JPS6117319Y2 - - Google Patents

Info

Publication number
JPS6117319Y2
JPS6117319Y2 JP9378781U JP9378781U JPS6117319Y2 JP S6117319 Y2 JPS6117319 Y2 JP S6117319Y2 JP 9378781 U JP9378781 U JP 9378781U JP 9378781 U JP9378781 U JP 9378781U JP S6117319 Y2 JPS6117319 Y2 JP S6117319Y2
Authority
JP
Japan
Prior art keywords
temperature
solution
regenerator
refrigerant
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9378781U
Other languages
Japanese (ja)
Other versions
JPS58271U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9378781U priority Critical patent/JPS58271U/en
Publication of JPS58271U publication Critical patent/JPS58271U/en
Application granted granted Critical
Publication of JPS6117319Y2 publication Critical patent/JPS6117319Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 本考案は冷房負荷の状態によつて入熱量や溶液
循環量を制御するようにした吸収冷凍機の改良に
関する。
[Detailed Description of the Invention] The present invention relates to an improvement of an absorption refrigerator in which the amount of heat input and the amount of solution circulation are controlled depending on the state of the cooling load.

水を冷媒とし、臭化リチウム溶液等の塩類溶液
を吸収溶液とする水−リチウム塩系吸収冷凍機は
公知である。従来この種吸収冷凍機において、冷
房負荷に対して冷凍出力のバランスをとるために
は、負荷に流れる冷水の温度を検出し、この温度
に応じて冷凍機への入熱量及び溶液循環量を、
“強”、“弱”、“停止”の如く段階的に制御してい
た。そして、入熱量、溶液循環量共に同時に制御
しているため、特に“強”から“弱”への切換に
際しては双方を同時に絞ると吸収器へ流れる吸収
溶液の流量が即座に減少するのに対して蒸発器へ
流れる液冷媒の量はなかなか減少せずしばらくの
間は“強”状態の液冷媒量が流れることになる。
従つて蒸発器で生ずる冷媒蒸気を吸収器で十分吸
収することができず、無効冷媒が多量に生じ、運
転効率を低下させる欠点があつた。
A water-lithium salt absorption refrigerator using water as a refrigerant and a salt solution such as a lithium bromide solution as an absorption solution is known. Conventionally, in this type of absorption refrigerator, in order to balance the refrigeration output with the cooling load, the temperature of the cold water flowing to the load is detected, and the amount of heat input to the refrigerator and the amount of solution circulation are adjusted according to this temperature.
It was controlled in stages such as "strong,""weak," and "stop." Since both the heat input amount and the solution circulation amount are controlled simultaneously, especially when switching from "strong" to "weak", if you throttle both at the same time, the flow rate of the absorption solution flowing to the absorber will immediately decrease. The amount of liquid refrigerant flowing to the evaporator does not decrease easily, and a "strong" amount of liquid refrigerant continues to flow for a while.
Therefore, the refrigerant vapor generated in the evaporator cannot be sufficiently absorbed by the absorber, resulting in a large amount of ineffective refrigerant, resulting in a reduction in operating efficiency.

本考案は、上記のような従来のの欠点を除去す
ることを目的としてなされたものである。以下本
考案の一実施例を図面を参照して詳細に説明明す
る。
The present invention has been made with the aim of eliminating the drawbacks of the conventional ones as described above. An embodiment of the present invention will be explained in detail below with reference to the drawings.

第1図は本考案に係る吸収冷凍機の一実施例の
系統図である。
FIG. 1 is a system diagram of an embodiment of an absorption refrigerator according to the present invention.

図において1は吸収溶液に冷媒が吸収された稀
溶液をバーナ或いは温水等の熱源によつて加熱
し、冷媒蒸気と中間濃溶液に分離する高温再生
器、2は高温再生器1で加熱再生された中間濃溶
液が、高温熱交換器6を経て降温された後で導入
され、高温再生器1からの高温の冷媒蒸気で再度
加熱して濃縮する低温再生器、3は低温再生器2
から導入される冷媒を凝縮する凝縮器、4は凝縮
器3で凝縮された液冷媒を蒸発させ、図示しない
負荷からの冷水を冷却する蒸発器、5は低温再生
器2から濃溶液が低温熱交換器7を経て降温され
た後導入され、蒸発器4で蒸発した冷媒蒸気を吸
収して稀溶液とする吸収器、8は吸収器5からの
稀溶液を熱交換器7,6を経て高温再生器1へ送
る溶液ポンプ、9は稀溶液の流量を“強”、“弱”
2段階に切換える溶液流量調整弁、10a,10
bは高温再生器1への燃料或いは温水等の供給熱
源を“入”、“切”する入熱量調整弁、11は図示
しない負荷からの冷水が導入される冷水コイル、
12は吸収器5での吸収熱を除却するための冷却
水コイル、13は冷水コイル11を流れる冷水の
温度を測定する温度測定器、14は温度測定器1
3で測定された冷水温度にもとづき溶液流量調整
弁9及び入熱量調整弁10a,10bへ制御信号
を送出する制御器である。
In the figure, 1 is a high-temperature regenerator that heats a dilute solution in which refrigerant has been absorbed by an absorption solution using a heat source such as a burner or hot water, and separates it into refrigerant vapor and an intermediate concentrated solution. The intermediate concentrated solution is cooled down through the high-temperature heat exchanger 6, and then introduced into the low-temperature regenerator, where it is heated and concentrated again with high-temperature refrigerant vapor from the high-temperature regenerator 1, 3 is the low-temperature regenerator 2.
A condenser 4 condenses the refrigerant introduced from the condenser 3, an evaporator 4 evaporates the liquid refrigerant condensed in the condenser 3, and cools cold water from a load (not shown); The absorber 8 is introduced after the temperature has been lowered through the exchanger 7 and absorbs the refrigerant vapor evaporated in the evaporator 4 to form a dilute solution.The absorber 8 converts the dilute solution from the absorber 5 through the heat exchangers 7 and 6 to a high temperature. The solution pump 9 that sends to the regenerator 1 controls the flow rate of the dilute solution to “strong” and “weak”.
Two-stage switching solution flow rate adjustment valve, 10a, 10
b is a heat input adjustment valve that turns on and off a supply heat source such as fuel or hot water to the high-temperature regenerator 1; 11 is a chilled water coil into which chilled water from a load (not shown) is introduced;
12 is a cooling water coil for removing the heat absorbed by the absorber 5; 13 is a temperature measuring device for measuring the temperature of the cold water flowing through the cold water coil 11; and 14 is a temperature measuring device 1.
This is a controller that sends a control signal to the solution flow rate adjustment valve 9 and the heat input amount adjustment valves 10a and 10b based on the cold water temperature measured in step 3.

なお第2図は温度測定器13の検出信号にもと
づく制御器14による各調整弁9,10a,10
bの制御系統を示したものである。
In addition, FIG. 2 shows the adjustment valves 9, 10a, 10 controlled by the controller 14 based on the detection signal of the temperature measuring device 13.
Fig. 3 shows the control system of Fig. b.

次に、上記のよう構成された本考案の吸収冷凍
機の動作を説明する。
Next, the operation of the absorption refrigerator of the present invention configured as described above will be explained.

吸収器5の稀溶液が溶液ポンプ8により、溶液
流量調整弁9、熱交換器7,6を経て高温再生器
1へ送られ加熱される。従つて稀溶液中の冷媒が
蒸発し、冷媒蒸気と中間濃溶液に分離される。分
離された中間濃溶液は高温熱交換器6で稀溶液と
の熱交換により降温された後低温再生器2で高温
の冷媒蒸気により再度加熱され、濃溶液とされ
る。そして、低温再生器2で生じた冷媒蒸気や中
間濃溶液を加熱した冷媒は、凝縮器3で凝縮され
て液冷媒となり、蒸発器4へ導入される。蒸発器
4には負荷からの冷水が流れている冷水コイル1
1が設けられており、液冷媒はコイル11中を流
れる冷水から熱を奪つて蒸発し従つて冷水コイル
11を流れる冷水の温度が低下する。一方、低温
再生器2から濃溶液が圧力差及び重力によつて、
低温熱交換器7を経て降温された後吸収器5へ導
入され、蒸発器4で蒸発した冷媒蒸気を吸収して
稀溶液となる。以下同様のの動作が繰り返され
る。
The dilute solution in the absorber 5 is sent by a solution pump 8 to the high temperature regenerator 1 via a solution flow rate adjustment valve 9 and heat exchangers 7 and 6, where it is heated. Therefore, the refrigerant in the dilute solution evaporates and is separated into refrigerant vapor and an intermediate concentrated solution. The temperature of the separated intermediate concentrated solution is lowered by heat exchange with the dilute solution in the high temperature heat exchanger 6, and then heated again by high temperature refrigerant vapor in the low temperature regenerator 2 to form a concentrated solution. The refrigerant vapor generated in the low-temperature regenerator 2 and the refrigerant that heated the intermediate concentrated solution are condensed in the condenser 3 to become liquid refrigerant, and introduced into the evaporator 4. The evaporator 4 has a chilled water coil 1 through which chilled water from the load flows.
1 is provided, and the liquid refrigerant removes heat from the cold water flowing through the coil 11 and evaporates, so that the temperature of the cold water flowing through the cold water coil 11 decreases. On the other hand, the concentrated solution flows from the low-temperature regenerator 2 due to the pressure difference and gravity.
After being cooled down through the low-temperature heat exchanger 7, it is introduced into the absorber 5, where it absorbs the refrigerant vapor evaporated in the evaporator 4 and becomes a dilute solution. The same operation is repeated thereafter.

ところで、温度測定器13によつて負荷からの
冷水の温度が測定されて、測定結果は制御器14
へ送られる。なお、図示した実施例では冷水コイ
ル11の出口で冷水温度を測定しているが、入口
側の温度を測定するようにしてもよい。制御器1
4では冷水温度から負荷対する冷凍出力の適否を
判定し、冷水温度が高ければ冷凍出力を増すよう
に、溶液流量調整弁9を十分開いて溶液流量が十
分流れる“強”状態とするように制御するととも
に、両入熱量調整弁10a,10bを共に開とし
て、高温再生器1へ燃料或いは温水が十分供給さ
れるようにする。
By the way, the temperature of the cold water from the load is measured by the temperature measuring device 13, and the measurement result is sent to the controller 14.
sent to. In the illustrated embodiment, the cold water temperature is measured at the outlet of the cold water coil 11, but the temperature at the inlet may also be measured. Controller 1
In step 4, the suitability of the refrigeration output for the load is determined based on the chilled water temperature, and if the chilled water temperature is high, the refrigeration output is increased, and the solution flow rate adjustment valve 9 is sufficiently opened to create a "strong" state where the solution flow is sufficiently flowing. At the same time, both heat input adjustment valves 10a and 10b are opened to ensure that sufficient fuel or hot water is supplied to the high temperature regenerator 1.

一方、制御器14にて冷水温度が所定温度より
も低いと判断した場合には、冷凍出力を減らすよ
うに溶液流量調整弁9の開度を絞つて溶液流量を
減じ“弱”状態とするように制御するとともに、
一方の入熱量調整弁10aを閉じ、他方の入熱量
調整弁10bを通して燃料或いは温水が高温再生
器1へ供給されるようにする。但しこのとき、制
御弁14からは入熱量調整弁10aを閉じる信号
を送出した後、所定の時間遅れて溶液流量調整弁
9を“弱”状態に切換える信号を送出する。なお
この遅れ時間は、高温再生器1への入熱量を減じ
てから蒸発器4へ導入される液冷媒の量が“弱”
状態に減少するまでに要する時間に相当するよう
に例えばタイマ等によつて設定する。
On the other hand, if the controller 14 determines that the chilled water temperature is lower than the predetermined temperature, the opening degree of the solution flow rate adjustment valve 9 is narrowed to reduce the solution flow rate to reduce the refrigeration output to a "weak" state. In addition to controlling
One heat input amount adjusting valve 10a is closed, and fuel or hot water is supplied to the high temperature regenerator 1 through the other heat input amount adjusting valve 10b. However, at this time, after the control valve 14 sends out a signal to close the heat input amount adjustment valve 10a, it sends out a signal to switch the solution flow rate adjustment valve 9 to the "weak" state after a predetermined delay. Note that this delay time is such that the amount of liquid refrigerant introduced into the evaporator 4 after reducing the amount of heat input to the high-temperature regenerator 1 is "weak".
For example, a timer or the like is set to correspond to the time required for the state to decrease.

このように、“強”状態から“弱”状態に冷凍
機の運転状態が切り換わつたとき、しばらくの間
は溶液循環量が“強”状態を維持することにな
り、残存している液冷媒を吸収して有効冷媒と
し、無効冷媒の発生を防止し、部分負荷における
運転効率を向上させることができる。
In this way, when the operating state of the refrigerator changes from the "strong" state to the "weak" state, the solution circulation amount remains in the "strong" state for a while, and the remaining liquid It is possible to absorb refrigerant and turn it into effective refrigerant, prevent generation of ineffective refrigerant, and improve operating efficiency at partial loads.

上述のように本考案によれば、運転状態を
“強”から“弱”に切換えるときに、入熱量を減
少させる動作よりも遅れて溶液流量を減少させる
ことにより、従来の欠点を除去した実用上の効果
の大きな吸収冷凍機が提供される。
As mentioned above, according to the present invention, when switching the operating state from "strong" to "weak", the solution flow rate is reduced later than the action to reduce the heat input, thereby eliminating the drawbacks of the conventional method. An absorption refrigerator having the above effects is provided.

なお本考案を二重効用吸収冷凍機に実施した場
合について説明したが、これに限らず一重効用吸
収冷凍機にも実施できることは勿論であり、本考
案は要旨を逸脱しない範囲内で種々変形して実施
できることはいうまでもない。
Although the present invention has been described for a case where it is applied to a double-effect absorption refrigerator, it is of course possible to apply it to a single-effect absorption refrigerator as well, and the present invention can be modified in various ways without departing from the gist. Needless to say, it can be implemented by

また、冷凍機の運転を停止する場合は、両入熱
量調整弁10a,10bを共に閉じるように制御
器14から信号を送出させる。
Moreover, when stopping the operation of the refrigerator, the controller 14 sends a signal to close both the heat input amount adjusting valves 10a and 10b.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る吸収冷凍機の一実施例を
示す系統図、第2図は第1図に示されている制御
系統を抽出して示した図である。 1……高温再生機、2……低温再生機、3……
凝縮器、4……蒸発器、5……吸収器、9……溶
液流量調整弁、10a,10b……入熱量調整
弁、11……冷水コイル、13……温度測定器、
14……制御器。
FIG. 1 is a system diagram showing an embodiment of an absorption refrigerator according to the present invention, and FIG. 2 is a diagram showing an extracted control system shown in FIG. 1. 1...High temperature regenerator, 2...Low temperature regenerator, 3...
Condenser, 4...Evaporator, 5...Absorber, 9...Solution flow rate adjustment valve, 10a, 10b...Heat input amount adjustment valve, 11...Cold water coil, 13...Temperature measuring device,
14...Controller.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸収溶液に冷媒が吸収された稀溶液を加熱して
冷媒蒸気と吸収溶液を再生する再生器と、この再
生器で再生された冷媒蒸気を凝縮して液冷媒とす
る凝縮器と、この凝縮器からの液冷媒を蒸発させ
て負荷の冷水温度を低下させる蒸発器と、この蒸
発器で蒸発した冷媒を前記再生器で再生された吸
収溶液に吸収させて稀溶液とする吸収器とを有す
る吸収冷凍機において、前記吸収器から前記再生
器への稀溶液流量を調整する流量調整器と、前記
再生器への加熱用入熱量を調整する入熱量調整器
と、前記負荷の冷水温度を測定する温度測定器
と、この温度測定器での測定温度にもとづき前記
流量調整器及び入熱量調整器を制御して吸収冷凍
機の運転状態を制御する制御器とを具備し、前記
制御器は吸収冷凍機の運転状態を強から弱へ切換
えるとき前記流量調整器を前記入熱量調整器より
も所定時間遅らせて動作させるように制御するこ
とを特徴とする吸収冷凍機。
A regenerator that regenerates refrigerant vapor and absorption solution by heating a dilute solution in which refrigerant has been absorbed into an absorption solution, a condenser that condenses the refrigerant vapor regenerated by this regenerator into liquid refrigerant, and this condenser. An absorber comprising an evaporator that evaporates liquid refrigerant from the evaporator to lower the temperature of the chilled water in the load, and an absorber that absorbs the refrigerant evaporated in the evaporator into the absorption solution regenerated by the regenerator to form a dilute solution. In the refrigerator, a flow rate regulator that adjusts the flow rate of dilute solution from the absorber to the regenerator, a heat input amount regulator that adjusts the amount of heating heat input to the regenerator, and a temperature of the chilled water of the load is measured. It is equipped with a temperature measuring device, and a controller that controls the flow rate regulator and the heat input amount regulator based on the temperature measured by the temperature measuring device to control the operating state of the absorption chiller, and the controller is configured to control the operation state of the absorption chiller. An absorption refrigerating machine characterized in that the flow rate regulator is operated a predetermined time later than the heat input amount regulator when switching the operating state of the machine from strong to weak.
JP9378781U 1981-06-26 1981-06-26 absorption refrigerator Granted JPS58271U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9378781U JPS58271U (en) 1981-06-26 1981-06-26 absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9378781U JPS58271U (en) 1981-06-26 1981-06-26 absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS58271U JPS58271U (en) 1983-01-05
JPS6117319Y2 true JPS6117319Y2 (en) 1986-05-27

Family

ID=29888755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9378781U Granted JPS58271U (en) 1981-06-26 1981-06-26 absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS58271U (en)

Also Published As

Publication number Publication date
JPS58271U (en) 1983-01-05

Similar Documents

Publication Publication Date Title
JPH04340066A (en) Absorption air conditioning system
JPS6117319Y2 (en)
JP2532982B2 (en) Absorption refrigerator control device
JPS6118366Y2 (en)
JPS6215736Y2 (en)
JP3831425B2 (en) Control method of absorption chiller / heater
JPS6135890Y2 (en)
JP4278315B2 (en) Absorption refrigerator
JP4115020B2 (en) Control method of absorption refrigerator
JP2654137B2 (en) Control method of absorption refrigerator
JPS6135891Y2 (en)
JPS6021721Y2 (en) Absorption chiller control device
JPS58160780A (en) Controller for absorption refrigerator
JPH0275865A (en) Controlling method for absorption refrigerator
JPH02140564A (en) Controlling method for absorption refrigerator
JP3157668B2 (en) Absorption chiller / heater
JPS601544B2 (en) Control device for single-double effect absorption chiller
JPH04151470A (en) Control device for absorption type cold-hot water heater
JP2885637B2 (en) Absorption refrigeration apparatus and control method thereof
JP2592014B2 (en) Absorption chiller / heater
JPH0868572A (en) Dual-effect absorption refrigerator
JPS6269072A (en) Absorption type water heater and chiller
JPH0236868B2 (en) KYUSHUREITOKISEIGYOSOCHI
JPH03105171A (en) Absorption type water cooling and heating machine
JPS58158467A (en) Controller for absorption refrigerator