JPS58160780A - Controller for absorption refrigerator - Google Patents

Controller for absorption refrigerator

Info

Publication number
JPS58160780A
JPS58160780A JP4390482A JP4390482A JPS58160780A JP S58160780 A JPS58160780 A JP S58160780A JP 4390482 A JP4390482 A JP 4390482A JP 4390482 A JP4390482 A JP 4390482A JP S58160780 A JPS58160780 A JP S58160780A
Authority
JP
Japan
Prior art keywords
amount
solution
temperature
cooling water
heating source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4390482A
Other languages
Japanese (ja)
Other versions
JPH0236869B2 (en
Inventor
吉田 幸家
春江 哲夫
良一 村田
藤原 敏勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4390482A priority Critical patent/JPH0236869B2/en
Publication of JPS58160780A publication Critical patent/JPS58160780A/en
Publication of JPH0236869B2 publication Critical patent/JPH0236869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は吸収冷凍機制御装置に関するものである。従来
の吸収冷凍機制御装置の一例を第1図に基いて説明する
。なお第1図に示すものは二重効用吸収冷凍機で冷媒に
水、吸収剤(溶液)にリチウムブロマイド水溶液を使用
したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption refrigerator control device. An example of a conventional absorption refrigerator control device will be explained based on FIG. 1. The one shown in FIG. 1 is a double-effect absorption refrigerator that uses water as the refrigerant and an aqueous lithium bromide solution as the absorbent (solution).

図において、1は高圧再生器、2は低圧再生器、3は凝
縮器、4は蒸発器、5は吸収器、6は低温熱交換器、7
は高温熱交換器、8乃至13は溶液配管、14は再生器
ポンプ、15は吸収器ポンプ、16はエゼクタ−117
乃至19は冷媒配管、20は冷媒ポンプ、21は加熱源
配管、22ij:冷却水配管、23は冷水配管、24d
冷却水ポンプであり図示のように配管接続され、高圧再
生器1で蒸発した冷媒は、低圧再生器2を経て凝縮器乙
に入り、冷却水配管22内の水と熱交換して凝縮液化し
た後、蒸発器4に入り冷水配管23内の水と熱交換して
蒸発し、この際に奪う熱によって冷水配管23内の水を
冷却する。
In the figure, 1 is a high pressure regenerator, 2 is a low pressure regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low temperature heat exchanger, 7
1 is a high temperature heat exchanger, 8 to 13 are solution pipes, 14 is a regenerator pump, 15 is an absorber pump, 16 is an ejector 117
19 to 19 are refrigerant pipes, 20 is a refrigerant pump, 21 is a heating source pipe, 22ij is a cooling water pipe, 23 is a cold water pipe, 24d
It is a cooling water pump and is connected to the piping as shown in the figure, and the refrigerant evaporated in the high pressure regenerator 1 passes through the low pressure regenerator 2 and enters the condenser B, where it exchanges heat with the water in the cooling water piping 22 and is condensed and liquefied. Thereafter, the water enters the evaporator 4, exchanges heat with the water in the cold water pipe 23, and evaporates, and the heat removed at this time cools the water in the cold water pipe 23.

一方、蒸発器4で蒸発した冷媒は、吸収器5で溶液によ
υ吸収され、冷媒を吸収して濃度の薄くなった溶液はポ
ンプ14にょシ低温熱交換器6、高温熱交換器7を経て
高圧再生器1に人払ここで、加熱源配管21を紅で供給
される加熱源によって加熱さね、冷媒を蒸発分離して中
濃度の溶液となり、高温熱交換器7を経て低圧再生器2
に入り冷媒蒸気により加熱されて、さらに冷媒を蒸発分
離して濃度が高くなる。低圧再生器で高濃度となった溶
液は、低温熱交換器6を経てエゼクタ−16で吸収器ポ
ンプ15からの溶液と混合して吸収器5内に散布される
ようになっており、冷凍サイクルを行う。
On the other hand, the refrigerant evaporated in the evaporator 4 is absorbed by a solution in the absorber 5, and the solution, which has absorbed the refrigerant and has become diluted, is sent to the pump 14, the low temperature heat exchanger 6, and the high temperature heat exchanger 7. Then, the heating source piping 21 is heated by a heating source supplied with red, and the refrigerant is evaporated and separated to become a medium concentration solution, which is then passed through the high-temperature heat exchanger 7 to the low-pressure regenerator. 2
The refrigerant enters and is heated by the refrigerant vapor, and the refrigerant is further evaporated and separated, increasing its concentration. The solution that has become highly concentrated in the low-pressure regenerator passes through the low-temperature heat exchanger 6, mixes with the solution from the absorber pump 15 in the ejector 16, and is sprayed into the absorber 5. I do.

上記のような二重効用吸収冷凍機においては従来、冷水
出口温度検出器25で冷水出口温度を検出し、これと温
度設定器26に設定された冷水出[]温度目標値とを比
較器27で比較し、流量調節器28を介して流量調節弁
29を制御して加熱源の流量を調節すると共に高圧再生
器1の溶液レベルを液位検出器30で検出し、これと液
位設定器31に設定された液位目標値とを比較器32で
比較し、循環量調節器33を介して循環量調節弁34を
制御して溶液の循環量を制御することによって、負荷に
適応するよう機構の容量を制御している。
Conventionally, in the above-mentioned dual-effect absorption refrigerator, a chilled water outlet temperature detector 25 detects the chilled water outlet temperature, and a comparator 27 compares this with a chilled water outlet temperature target value set in a temperature setting device 26. The flow control valve 29 is controlled via the flow rate regulator 28 to adjust the flow rate of the heating source, and the solution level in the high pressure regenerator 1 is detected by the liquid level detector 30, and the liquid level setting device and the liquid level setting device A comparator 32 compares the liquid level with a target liquid level set at 31, and controls a circulation rate control valve 34 via a circulation rate regulator 33 to control the circulation rate of the solution, so as to adapt to the load. It controls the capacity of the mechanism.

以上に述べた吸収冷凍機においては、加熱源量、溶液循
環量が同じであれば、冷却水入口温度が低い程、効率が
高くなるという傾向があり、例えば冷却水入口温度が低
下すると効率が良くなるので、加熱量を減らすことがで
きるが、上記した従来のものでは、この効果が冷水出口
温度に現われてからしか制御が開始できないため、加熱
エネルギーのロスがあると共に伝熱遅れや、輸送遅れの
ため制御性が悪いなどの問題があった。
In the absorption chiller described above, if the amount of heat source and the amount of solution circulation are the same, there is a tendency that the lower the cooling water inlet temperature, the higher the efficiency. For example, when the cooling water inlet temperature decreases, the efficiency increases. However, with the conventional system described above, control can only be started after this effect appears on the chilled water outlet temperature, resulting in loss of heating energy, heat transfer delay, and transport There were problems such as poor controllability due to delays.

本発明は上記した点に鑑み提案されたものでその目的と
するところは、省エネルギー化を計ることができると共
に追従性の良い安定した制御を行なうことができる吸収
冷凍機制御装置を提供することにある。
The present invention has been proposed in view of the above points, and its purpose is to provide an absorption chiller control device that can save energy and perform stable control with good followability. be.

本発明は、冷水出口温度を検出して再生器への加熱源量
を制御する制御系と、再生器内溶液レベルを検出して吸
収器から再生器への溶液循−環蓋を制御する制御系を設
けると共に冷却水入口温度を検出して、同温度の関数と
して加熱源量もしくは溶液循環量の少なくともいずれか
一方の適正値を求め、これにより前記両制御系における
加熱源量もしくは溶液循環量の少なくともいずれか一方
を制御する制御系を設けたことを特徴とするもので上記
によると冷却水入口温度を検出して、この温度の関数と
して加熱源量もしくは溶液循環量の少なくともいずれか
一方適正値を求め、これをフィードフォーワード信号と
して加熱源量もしくは溶液循環量の少なくともいずれか
一方の制御を先行的に行なうことができる。ここで、冷
却水入口温度が低下すると効率が高くなるので、負荷が
同じとすると、加熱源量もしくは溶液循環量を減して機
械の容量を増減してもよいことを意味しており、冷却水
入口温度を検出し、これを指標として上記のような制御
を行なうことによってエネルギーロスがなく、しかも運
転状態に対する追従性の良い安定した制御を行なわせる
こ吉ができる。
The present invention provides a control system that detects the cold water outlet temperature and controls the amount of heat source to the regenerator, and a control system that detects the solution level in the regenerator and controls the solution circulation lid from the absorber to the regenerator. A system is installed, the cooling water inlet temperature is detected, and an appropriate value for at least one of the amount of heating source or the amount of solution circulation is determined as a function of the same temperature, and thereby the amount of heating source or the amount of solution circulating in both control systems is determined. According to the above, the cooling water inlet temperature is detected, and as a function of this temperature, at least either the heating source amount or the solution circulation amount is determined to be appropriate. It is possible to determine the value and use it as a feedforward signal to preliminarily control at least one of the amount of heat source and the amount of solution circulation. Here, efficiency increases as the cooling water inlet temperature decreases, so if the load remains the same, it means that the capacity of the machine can be increased or decreased by reducing the amount of heating source or the amount of solution circulation. By detecting the water inlet temperature and performing the above-described control using this as an index, it is possible to perform stable control with no energy loss and good followability to the operating state.

以下、本発明を図示実施例に基いて説明する。The present invention will be explained below based on illustrated embodiments.

第2図において、1乃至64は前記した第1図に示す従
来のものと同様のものを示し、同様の作用を行なうもの
である。
In FIG. 2, reference numerals 1 to 64 indicate devices similar to the conventional device shown in FIG. 1, and perform the same functions.

本実施例においては、さらに、冷却水出口温度を検出す
る温度検出器101を設けると共にこの検出器により検
出された冷却水入口温度から予め設定された関数に基い
て、この冷却水入口温度の関数として加熱源量及び溶液
循環量の適正値を求める関数発生器102及び103を
設け、同関数発生器102及び103で求められた上記
適正値と、コントローラ28及び33の出力とから比較
器104及び105を介して、加熱源量調節弁29及び
溶液循環量調節弁34を制御するようにしている。
In this embodiment, a temperature detector 101 for detecting the cooling water outlet temperature is further provided, and a function of the cooling water inlet temperature is determined based on a preset function based on the cooling water inlet temperature detected by this detector. Function generators 102 and 103 are provided to determine appropriate values for the heating source amount and the solution circulation amount, and comparators 104 and 103 are used to determine appropriate values for the heating source amount and solution circulation amount. 105, the heat source amount control valve 29 and the solution circulation amount control valve 34 are controlled.

上記構成において、関数発生器102 、103にはそ
れぞれ冷却水入口温度が高くなる程加熱源量、溶液循環
量を多くするような予め定められた適正な関数が設定さ
れている。
In the above configuration, each of the function generators 102 and 103 is set with a predetermined appropriate function that increases the amount of heating source and the amount of solution circulation as the cooling water inlet temperature increases.

ここで、冷却水入口温度が、上下すると、効率が変化し
、負荷が同じとすれば、加熱源量あるいは溶液循環量を
増減して機械の容量を増減してもよいということを意味
している。一方、冷却水入口温度検出器1旧が冷隻温度
を検出して関数発生器102 、103に入力すると、
関数発生器102 、103では、予め設定された関数
に基いて、この冷却水入口温度の関数として加熱源量及
び溶液循環蓋の適正値を求めて出力する。
Here, if the cooling water inlet temperature rises or falls, the efficiency changes, and if the load remains the same, this means that the capacity of the machine can be increased or decreased by increasing or decreasing the amount of heating source or solution circulation. There is. On the other hand, when the old cooling water inlet temperature detector 1 detects the cold ship temperature and inputs it to the function generators 102 and 103,
The function generators 102 and 103 determine and output appropriate values for the amount of heat source and the solution circulation lid as a function of the cooling water inlet temperature based on a preset function.

いま、冷却水入口温度が低下すると、効率が高くなるの
で、関数発生器102.103の出力が減少し、加熱源
量及び溶液循環量を減少させ、逆に冷却水入口温度が上
昇すると効率が低くなるので加熱源量及び溶液循環量を
増加させ、冷却水温度に対応して加熱源量及び溶液循環
量を制御する。
Now, when the cooling water inlet temperature decreases, the efficiency increases, so the output of the function generators 102 and 103 decreases, reducing the amount of heating source and solution circulation, and conversely, when the cooling water inlet temperature increases, the efficiency increases. Since the temperature decreases, the amount of heating source and the amount of solution circulation are increased, and the amount of heating source and the amount of solution circulation are controlled in accordance with the cooling water temperature.

以上のようpc冷却水入口温度を加熱源量あるいは溶液
循環量制御のフィードフォワード信号として用いること
によってエネルギーロスのない追従性のよい安定した制
御が実現できる。
As described above, by using the PC cooling water inlet temperature as a feedforward signal for controlling the amount of heating source or solution circulation, stable control with good followability without energy loss can be realized.

なお、上記実施例では、加熱源量と溶液循環量の両方を
同時に制御するようにした例について説明したが、いず
れか一方だけを制御するようにしてもよい。
In the above embodiment, an example was described in which both the amount of heat source and the amount of solution circulation were controlled simultaneously, but only one of them may be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のものを示す構成図、第2図は本発明の一
実施例を示す構成図である。 1:高圧再生器、2:低圧再生器、3:凝縮器、4:蒸
発器、5:吸収器、6:低温熱交換器、7:高温熱交換
器、8乃至13:溶液配管。 14:再生器ポンプ、15:吸収器ポンプ、16:エゼ
クタ−,17乃至19:冷媒配管、20:冷媒ポンプ、
21:加熱源配管、22:冷却水配管、23:冷水配管
、24:冷却水ポンプ、25:冷水出口温度検出器、2
6:温度設嚢器、27:比較器、28:コントローラ、
29:加熱′源量調節弁、30=液位検出器、31:液
位設定器、32:比較器、33:コントローラ、34:
溶液循環量調節弁、 101 :冷却水入口温度検出器
、 102 、103 :関数発生器。 104 、105 :比較器
FIG. 1 is a configuration diagram showing a conventional one, and FIG. 2 is a configuration diagram showing an embodiment of the present invention. 1: High pressure regenerator, 2: Low pressure regenerator, 3: Condenser, 4: Evaporator, 5: Absorber, 6: Low temperature heat exchanger, 7: High temperature heat exchanger, 8 to 13: Solution piping. 14: regenerator pump, 15: absorber pump, 16: ejector, 17 to 19: refrigerant piping, 20: refrigerant pump,
21: Heat source piping, 22: Cooling water piping, 23: Cold water piping, 24: Cooling water pump, 25: Cold water outlet temperature detector, 2
6: Temperature setting device, 27: Comparator, 28: Controller,
29: Heating source amount control valve, 30 = Liquid level detector, 31: Liquid level setting device, 32: Comparator, 33: Controller, 34:
Solution circulation amount control valve, 101: Cooling water inlet temperature detector, 102, 103: Function generator. 104, 105: Comparator

Claims (1)

【特許請求の範囲】[Claims] 冷水出口温度を検出して再生器への加熱源量を制御する
制御系と、再生器内溶液レベルを検出して吸収器から再
生器への溶液循環量を制御する制御系を設けると共に冷
却水入口温度を検出して同温度の関数として加熱源量も
しくは溶液循環量の少なくともいずれか一方の適正値を
求め、これにより前記両制御系における加熱源量もしく
は溶液循環量の少なくともいずれか一方を制御する制御
系を設けたことを特徴とする吸収冷凍機制御装置。
A control system that detects the chilled water outlet temperature and controls the amount of heat source to the regenerator, and a control system that detects the solution level in the regenerator and controls the amount of solution circulated from the absorber to the regenerator are installed. Detecting the inlet temperature and determining an appropriate value for at least one of the heating source amount and the solution circulation amount as a function of the same temperature, thereby controlling at least either the heating source amount or the solution circulation amount in both control systems. 1. An absorption chiller control device characterized by being provided with a control system for controlling the absorption chiller.
JP4390482A 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI Expired - Lifetime JPH0236869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4390482A JPH0236869B2 (en) 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4390482A JPH0236869B2 (en) 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI

Publications (2)

Publication Number Publication Date
JPS58160780A true JPS58160780A (en) 1983-09-24
JPH0236869B2 JPH0236869B2 (en) 1990-08-21

Family

ID=12676693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4390482A Expired - Lifetime JPH0236869B2 (en) 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI

Country Status (1)

Country Link
JP (1) JPH0236869B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251764A (en) * 1987-04-03 1988-10-19 三洋電機株式会社 Method of controlling absorption refrigerator
JPH02166361A (en) * 1988-12-20 1990-06-27 Sanyo Electric Co Ltd Absorption refrigerator
JPH03294758A (en) * 1990-04-10 1991-12-25 Kawaju Reinetsu Kogyo Kk Cycle controlling method for absorption refrigerator, cold/hot water apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251764A (en) * 1987-04-03 1988-10-19 三洋電機株式会社 Method of controlling absorption refrigerator
JPH02166361A (en) * 1988-12-20 1990-06-27 Sanyo Electric Co Ltd Absorption refrigerator
JPH03294758A (en) * 1990-04-10 1991-12-25 Kawaju Reinetsu Kogyo Kk Cycle controlling method for absorption refrigerator, cold/hot water apparatus

Also Published As

Publication number Publication date
JPH0236869B2 (en) 1990-08-21

Similar Documents

Publication Publication Date Title
JPS58160780A (en) Controller for absorption refrigerator
JPS58160783A (en) Controller for absorption refrigerator
JPS58160778A (en) Controller for absorption refrigerator
JPS58156166A (en) Controller for absorption refrigerator
JPS58160779A (en) Controller for absorption refrigerator
JPS58160782A (en) Controller for absorption refrigerator
JPS6117319Y2 (en)
JPS58160777A (en) Controller for absorption refrigerator
JP2744034B2 (en) Absorption refrigerator
JP2885637B2 (en) Absorption refrigeration apparatus and control method thereof
JPS58158464A (en) Controller for absorption refrigerator
JPS58158467A (en) Controller for absorption refrigerator
JP2977999B2 (en) Absorption refrigerator
JPS58158466A (en) Controller for absorption refrigerator
JPH02166361A (en) Absorption refrigerator
JPH02140564A (en) Controlling method for absorption refrigerator
JPH0126458B2 (en)
JPS58158463A (en) Controller for absorption refrigerator
JPS6132586B2 (en)
JPH0411779B2 (en)
JPS58195764A (en) Controller for concentration of solution of absorption type refrigerator
JP2002156168A (en) Absorption type refrigerating machine
JPH04151468A (en) Adsorption type freezer corresponding to cryogenic cooling medium and its controlling
JPS58117977A (en) Controller for absorption refrigerator utilizing solar heat
JPS5834733B2 (en) How to control absorption chiller operation