦軸には圧力をとり、空冷サイクルにおけるa発圧力、
凝縮圧力、高温再生器内力の各等圧レベルを一点鎖線で
示している。斜めの一点鎖線は冷媒の水飽和曲線を示す
The vertical axis shows pressure, a pressure in the air cooling cycle,
Each equal pressure level of the condensing pressure and the internal force of the high temperature regenerator is shown by a dashed line. The diagonal dash-dotted line indicates the water saturation curve of the refrigerant.

加熱量制御弁を制御しなかった場合、外気温度が高くな
ると、空冷凝縮器圧力は凝縮圧力レベルと水飽和曲線と
の交点aとなり、これに対応する低温再生器内の溶液温
度はbとなる。これより。
If the heating amount control valve is not controlled, as the outside air temperature increases, the air-cooled condenser pressure will become the intersection point a between the condensation pressure level and the water saturation curve, and the corresponding solution temperature in the low-temperature regenerator will become b. . Than this.

Δtだけ高い温度で低温再生器加熱蒸気が凝縮すること
になり、その圧力がC点となるため、高温再生器内圧力
が大気圧を超える。
The low-temperature regenerator heated steam condenses at a temperature higher by Δt, and its pressure becomes point C, so the pressure inside the high-temperature regenerator exceeds atmospheric pressure.

一方、加熱量制御弁を設け1高温再生器の加熱量を絞っ
た場合、空冷吸収器、空冷凝縮器の交換熱量が減る。そ
の結果、冷却空気温度の出入口温度差が小さくなり、空
冷吸収器、空冷凝縮器の出入口温度が低くな6.このこ
とにより、空冷吸収器内部の溶液温度が低ドし、凝縮圧
力が第4図のa′に低ドし、これに対応する低温再生器
内の溶液温度がb′に低ドする。このように、高温再生
器の加熱量を絞ると、空冷吸収器内の溶液濃度の低ドと
、凝縮温度の低ドの相乗効果で、低温再生器加熱蒸気の
凝縮圧力がCからC′に大幅に低ドし、高温再生器の圧
力が大気圧以卜にドる。
On the other hand, when a heating amount control valve is provided to reduce the heating amount of one high-temperature regenerator, the amount of heat exchanged between the air-cooled absorber and the air-cooled condenser is reduced. As a result, the temperature difference between the inlet and outlet of the cooling air becomes smaller, and the inlet and outlet temperatures of the air-cooled absorber and air-cooled condenser are lowered.6. As a result, the solution temperature inside the air-cooled absorber decreases, the condensing pressure decreases to a' in FIG. 4, and the corresponding solution temperature within the low temperature regenerator decreases to b'. In this way, when the heating amount of the high-temperature regenerator is reduced, the condensation pressure of the low-temperature regenerator-heated steam increases from C to C' due to the synergistic effect of the low solution concentration in the air-cooled absorber and the low condensation temperature. The pressure in the high-temperature regenerator rises above atmospheric pressure.

高温再生器加熱量を制御する加熱量制御弁は。The heating amount control valve controls the heating amount of the high temperature regenerator.

高温再生器内の発生蒸気をコントロールするもので、m
当な絞りを与えることによって低温再生器加熱蒸気の凝
縮圧力を低ドし、機内圧力を大気圧以卜に保持すること
ができる。
This controls the steam generated in the high-temperature regenerator.
By providing an appropriate restriction, the condensation pressure of the low temperature regenerator heating steam can be lowered and the internal pressure can be maintained above atmospheric pressure.

加熱量制御弁を制御する手段としては、品温再生器内圧
力、凝縮冷媒液温度、外気温度などの検知信号に従って
制御信号を出力する圧力調節器。
The means for controlling the heating amount control valve is a pressure regulator that outputs a control signal according to detection signals such as the internal pressure of the product temperature regenerator, the condensed refrigerant liquid temperature, and the outside air temperature.

温度調節器などが用いられる。A temperature controller or the like is used.

〔実施例〕〔Example〕

以上1本発明の各実施例を第1図ないし第3図を参照し
て説明する6 まず、第1図は、本発明の一実施例に係る二重効用空冷
吸収式冷温水機のサイクル系統図である。
Each embodiment of the present invention will be described with reference to FIGS. 1 to 3.6 First, FIG. It is a diagram.

第1図において、1は蒸発器、2は冷媒ポンプ、3は冷
水の通る冷水管を示す。
In FIG. 1, 1 is an evaporator, 2 is a refrigerant pump, and 3 is a cold water pipe through which cold water passes.

4は空冷吸収器で、この空冷吸収器4は、垂直管4aの
管外に冷却用のフィン4bが形成され、垂直管4aの上
部に蒸気通路5による上部ヘッダ。
4 is an air-cooled absorber, and this air-cooled absorber 4 has cooling fins 4b formed outside the vertical pipe 4a, and an upper header formed by a steam passage 5 at the top of the vertical pipe 4a.

垂直管4aの上部に上部ヘッダ4c@−備えた構成であ
る。
This configuration includes an upper header 4c at the top of the vertical tube 4a.

6は溶液ポンプ、7は溶液熱交換器、10は高湿再生器
、11は低温再生量である。
6 is a solution pump, 7 is a solution heat exchanger, 10 is a high humidity regenerator, and 11 is a low temperature regeneration amount.

15は空冷凝縮器で、この空冷凝縮器15は、垂直管1
5aの管外に冷却用のフィン15bが形成さ九、垂直管
15aの上部は蒸気通路14による上部ヘッダ、垂直管
15aの上部に上部ヘッダ15cを備えた構成である。
15 is an air-cooled condenser, and this air-cooled condenser 15 is connected to the vertical pipe 1.
Cooling fins 15b are formed outside the pipe 5a, an upper header formed by the steam passage 14 is provided at the upper part of the vertical pipe 15a, and an upper header 15c is provided at the upper part of the vertical pipe 15a.

空冷吸収器4および空冷凝縮器15は、ファン20によ
4室外空気の流れによつt空冷されるもので1図中の太
い矢印は冷却空気の流れ方向を示し1いる。
The air-cooled absorber 4 and the air-cooled condenser 15 are air-cooled by the flow of outdoor air by a fan 20, and thick arrows in FIG. 1 indicate the flow direction of the cooling air.

上記の各機器は、冷媒配管、溶液配管によって作動的に
接続されてサイクルが形成されでいる。
The above-mentioned devices are operatively connected by refrigerant piping and solution piping to form a cycle.

21は、冷水管3に設けた。冷水の温度を検知する温度
検出器、22は、高温再生器10に対する外部熱源12
の供給管路に設けた加熱量制御弁。
21 is provided in the cold water pipe 3. A temperature sensor 22 that detects the temperature of the cold water is connected to the external heat source 12 for the high temperature regenerator 10.
A heating amount control valve installed in the supply pipeline.

23は、高温再生器10内の冷媒蒸気圧を検知する圧力
検出器、24は、加熱量制御弁に制御信号を送るための
ローセレクター、25は、温度検出器21の検知結果に
従って制御信号を出力する温度調節器、26は、圧力検
出器23の検知結果に従つt制御信号を出力する圧力調
節器である。これら温度検出器21,23.圧力検出器
23.温度調節器25.圧力調@榛26、およびローセ
レクター24は、加熱量制御弁22の開閉を制御する制
御手段を構成しており、その電気的接続を図では破線を
もって示している。
23 is a pressure detector that detects the refrigerant vapor pressure in the high-temperature regenerator 10; 24 is a low selector that sends a control signal to the heating amount control valve; 25 is a control signal that sends a control signal according to the detection result of the temperature detector 21; The output temperature regulator 26 is a pressure regulator that outputs a t control signal according to the detection result of the pressure detector 23. These temperature detectors 21, 23 . Pressure detector 23. Temperature regulator 25. The pressure regulator 26 and the low selector 24 constitute a control means for controlling the opening and closing of the heating amount control valve 22, and their electrical connections are shown with broken lines in the figure.

このような構成の二重効用空冷吸収式冷温水機について
、まず基本的なサイクルの作用を説明する。
Regarding the dual-effect air-cooled absorption type water chiller/heater having such a configuration, the basic cycle operation will first be explained.

蒸発器1内の冷媒(水)は、冷媒ポンプ2によって冷水
の通る冷水管3上に撒布され、冷水から蒸発熱を奪って
低圧の冷媒蒸気となり、蒸気通路5を経て空冷吸収器4
に流入する。空冷吸収器4は、ファン20によって外気
により直接冷却されており、前記冷媒蒸気は、上部ヘッ
ダから撒布・されて垂直管4a内を流ドするリチウムブ
ロマイド濃溶液に吸収されて稀溶液となる。
The refrigerant (water) in the evaporator 1 is sprayed onto the cold water pipe 3 through which the cold water passes by the refrigerant pump 2, absorbs the heat of evaporation from the cold water, becomes low-pressure refrigerant vapor, and passes through the steam passage 5 to the air-cooled absorber 4.
flows into. The air-cooled absorber 4 is directly cooled by outside air by a fan 20, and the refrigerant vapor is absorbed into a concentrated lithium bromide solution that is sprayed from the upper header and flows through the vertical pipe 4a to become a dilute solution.

この稀溶液は、溶液ポンプ6によって送り出され、溶液
熱交換器7を経て稀溶液管8,9を介して高温再生器1
0.低温再生器11に送り込まれる。
This diluted solution is sent out by a solution pump 6, passed through a solution heat exchanger 7, and then passed through diluted solution pipes 8 and 9 to a high temperature regenerator 1.
0. It is sent to the low temperature regenerator 11.

高温再生器10には外部熱源12が供給され、炉10a
で燃焼するときに生じる熱により稀溶液を濃縮し、この
とき蒸気を発生する。この発生冷媒蒸気は、冷媒管路1
3の伝熱管部13aを介して低温再生器11内の稀溶液
を加熱濃縮し、冷媒みずからは凝縮液化して液冷媒とな
り、空冷凝縮器15の上部ヘッダ15eに送られる。
An external heat source 12 is supplied to the high temperature regenerator 10, and the furnace 10a
The heat generated during combustion concentrates the dilute solution, producing steam. This generated refrigerant vapor is transferred to the refrigerant pipe 1
The dilute solution in the low temperature regenerator 11 is heated and concentrated through the heat transfer tube section 13a of No. 3, and the refrigerant itself is condensed and liquefied to become a liquid refrigerant, which is sent to the upper header 15e of the air-cooled condenser 15.

低温再生器11で濃縮された稀溶液から発生した蒸気は
、蒸気通路14を通っヱ空冷凝縮器15の垂直管15a
に流入し、ここでやはりファン20によって外部により
冷却されて液冷媒となり上部ヘッダ15cから冷媒管1
6を経て蒸発器1に戻る。
Steam generated from the concentrated dilute solution in the low-temperature regenerator 11 passes through the steam passage 14 to the vertical pipe 15a of the air-cooled condenser 15.
Here, it is also cooled externally by the fan 20 to become a liquid refrigerant and flows from the upper header 15c to the refrigerant pipe 1.
6 and returns to the evaporator 1.

高温再生器10.低温再生器11でそれぞれ濃縮された
溶液は、1溶液管17,18により溶液熱交換器7を経
たのち濃溶液管19を介して空冷吸収器4の上部ヘッダ
へ送られ撒布され、再び吸収過程がくり返される。
High temperature regenerator 10. The solutions concentrated in the low-temperature regenerator 11 pass through the solution heat exchanger 7 through the solution tubes 17 and 18, and then are sent to the upper header of the air-cooled absorber 4 via the concentrated solution tube 19, where they are dispersed and again undergo the absorption process. is repeated.

次に、加熱量制御弁およびその制御手段の作用を説明す
る。
Next, the operation of the heating amount control valve and its control means will be explained.

通常の運転時は、冷水管3にお序ける温度検出器21の
検知信号を受け、温度調節器25の制御信号で、高温再
生器10の熱源供給管路にある加熱量制御弁22を開閉
させ、冷水温度を一定に保持するように制御される。
During normal operation, the heating amount control valve 22 in the heat source supply pipe of the high temperature regenerator 10 is opened and closed in response to a detection signal from the temperature detector 21 in the cold water pipe 3 and a control signal from the temperature regulator 25. It is controlled to keep the chilled water temperature constant.

外気温度が特別高い場合は、空冷吸収器4における溶液
温度が上り、溶液濃度が上昇するとともに、空冷凝縮器
温度が上昇し、低温再生器11内の溶液温度が上昇する
ため、高温再生器10の内圧が上昇する。
When the outside air temperature is particularly high, the solution temperature in the air-cooled absorber 4 rises, the solution concentration rises, the air-cooled condenser temperature rises, and the solution temperature in the low-temperature regenerator 11 rises, so the high-temperature regenerator 10 The internal pressure of increases.

高温再生器10の内圧、すなわち冷媒蒸気圧が上昇する
と、圧力検出器23の検知信号を受けて圧力調節器26
は、加熱量制御弁22を閉方向へ制御する信号を出力す
る。ローセレクター24は。
When the internal pressure of the high temperature regenerator 10, that is, the refrigerant vapor pressure increases, the pressure regulator 26 receives a detection signal from the pressure detector 23.
outputs a signal that controls the heating amount control valve 22 in the closing direction. Low selector 24.

この信号と、温度調節器25の信号とを比較し1、加熱
量制御弁22に閉信号を選択して出力する。
This signal is compared with the signal from the temperature controller 25, and a close signal is selected and output to the heating amount control valve 22.

高圧再生器10に対する加熱量が絞られると。When the amount of heating for the high pressure regenerator 10 is reduced.

空冷吸収器4.空冷凝縮器15の交換熱量が減る。Air-cooled absorber4. The amount of heat exchanged by the air-cooled condenser 15 is reduced.

そこで空冷吸収器4内部の溶液温度が低ドし、これに対
応する低温再生器11内の溶液温度が低ドする。空冷吸
収器4内の溶液濃度の低ドと凝縮温度の低ドとの相乗効
果で、低温再生盤加熱蒸気の凝縮トE力が大幅に低ドし
、高温再生器10の内圧が大気圧共ドにドる。
Therefore, the solution temperature inside the air-cooled absorber 4 decreases, and the corresponding solution temperature within the low-temperature regenerator 11 decreases. Due to the synergistic effect of the low solution concentration in the air-cooled absorber 4 and the low condensation temperature, the condensation force of the low-temperature regenerator heating steam is significantly lowered, and the internal pressure of the high-temperature regenerator 10 is brought to the same level as atmospheric pressure. Do to do.

本実施例によれば、外気温が特別高い場合でも、空冷吸
収器4内溶液温度を低ドし、高温再生器10内圧力を大
気Ik:、以トに保持することができ、冷凍運転が継続
できる。
According to this embodiment, even when the outside temperature is particularly high, the solution temperature in the air-cooled absorber 4 can be lowered and the pressure in the high-temperature regenerator 10 can be maintained below atmospheric pressure Ik:, and the refrigeration operation can be continued. Can continue.

次に、本発明の他の実施例を第2図を参照しヱ説明する
Next, another embodiment of the present invention will be described with reference to FIG.

ここに第2図は1本発明の他の実施例に係る二重効用空
冷吸収式冷温水機のサイクル系統図であり、図中、第1
図と同一・符号のものは、先の実施例と同等のものであ
るから、その説明を省略する。
FIG. 2 is a cycle system diagram of a dual-effect air-cooled absorption type water chiller/heater according to another embodiment of the present invention.
Components with the same reference numerals as those in the figures are equivalent to those in the previous embodiment, so their explanation will be omitted.

第2図において、27は、低温再生器11の溶液を加熱
する伝熱管部13aの、低温再生器量口における凝縮冷
媒温度を検知する温度検出器。
In FIG. 2, reference numeral 27 denotes a temperature detector that detects the condensed refrigerant temperature at the low-temperature regenerator intake of the heat transfer tube section 13a that heats the solution in the low-temperature regenerator 11.

28は、温度検出器27の検知結果に従って制御信号を
出力する温度調節器である。
28 is a temperature regulator that outputs a control signal according to the detection result of the temperature detector 27.

冷媒管路13によ昌ブる凝縮冷媒温度と高温再生器10
における冷媒蒸気圧とは1対王で対応するものであるか
ら、温度検出器27の検知結果に従って作動する温度調
節器28の出力信号によつ℃加熱量制御弁22を開閉す
るようにし又も、先の第1図の実施例と全く同様の効果
が期待できる。
Condensed refrigerant temperature changed by refrigerant pipe 13 and high temperature regenerator 10
Since there is a one-to-one correspondence with the refrigerant vapor pressure in , exactly the same effect as the embodiment shown in FIG. 1 can be expected.

同様に、図ボしないが、空冷凝縮器内の凝縮冷媒圧力を
検知する圧力検出器を設け、その検知結果に従って作動
する圧力調節器の出力信号によって、加熱量制御弁を開
閉するようにしてもよい。
Similarly, although not shown in the diagram, a pressure detector may be provided to detect the condensed refrigerant pressure in the air-cooled condenser, and the heating amount control valve may be opened and closed based on the output signal of the pressure regulator that operates according to the detection result. good.

次に、第315!lを参照して1本発明のさらに他の実
施例を説明する。
Next, the 315th! Still another embodiment of the present invention will be described with reference to FIG.

第3図は1本発明のさらに他の実施例に係る二重効用空
冷吸収式冷温水機のサイクル系統図であり1図中、第1
図と同一符号のものには、第1図の実施例と同等のもの
であるから、その説明を省略する。
FIG. 3 is a cycle system diagram of a dual-effect air-cooled absorption type water chiller/heater according to still another embodiment of the present invention.
Components with the same reference numerals as those in the drawings are the same as those in the embodiment shown in FIG. 1, and therefore their explanations will be omitted.

第3図においで、29は、外気温度を検知する温度検出
器である。
In FIG. 3, 29 is a temperature detector that detects the outside air temperature.

外気温が異常に高くなったときは、温度検出器29は、
外気温を検知し、特定温度を越えたときに高温再生器1
0の加熱量制御弁22を開方向へ制御する信号を出力す
る。
When the outside temperature becomes abnormally high, the temperature detector 29
Detects the outside temperature and activates the high temperature regenerator 1 when it exceeds a certain temperature.
A signal for controlling the heating amount control valve 22 in the opening direction is output.

本実施例によれば、ファン20による冷却空気に相当す
る外気湿度に対応して高温再生器10に対する加熱量を
制御するので、先の第1図、第2図の各実施例と全く同
様の効果が期待できる。
According to this embodiment, since the amount of heating to the high temperature regenerator 10 is controlled in accordance with the outside air humidity corresponding to the cooling air by the fan 20, it is completely similar to the embodiments shown in FIGS. You can expect good results.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、外気温が異常に1
−、昇したときにも、空冷吸収器内溶液温度をトげ、高
温再生器内圧力が大気圧を超えることがなく運転が継続
できる二重効用空冷吸収式冷温水機を提供することがで
きる。
As described above, according to the present invention, when the outside temperature is abnormally 1.
- It is possible to provide a dual-effect air-cooled absorption type water chiller-heater that can raise the solution temperature in the air-cooled absorber and continue operation without causing the pressure in the high-temperature regenerator to exceed atmospheric pressure even when the temperature rises. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の一実施例に係る二重効用空冷吸収式
冷温水機のサイクル系統図、第2図は。 本発明の他の実施例に係る二重効用空冷吸収式冷温水機
のサイクル系lih図、第3図は1本発明のさらに他の
実施例に係る二重効用空冷吸収式冷温水機のサイクル系
統図、第4図は、二重効用空冷吸収式冷温水機の溶液濃
度線図である。 1・・・蒸発器、2・・・冷媒ポンプ、4・・・空冷吸
収器。 6・・・溶液ポンプ、7・・・溶液熱交換器、10・・
・高温再生器、11・・・低温再生器、15・・・空冷
凝縮器。 20・・・ファン、22・・・加熱量制御弁、23・・
・ノ上刃検出器、25.28・・・温度調節器、26・
・・圧力調節器、21,27,29・・・温度検出器。 冨1図 v 3 口 不 4 囲 −一環汲
FIG. 1 is a cycle system diagram of a dual-effect air-cooled absorption type water chiller/heater according to an embodiment of the present invention, and FIG. 2 is a cycle diagram. A cycle system diagram of a dual-effect air-cooled absorption type water chiller/heater according to another embodiment of the present invention, FIG. The system diagram, FIG. 4, is a solution concentration diagram of a dual-effect air-cooled absorption type water chiller/heater. 1... Evaporator, 2... Refrigerant pump, 4... Air-cooled absorber. 6... Solution pump, 7... Solution heat exchanger, 10...
- High-temperature regenerator, 11...low-temperature regenerator, 15...air-cooled condenser. 20...Fan, 22...Heating amount control valve, 23...
・Nokami blade detector, 25.28...Temperature regulator, 26・
...Pressure regulator, 21, 27, 29...Temperature detector. Tomi 1 diagram v 3 Mutual 4 Encirclement - Ippenkumi

Claims (1)

【特許請求の範囲】 1、蒸発器、空冷吸収器、空冷凝縮器、低温再生器、高
温再生器、溶液熱交換器、溶液ポンプ、冷媒ポンプ、お
よびこれらを作動的に接続する配管系からなり、前記空
冷吸収器、空冷凝縮器へ冷却空気を供給するファンを備
えた二重効用空冷吸収式冷温水機において、前記高温再
生器に対する熱源供給系に加熱量制御弁を設け、前記冷
却空気の温度に対応して前記加熱量制御弁を開閉する制
御手段を設けたことを特徴とする二重効用空冷吸収式冷
温水機。 2、特許請求の範囲第1項記載のものにおいて、加熱量
制御弁を開閉する制御手段は、少なくとも、高温再生器
内の冷媒蒸気圧を検知する圧力検出器と、その検知結果
に従つて作動する圧力調節器とを備えたものである二重
効用空冷吸収式冷温水機。 3、特許請求の範囲第1項記載のものにおいて、加熱量
制御弁を開閉する制御手段は、少なくとも、空冷凝縮器
内の凝縮冷媒圧力を検知する圧力検出器と、その検知結
果に従つて作動する圧力調節器とを備えたものである二
重効用空冷吸収式冷温水機。 4、特許請求の範囲第1項記載のものにおいて、加熱量
制御弁を開閉する制御手段は、少なくとも、低温再生器
出口の凝縮冷媒温度を検知する温度検出器と、その検知
結果に従つて作動する温度調節器とを備えたものである
二重効用空冷吸収式冷温水機。 5、特許請求の範囲第1項記載のものにおいて、加熱量
制御弁を開閉する制御手段は、少なくとも、ファンによ
る冷却空気の温度を検知する温度検出器と、その検知結
果に従つて作動する温度調節器とを備えたものである二
重効用空冷吸収式冷温水機。
[Claims] 1. Consists of an evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, a solution pump, a refrigerant pump, and a piping system that operatively connects these. In the dual-effect air-cooled absorption type water chiller-heater equipped with a fan that supplies cooling air to the air-cooled absorber and the air-cooled condenser, a heating amount control valve is provided in the heat source supply system for the high-temperature regenerator, A dual-effect air-cooled absorption type water chiller/heater, characterized in that it is provided with a control means for opening and closing the heating amount control valve in accordance with the temperature. 2. In the device described in claim 1, the control means for opening and closing the heating amount control valve includes at least a pressure detector that detects the refrigerant vapor pressure in the high-temperature regenerator, and operates according to the detection result. A dual-effect air-cooled absorption type water chiller/heater that is equipped with a pressure regulator and a pressure regulator. 3. In the device described in claim 1, the control means for opening and closing the heating amount control valve includes at least a pressure detector that detects the condensed refrigerant pressure in the air-cooled condenser, and operates according to the detection result. A dual-effect air-cooled absorption type water chiller/heater that is equipped with a pressure regulator and a pressure regulator. 4. In the device described in claim 1, the control means for opening and closing the heating amount control valve includes at least a temperature detector that detects the condensed refrigerant temperature at the outlet of the low-temperature regenerator, and operates according to the detection result. A dual-effect air-cooled absorption type water chiller/heater that is equipped with a temperature controller and a temperature controller. 5. In the device described in claim 1, the control means for opening and closing the heating amount control valve includes at least a temperature detector that detects the temperature of the cooling air by the fan, and a temperature sensor that operates according to the detection result. A dual-effect air-cooled absorption chiller/heater that is equipped with a regulator.
JP814887A 1987-01-19 1987-01-19 Double-effect air cooling absorption type water heater Expired - Lifetime JPH0810090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP814887A JPH0810090B2 (en) 1987-01-19 1987-01-19 Double-effect air cooling absorption type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP814887A JPH0810090B2 (en) 1987-01-19 1987-01-19 Double-effect air cooling absorption type water heater

Publications (2)

Publication Number Publication Date
JPS63176965A true JPS63176965A (en) 1988-07-21
JPH0810090B2 JPH0810090B2 (en) 1996-01-31

Family

ID=11685228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP814887A Expired - Lifetime JPH0810090B2 (en) 1987-01-19 1987-01-19 Double-effect air cooling absorption type water heater

Country Status (1)

Country Link
JP (1) JPH0810090B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140564A (en) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd Controlling method for absorption refrigerator
JPH03194368A (en) * 1989-12-21 1991-08-26 Hitachi Ltd Method and apparatus for controlling operation of absorption type water cooling and heating machine
JPH06257879A (en) * 1993-03-03 1994-09-16 Yazaki Corp Controlling method for absorption water cooler-heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140564A (en) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd Controlling method for absorption refrigerator
JPH03194368A (en) * 1989-12-21 1991-08-26 Hitachi Ltd Method and apparatus for controlling operation of absorption type water cooling and heating machine
JPH06257879A (en) * 1993-03-03 1994-09-16 Yazaki Corp Controlling method for absorption water cooler-heater

Also Published As

Publication number Publication date
JPH0810090B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JP2000018762A (en) Absorption refrigerating machine
JPS63176965A (en) Double effect air-cooling type water chiller and heater
JP2541960B2 (en) Double-effect air cooling absorption type water heater
CN211290124U (en) Flue gas white elimination system
JPH0424623B2 (en)
JP3549905B2 (en) Air conditioning method and apparatus using absorption chiller
JPH0796977B2 (en) Double-effect air cooling absorption type water heater
KR910007579Y1 (en) Heat collection system
KR0173495B1 (en) Absorptive type air conditioner
JP3183988B2 (en) Operation control method and device for air conditioner using absorption chiller
JPS58160780A (en) Controller for absorption refrigerator
JPH05312429A (en) Absorption water cooling/heating apparatus
JPH0419406Y2 (en)
JPS63176961A (en) Double effect air-cooling absorption type refrigerator
JPS6117319Y2 (en)
JPH05312430A (en) Absorption refrigerator
JPS63204080A (en) Absorption refrigerator
JPH0754209B2 (en) Absorption cold / hot water device and its operating method
JPH0480312B2 (en)
JPS5921957A (en) Absorption cold and hot water machine
JPH0758146B2 (en) Absorption cold / hot water device
JPH04151468A (en) Adsorption type freezer corresponding to cryogenic cooling medium and its controlling
JPH073302B2 (en) Absorption refrigerator
JPS6115983B2 (en)
JPS5834733B2 (en) How to control absorption chiller operation