JP3831425B2 - Control method of absorption chiller / heater - Google Patents

Control method of absorption chiller / heater Download PDF

Info

Publication number
JP3831425B2
JP3831425B2 JP15222995A JP15222995A JP3831425B2 JP 3831425 B2 JP3831425 B2 JP 3831425B2 JP 15222995 A JP15222995 A JP 15222995A JP 15222995 A JP15222995 A JP 15222995A JP 3831425 B2 JP3831425 B2 JP 3831425B2
Authority
JP
Japan
Prior art keywords
temperature
evaporator
regenerator
combustion
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15222995A
Other languages
Japanese (ja)
Other versions
JPH08320168A (en
Inventor
伸浩 出射
秀明 小穴
泰雄 坂田
裕一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15222995A priority Critical patent/JP3831425B2/en
Publication of JPH08320168A publication Critical patent/JPH08320168A/en
Application granted granted Critical
Publication of JP3831425B2 publication Critical patent/JP3831425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2333/00Details of boilers; Analysers; Rectifiers
    • F25B2333/003Details of boilers; Analysers; Rectifiers the generator or boiler is heated by combustion gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は吸収式冷温水機に係わり、特に詳しくは制御性の改善を図ると共に、冷媒を蒸発分離する再生器における燃焼操作の停止/再開頻度を減じて装置寿命を延ばすようにした吸収式冷温水機に関する。
【0002】
【従来の技術】
冷媒液の蒸発に伴う吸熱作用または冷媒蒸気の主に凝縮に伴う放熱作用によって冷却または加熱して蒸発器から取り出し、冷/暖房負荷に循環供給する熱操作流体の温度をある温度範囲に納めるため、蒸発器から取り出す熱操作流体の出口温度による容量制御が一般に行われている。
【0003】
【発明が解決しようとする課題】
しかし、上記従来の容量制御は、再生器における冷媒の蒸発分離を行うための燃焼の停止/再開制御も熱操作流体の蒸発器出口温度に基づいて制御している。このため、特に停止と全開を単純に繰り返す2位置制御、停止/中間/全開で制御する3位置制御の装置では燃焼の停止/再開による容量変化が大きく、蒸発器出口側に温度センサを設置したのではその影響をまともに受けるため燃焼の停止/再開動作が頻繁に行われ、制御性は勿論、装置の寿命を縮めると云った問題点があり、この点の解決が課題となっていた。
【0004】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するための具体的手段として、再生器・凝縮器・蒸発器・吸収器などを配管接続して冷凍サイクルを構成し、蒸発器における冷媒液の蒸発に伴う吸熱作用または冷媒蒸気の主に凝縮に伴う放熱作用によって所要の熱操作流体を冷却または加熱し、この熱操作流体を冷温水配管により所要の機器に循環供給する吸収式冷温水機において、
【0005】
前記冷温水配管における前記蒸発器の出口に第1の温度センサを設けると共に、蒸発器の入口に第2の温度センサを設け、前記蒸発器から吐出した熱操作流体の温度を前記第1の温度センサで検出し、この検出温度が制御装置により演算算出する温度以下になったとき再生器における燃焼を停止し、前記蒸発器に還流している熱操作流体の温度を前記第2の温度センサで検出し、この検出温度が制御装置により演算算出する温度以上になったとき再生器における燃焼を再開する第1の構成の制御方法と、
【0006】
前記第1の構成の制御方法において、冷却作用を行って蒸発器に還流している熱操作流体の温度が、再生器における前回の燃焼を停止したときに蒸発器に還流していた熱操作流体の温度+所定温度以上になったときに再生器における燃焼を再開する第2の構成の制御方法と、
【0007】
前記第1の構成の制御方法において、加熱作用を行って蒸発器に還流している熱操作流体の温度が、再生器における前回の燃焼を停止したときに蒸発器に還流していた熱操作流体の温度−所定温度以上になったときに再生器における燃焼を再開する第3の構成の制御方法と、
【0008】
前記第1の構成の制御方法において、冷却されて蒸発器から吐出し熱操作流体の温度が設定温度−第1の所定温度+第2の所定温度以上であるとき再生器における燃焼を開始し、その後、蒸発器から吐出し熱操作流体の温度が設定温度−第1の所定温度以下になったときに再生器における燃焼を停止し、蒸発器に還流している熱操作流体の温度が、再生器における前回の燃焼を停止したときに蒸発器に還流していた熱操作流体の温度+第2の所定温度以上となったときに再生器における燃焼を再開する第4の構成の制御方法と、
【0009】
前記第1の構成の制御方法において、加熱されて蒸発器から吐出し熱操作流体の温度が設定温度+第1の所定温度−第2の所定温度以下であるとき再生器における加熱を開始し、その後、蒸発器から吐出し熱操作流体の温度が設定温度+第1の所定温度以上になったときに再生器における燃焼を停止し、蒸発器に還流している熱操作流体の温度が、再生器における前回の燃焼が停止したときに蒸発器に還流していた熱操作流体の温度−第2の所定温度以下となったときに再生器における燃焼を再開する第5の構成の制御方法と、
を提供することにより、前記した従来技術の課題を解決するものである。
【0010】
【作用】
蒸発器出口から蒸発器に還流している熱操作流体の温度検出部までの経路が長く、その間に保有する熱操作流体の量が充分にあって再生器における燃焼のオン/オフによる容量変化の影響を受け難く、しかも前記燃焼の再開が冷/暖房負荷の大小を反映して蒸発器に還流している熱操作流体の温度に基づいて行なわれるので、制御性が向上するだけでなく、燃焼の停止/再開頻度が減少して装置寿命が延びる。
【0011】
【実施例】
以下、本発明の一実施例を図面に基づいて詳細に説明する。
図1に例示したものは冷水または温水を負荷に循環供給する冷温水機としての二重効用吸収式冷凍機であり、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用したものである。
【0012】
図において、1はガスバーナ1Bを備えた高温再生器、2は低温再生器、3は凝縮器、4は蒸発器、5は吸収器、6は低温熱交換器、7は高温熱交換器、8〜11は吸収液配管、13は吸収液ポンプ、14〜17は冷媒配管、19は冷媒ポンプ、22は図示しない冷/暖房負荷に冷熱または温熱を循環供給する冷水または温水が流れ、途中に蒸発器熱交換器4Aを備えた冷温水配管、23は途中に吸収器熱交換器5Aおよび凝縮器熱交換器3Aを備えた冷却水配管、24はガスバーナ1Bに接続したガス供給管、25はガス供給管24の途中に設けた加熱量制御弁、26〜28は開閉弁であり、これらの機器はそれぞれ図1に示したように配管接続されており、この構成自体は従来周知である。
【0013】
すなわち、上記構成の二重効用吸収式冷凍機において、開閉弁26・27・28を閉じ、冷却水配管23に冷却水を通し、ガスバーナ1Bを点火して高温再生器1で溶液を加熱すると、高温再生器1で溶液から蒸発分離した冷媒は冷媒配管14を流れ、低温再生器2で中間吸収液を加熱凝縮して凝縮器3に入り、低温再生器2で中間吸収液から分離した冷媒は凝縮器3へ流れ、冷却水配管23から凝縮器熱交換器3Aへ流れた水と熱交換して凝縮液化した後、冷媒配管14からの冷媒と一緒になって冷媒配管15を介して蒸発器4へ流れる。
【0014】
蒸発器4では、冷媒液が蒸発器熱交換器4Aにおいて冷温水配管22からの水と熱交換して蒸発し、このときの気化熱によって蒸発器熱交換器4A内を流れる水が冷却される。そして、蒸発器4で蒸発した冷媒は吸収器5に流れ、上方から散布される吸収液に吸収される。
【0015】
冷媒を吸収して濃度の薄くなった吸収器5の吸収液が、吸収液ポンプ13の運転により低温熱交換器6・高温熱交換器7を経て高温再生器1へ送られる。高温再生器1に入った吸収液は、ガスバーナ1Bにより加熱されて冷媒が蒸発し、中濃度の吸収液となって高温熱交換器7を介し低温再生器2に入る。そして、ここで吸収液は高温再生器1から冷媒配管14を流れて来た冷媒蒸気によって加熱され、さらに冷媒が蒸発分離されて濃度が高くなる。高濃度になった吸収液は低温熱交換器6を経て吸収器5へ流れ、上方から散布される。
【0016】
上記のように吸収式冷凍機の運転が行われると、蒸発器4において冷媒の気化熱によって冷却した冷水が冷温水配管22を介して図示しない冷/暖房負荷に循環供給できるので、冷房運転が行える。
【0017】
一方、開閉弁26・27・28を開け、冷却水配管23に冷却水を通さないでガスバーナ1Bを点火して高温再生器1で溶液を加熱すると、高温再生器1で蒸発した冷媒は冷媒配管14の途中から主に流路抵抗の小さい冷媒配管17を介して吸収器5・蒸発器4に入り、蒸発器熱交換器4A内の水と熱交換して凝縮し、主にこのときの凝縮熱によって蒸発器熱交換器4A内を流れる水が加熱される。したがって、この温水を図示しない冷/暖房負荷に循環供給することによって暖房運転が行なわれる。
【0018】
なお、蒸発器4で凝縮した冷媒は開閉弁28を通過して吸収器5に流れ、吸収液配管11から流入する吸収液と混合され、吸収液ポンプ13の運転によって低温熱交換器6・高温熱交換器7を経て高温再生器1へ送られる。高温再生器1に入った吸収液は、ガスバーナ1Bにより加熱されて冷媒が蒸発し、中濃度の吸収液となって吸収液配管11より吸収器5に戻る。
【0019】
31は、上記のような動作機能を有する二重効用吸収式冷凍機に設けた制御装置であり、その具体的な一構成例について説明すると、32は冷温水配管22の蒸発器4出入口に設けた第1の温度センサ29・第2の温度センサ30が出力する温度信号を入力し、信号変換して中央演算処理装置(以下CPUと云う)33へ出力する入力インターフェイス、34は所定の演算プログラムなどを記憶している記憶装置(以下ROMと云う)、35はCPU33からの信号を入力して加熱量制御弁25へ所要の制御信号を出力する出力インターフェイス、36は所定時間毎に信号を出力する信号発生器(以下CLOCKと云う)、37は第1の温度センサ29・第2の温度センサ30が検出した温度などを記憶する読込/消去可能な記憶装置(以下RAMと云う)である。
【0020】
そしてROM34には、予め設定した所定温度と第1の温度センサ29が検出した冷温水の温度との差が大きければ大きいほど、加熱量制御弁25の開度を大きくし、第1の温度センサ29が検出した冷温水の温度が所定温度に達すると、加熱量制御弁25を閉じて燃焼を停止する従来周知の容量制御プログラムを記憶してある。
【0021】
また、ROM34には適宜の部材、例えば制御装置31自体あるいは制御装置31と信号線51を介して接続し、ビルの管理室などに設置されたリモコン40に吸収式冷凍機のオン/オフスイッチ40Sなどと共に設けた冷/暖房切換スイッチ41によって冷房運転の開始が指示されたときに、第1の温度センサ29が検出する冷水の温度T1を所定時間毎に検出し、この検出温度T1が、所定の設定温度、例えば7℃から第1の所定温度、例えば1℃を減じ、これに第2の所定温度A、例えば1.5℃を加えて演算算出する7.5℃以上あれば加熱量制御弁25を開いてガスバーナ1Bの燃焼を開始する冷房運転起動時の制御プログラムと、
【0022】
ガスバーナ1Bの燃焼を開始した後、第1の温度センサ29が検出する冷水の温度T1を所定時間毎に検出し、この検出温度T1が前記所定の設定温度7℃から前記第1の所定温度1℃を減じて演算算出する6℃以下になったとき、加熱量制御弁25を閉じて燃焼を停止すると共に、このとき第2の温度センサ30が検出する冷水の温度T2をRAM37に記憶する燃焼停止時の制御プログラムと、
【0023】
さらに、ガスバーナ1Bの燃焼を停止した後、第2の温度センサ30が検出する冷水の温度T2を所定時間毎に検出し、この検出温度T2がRAM37に記憶した前記冷水の温度T2に第2の所定温度A、例えば1.5℃を加えた温度以上になったときに、加熱量制御弁25を開いてガスバーナ1Bの燃焼を再開する燃焼再開時の制御プログラムと、
を記憶してある。
【0024】
また、ROM34には、暖房運転の開始がリモコン40の冷/暖房切換スイッチ41によって指示されたときに、第1の温度センサ29が検出する温水の温度T1を所定時間毎に検出し、この検出温度T1が、所定の設定温度、例えば45℃に第1の所定温度、例えば2.5℃を加え、これから第2の所定温度B、例えば3.5℃を減じて演算算出する44℃以下であれば加熱量制御弁25を開いてガスバーナ1Bの燃焼を開始する暖房運転起動時の制御プログラムと、
【0025】
ガスバーナ1Bの燃焼を開始した後、第1の温度センサ29が検出する温水の温度T1を所定時間毎に検出し、この検出温度T1が前記所定の設定温度45℃に前記第1の所定温度2.5℃を加えて演算算出する47.5℃以上になったとき、加熱量制御弁25を閉じて燃焼を停止すると共に、このとき第2の温度センサ30が検出する温水の温度T2をRAM37に記憶する燃焼停止時の制御プログラムと、
【0026】
さらに、ガスバーナ1Bの燃焼を停止した後、第2の温度センサ30が検出する温水の温度T2を所定時間毎に検出し、この検出温度T2がRAM37に記憶した前記温水の温度T2から第2の所定温度B、例えば3.5℃を減じた温度以下になったときに、加熱量制御弁25を開いてガスバーナ1Bの燃焼を再開する燃焼再開時の制御プログラムと、
を記憶してある。
【0027】
したがって、リモコン40の冷/暖房切換スイッチ41を操作することによって例えば冷房運転が選択されると、冷房運転起動時の制御プログラムが起動し、外気温度が高くて第1の温度センサ29が検出する温度T1が7.5℃以上であれば加熱量制御弁25を開いてガスバーナ1Bの燃焼を開始する。
【0028】
そして、第1の温度センサ29が検出する温度T1が所定の設定温度7℃になるように加熱量の容量制御が行われ、第1の温度センサ29が検出する温度T1が6℃以下になると加熱量制御弁25を閉じてガスバーナ1Bの燃焼を停止すると共に、このとき第2の温度センサ30が検出する冷水の温度T2をRAM37に記憶し、ガスバーナ1Bの燃焼停止後、第2の温度センサ30が検出する冷水の温度T2がRAM37に先に記憶した前記冷水の温度T2に前記第2の所定温度A、例えば1.5℃を加えた温度以上になると、加熱量制御弁25を開いてガスバーナ1Bの燃焼を再開する。
【0029】
このように、冷温水配管22を介して所定温度範囲の冷水を図示しない冷房負荷に循環供給して冷房運転を行うことが可能であり、しかも冷房作用を終えて蒸発器4に還流する冷水の温度は、蒸発器4出口から蒸発器4に還流している冷水の温度検出部、すなわち第2の温度センサ30までの経路が長く、その間の保有水量が充分にあってガスバーナ1Bの燃焼停止/再開による容量変化の影響を受け難く、実際の負荷の大小を反映しているので、ガスバーナ1Bの燃焼停止/再開頻度が減少して装置寿命が伸び、且つ、制御性が向上する。
【0030】
一方、リモコン40の冷/暖房切換スイッチ41の操作によって暖房運転が選択されると、暖房運転起動時の制御プログラムが起動し、外気温度が低くて第1の温度センサ29が検出する温度T1が44℃以下であれば加熱量制御弁25を開いてガスバーナ1Bの燃焼を開始する。
【0031】
そして、第1の温度センサ29が検出する温度T1が所定の設定温度45℃になるように加熱量の容量制御が行われ、第1の温度センサ29が検出する温度T1が47.5℃以上になると加熱量制御弁25を閉じてガスバーナ1Bの燃焼を停止すると共に、このとき第2の温度センサ30が検出する温水の温度T2をRAM37に記憶し、ガスバーナ1Bの燃焼停止後、第2の温度センサ30が検出する温水の温度T2がRAM37に先に記憶した前記温水の温度T2から前記第2の所定温度B、例えば3.5℃を減じた温度以下になると、加熱量制御弁25を開いてガスバーナ1Bの燃焼を再開する。
【0032】
したがって、この場合も冷温水配管22を介して所定温度範囲の温水を図示しない暖房負荷に循環供給して暖房運転を行うことが可能であり、しかも暖房作用を終えて蒸発器4に還流する温水の温度は、蒸発器4出口から蒸発器4に還流している温水の温度検出部、すなわち第2の温度センサ30までの経路が長く、その間の保有水量が充分にあってガスバーナ1Bの燃焼停止/再開による容量変化の影響を受け難く、実際の負荷の大小を反映しているので、ガスバーナ1Bの燃焼停止/再開頻度が減少して装置寿命が伸び、且つ、制御性が向上する。
【0033】
なお、本発明は上記実施例に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0034】
例えば、冷/暖房何れの場合も第1の所定温度を0℃として、二位置制御とするように構成しても良い。
【0035】
また、冷房運転時における設定温度は例えば5.0〜12.0℃(0.1℃刻みの設定可能、以下同様)の範囲、第1の所定温度は例えば0.5〜2.5℃の範囲、第2の所定温度は例えば1.0〜9.0℃の範囲で適宜設定でき、
【0036】
暖房運転時における設定温度は例えば40.0〜60.0℃の範囲、第1の所定温度は例えば0.5〜5.0℃の範囲、第2の所定温度は例えば0.5〜8.5℃の範囲で適宜設定できる。
【0037】
また、冷温水配管22に流す熱操作流体としてエチレングリコール、塩化カルシウム溶液などの不凍液を使用しても良い。
【0038】
【発明の効果】
以上説明したように本発明の吸収式冷温水機においては、蒸発器出口から蒸発器に還流している熱操作流体の温度検出部までの経路が長く、その間に保有する熱操作流体の量が充分にあって再生器における燃焼のオン/オフによる容量変化の影響を受け難く、しかも前記燃焼の再開が冷/暖房負荷の大小を反映して蒸発器に還流している熱操作流体の温度に基づいて行なわれるので、制御性が向上するだけでなく、燃焼の停止/再開頻度が減少して装置寿命が延びると云った顕著なメリットがある。
【図面の簡単な説明】
【図1】一実施例の説明図である。
【符号の説明】
1 高温再生器
1B ガスバーナ
2 低温再生器
3 凝縮器
4 蒸発器
5 吸収器
6 低温熱交換器
7 高温熱交換器
8〜11 吸収液配管
13 吸収液ポンプ
14〜17 冷媒配管
19 冷媒ポンプ
22 冷温水配管
23 冷却水配管
24 ガス供給管
25 加熱量制御弁
26〜28 開閉弁
29 第1の温度センサ
30 第2の温度センサ
31 制御装置
32 入力インターフェイス
33 CPU
34 ROM
35 出力インターフェイス
36 CLOCK
37 RAM
40 リモコン
40S オン/オフスイッチ
41 冷/暖房切換スイッチ
51 信号線
[0001]
[Industrial application fields]
The present invention relates to an absorption chiller / heater, and more particularly, to improve controllability and to reduce the frequency of stop / restart of combustion operation in a regenerator for evaporating and separating refrigerant to extend the life of the apparatus. Regarding water machines.
[0002]
[Prior art]
In order to keep the temperature of the heat operating fluid that is cooled or heated by the endothermic action accompanying the evaporation of the refrigerant liquid or the heat radiation action mainly caused by the condensation of the refrigerant vapor, taken out of the evaporator and circulated to the cooling / heating load within a certain temperature range. In general, the capacity control is performed by the outlet temperature of the thermal operation fluid taken out from the evaporator.
[0003]
[Problems to be solved by the invention]
However, in the conventional capacity control, the combustion stop / restart control for evaporating and separating the refrigerant in the regenerator is also controlled based on the evaporator outlet temperature of the thermally operated fluid. For this reason, the capacity change due to the stop / restart of combustion is large in the two-position control device that simply controls stop and full open, and the three-position control device controlled by stop / intermediate / full open, and a temperature sensor is installed on the outlet side of the evaporator. However, since the operation is stopped and restarted frequently, the problem is that the life of the apparatus is shortened as well as controllability, and the solution to this problem has been a problem.
[0004]
[Means for Solving the Problems]
In the present invention, as a specific means for solving the above-mentioned problems of the prior art, a refrigerating unit, a condenser, an evaporator, an absorber, and the like are connected to a pipe to constitute a refrigeration cycle, which accompanies evaporation of refrigerant liquid in the evaporator. In an absorption chiller / heater that cools or heats the required thermal operation fluid by heat absorption or heat dissipation mainly due to condensation of the refrigerant vapor, and circulates this thermal operation fluid to the required equipment through the chilled / hot water piping ,
[0005]
A first temperature sensor is provided at the outlet of the evaporator in the cold / hot water pipe, and a second temperature sensor is provided at the inlet of the evaporator, so that the temperature of the thermal operation fluid discharged from the evaporator is the first temperature. detected by the sensor, the combustion in the regenerator when the detected temperature is below a temperature for calculating calculated by the control unit stops, the temperature of the heat operation fluid in reflux to the evaporator at the second temperature sensor A control method of a first configuration for detecting and resuming combustion in the regenerator when the detected temperature is equal to or higher than a temperature calculated by the control device ;
[0006]
In the control method of the first configuration, the temperature of the thermal operation fluid that has been cooled and returned to the evaporator is the temperature of the thermal operation fluid that has been returned to the evaporator when the previous combustion in the regenerator was stopped. A control method of a second configuration for resuming combustion in the regenerator when the temperature becomes equal to or higher than a predetermined temperature +
[0007]
In the control method of the first configuration, the temperature of the heat operating fluid that has been heated and recirculated to the evaporator has been recirculated to the evaporator when the previous combustion in the regenerator is stopped. The temperature-of the third configuration for resuming combustion in the regenerator when the temperature exceeds a predetermined temperature;
[0008]
In the control method of the first configuration, combustion in the regenerator is started when the temperature of the thermally operated fluid cooled and discharged from the evaporator is equal to or higher than a set temperature-first predetermined temperature + second predetermined temperature. Thereafter, when the temperature of the thermal operation fluid discharged from the evaporator becomes equal to or lower than the preset temperature minus the first predetermined temperature, the combustion in the regenerator is stopped, and the temperature of the thermal operation fluid returning to the evaporator is The control method of the fourth configuration for resuming combustion in the regenerator when the temperature of the thermal operation fluid recirculating to the evaporator when the previous combustion in the regenerator is stopped + the second predetermined temperature or higher When,
[0009]
In the control method of the first configuration, heating in the regenerator is started when the temperature of the thermal operation fluid heated and discharged from the evaporator is equal to or lower than a preset temperature + first predetermined temperature−second predetermined temperature. After that, when the temperature of the thermal operation fluid discharged from the evaporator becomes equal to or higher than the preset temperature + the first predetermined temperature, the combustion in the regenerator is stopped, and the temperature of the thermal operation fluid returning to the evaporator is The control method of the fifth configuration for resuming the combustion in the regenerator when the temperature of the heat operating fluid that has been refluxed to the evaporator when the previous combustion in the regenerator stops—below the second predetermined temperature When,
By providing the above, the above-described problems of the prior art are solved.
[0010]
[Action]
The path from the outlet of the evaporator to the temperature detection part of the thermal operation fluid flowing back to the evaporator is long, and there is a sufficient amount of the thermal operation fluid held between them, and the capacity change due to combustion on / off in the regenerator In addition to being improved in controllability, combustion is not easily affected, and the resumption of combustion is performed based on the temperature of the thermal operation fluid that is returned to the evaporator reflecting the size of the cooling / heating load. The frequency of stopping / resuming is reduced and the life of the apparatus is extended.
[0011]
【Example】
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
The example illustrated in FIG. 1 is a double-effect absorption refrigerator as a cold / hot water machine that circulates and supplies cold water or hot water to a load, using water as a refrigerant and an aqueous lithium bromide (LiBr) solution as an absorbent. It is.
[0012]
In the figure, 1 is a high temperature regenerator equipped with a gas burner 1B, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low temperature heat exchanger, 7 is a high temperature heat exchanger, 8 11 to 11 are absorption liquid pipes, 13 are absorption liquid pumps, 14 to 17 are refrigerant pipes, 19 are refrigerant pumps, 22 is cold water or hot water that circulates and supplies cold or hot heat to a cooling / heating load (not shown), and evaporates in the middle. Cold and hot water piping provided with a heat exchanger 4A, 23 a cooling water piping provided with an absorber heat exchanger 5A and a condenser heat exchanger 3A, 24 a gas supply pipe connected to the gas burner 1B, and 25 a gas Heating amount control valves 26 to 28 provided in the middle of the supply pipe 24 are on-off valves, and these devices are connected by piping as shown in FIG. 1, and this configuration itself is well known in the art.
[0013]
That is, in the double-effect absorption refrigerator having the above-described configuration, when the on-off valves 26, 27, and 28 are closed, the cooling water is passed through the cooling water pipe 23, the gas burner 1B is ignited, and the solution is heated in the high temperature regenerator 1. The refrigerant evaporated and separated from the solution in the high temperature regenerator 1 flows through the refrigerant pipe 14, the intermediate absorbent is heated and condensed in the low temperature regenerator 2 and enters the condenser 3, and the refrigerant separated from the intermediate absorbent in the low temperature regenerator 2 is After flowing into the condenser 3 and exchanging heat with the water flowing from the cooling water pipe 23 to the condenser heat exchanger 3A to be condensed and liquefied, the refrigerant is combined with the refrigerant from the refrigerant pipe 14 via the refrigerant pipe 15. It flows to 4.
[0014]
In the evaporator 4, the refrigerant liquid evaporates by exchanging heat with water from the cold / hot water pipe 22 in the evaporator heat exchanger 4A, and the water flowing in the evaporator heat exchanger 4A is cooled by the heat of vaporization at this time. . Then, the refrigerant evaporated in the evaporator 4 flows into the absorber 5 and is absorbed by the absorbing liquid sprayed from above.
[0015]
The absorption liquid of the absorber 5 whose concentration has been reduced by absorbing the refrigerant is sent to the high temperature regenerator 1 through the low temperature heat exchanger 6 and the high temperature heat exchanger 7 by the operation of the absorption liquid pump 13. The absorption liquid that has entered the high-temperature regenerator 1 is heated by the gas burner 1B, and the refrigerant evaporates to enter the low-temperature regenerator 2 via the high-temperature heat exchanger 7 as an intermediate-concentration absorption liquid. Here, the absorbing liquid is heated by the refrigerant vapor flowing from the high-temperature regenerator 1 through the refrigerant pipe 14, and the refrigerant is further evaporated and separated to increase the concentration. The absorbent having a high concentration flows to the absorber 5 through the low-temperature heat exchanger 6 and is sprayed from above.
[0016]
When the absorption chiller is operated as described above, the chilled water cooled by the heat of vaporization of the refrigerant in the evaporator 4 can be circulated and supplied to the cooling / heating load (not shown) via the chilled / hot water pipe 22, so that the cooling operation can be performed. Yes.
[0017]
On the other hand, when the on-off valves 26, 27, and 28 are opened, the gas burner 1B is ignited without passing cooling water through the cooling water pipe 23, and the solution is heated by the high temperature regenerator 1, the refrigerant evaporated in the high temperature regenerator 1 is refrigerant pipe. 14 enters the absorber 5 / evaporator 4 mainly through the refrigerant pipe 17 having a small flow path resistance, condenses by exchanging heat with water in the evaporator heat exchanger 4A, and mainly condenses at this time The water flowing in the evaporator heat exchanger 4A is heated by heat. Therefore, the heating operation is performed by circulatingly supplying this hot water to a cooling / heating load (not shown).
[0018]
The refrigerant condensed in the evaporator 4 passes through the on-off valve 28 and flows into the absorber 5 and is mixed with the absorbing liquid flowing in from the absorbing liquid pipe 11, and the low temperature heat exchanger 6. It is sent to the high-temperature regenerator 1 through the heat exchanger 7. The absorbing liquid that has entered the high-temperature regenerator 1 is heated by the gas burner 1B, and the refrigerant evaporates to return to the absorber 5 from the absorbing liquid pipe 11 as an intermediate concentration absorbing liquid.
[0019]
Reference numeral 31 denotes a control device provided in the double-effect absorption refrigerator having the above-described operation function. A specific example of the configuration will be described. Reference numeral 32 denotes an evaporator 4 in the cold / hot water pipe 22. An input interface for inputting temperature signals output from the first temperature sensor 29 and the second temperature sensor 30, converting the signals to a central processing unit (hereinafter referred to as CPU) 33, and a predetermined calculation program 34 Etc., a storage device (hereinafter referred to as ROM), 35 is an output interface for inputting a signal from the CPU 33 and outputting a required control signal to the heating amount control valve 25, and 36 is a signal for every predetermined time. to (referred to hereinafter CLOCK) signal generator, 37 is first read / erasable storage device stores a temperature at which the temperature sensor 29, the second temperature sensor 30 detects the (hereinafter Is referred to as AM).
[0020]
In the ROM 34, the larger the difference between the predetermined temperature set in advance and the temperature of the cold / hot water detected by the first temperature sensor 29, the larger the opening degree of the heating amount control valve 25, and the first temperature sensor. When the temperature of the cold / hot water detected by 29 reaches a predetermined temperature, a conventionally known capacity control program for closing the heating amount control valve 25 and stopping combustion is stored.
[0021]
In addition, the ROM 34 is connected to an appropriate member, for example, the control device 31 itself or the control device 31 through a signal line 51, and an on / off switch 40S of an absorption chiller is connected to a remote controller 40 installed in a building management room or the like. When the start of cooling operation is instructed by the cooling / heating switching switch 41 provided together with the above, the temperature T1 of the chilled water detected by the first temperature sensor 29 is detected every predetermined time, and this detected temperature T1 is the predetermined temperature. If the temperature is 7.5 ° C. or more calculated by adding a second predetermined temperature A, for example, 1.5 ° C. to the first predetermined temperature, for example, 1 ° C. A control program for starting the cooling operation for opening the valve 25 and starting the combustion of the gas burner 1B;
[0022]
After the combustion of the gas burner 1B is started, the temperature T1 of the cold water detected by the first temperature sensor 29 is detected every predetermined time, and the detected temperature T1 is changed from the predetermined set temperature 7 ° C. to the first predetermined temperature 1 When the temperature is reduced to 6 ° C. or less, which is calculated by subtracting 0 ° C., the heating amount control valve 25 is closed to stop the combustion, and at this time, the temperature T 2 of the cold water detected by the second temperature sensor 30 is stored in the RAM 37. A control program for stopping,
[0023]
Further, after the combustion of the gas burner 1B is stopped, the temperature T2 of the cold water detected by the second temperature sensor 30 is detected every predetermined time, and the detected temperature T2 is set to the temperature T2 of the cold water stored in the RAM 37 for the second time. A control program at the time of resuming combustion that opens the heating amount control valve 25 and resumes combustion of the gas burner 1B when a predetermined temperature A, for example, 1.5 ° C. or higher is reached,
Is remembered.
[0024]
The ROM 34 detects the temperature T1 of the hot water detected by the first temperature sensor 29 every predetermined time when the start of the heating operation is instructed by the cooling / heating switching switch 41 of the remote controller 40, and this detection. The temperature T1 is 44 ° C. or less which is calculated by adding a first predetermined temperature, eg, 2.5 ° C. to a predetermined set temperature, eg, 45 ° C., and then subtracting the second predetermined temperature B, eg, 3.5 ° C. If there is, the control program at the time of heating operation starting to open the heating amount control valve 25 and start combustion of the gas burner 1B,
[0025]
After the combustion of the gas burner 1B is started, the temperature T1 of the hot water detected by the first temperature sensor 29 is detected every predetermined time, and the detected temperature T1 becomes the predetermined predetermined temperature 45 ° C. and the first predetermined temperature 2 When the temperature reaches 47.5 ° C. calculated by adding 5 ° C., the heating amount control valve 25 is closed to stop combustion, and the temperature T 2 of hot water detected by the second temperature sensor 30 at this time is stored in the RAM 37. A combustion stop control program stored in
[0026]
Further, after the combustion of the gas burner 1B is stopped, the temperature T2 of the hot water detected by the second temperature sensor 30 is detected every predetermined time, and the detected temperature T2 is calculated from the temperature T2 stored in the RAM 37 to the second temperature T2. A control program at the time of resuming combustion that opens the heating amount control valve 25 and resumes combustion of the gas burner 1B when the temperature becomes equal to or lower than a predetermined temperature B, for example, 3.5 ° C.,
Is remembered.
[0027]
Therefore, for example, when the cooling operation is selected by operating the cooling / heating switching switch 41 of the remote controller 40, the control program for starting the cooling operation is started, and the first temperature sensor 29 detects that the outside air temperature is high . If temperature T1 is 7.5 degreeC or more, the heating amount control valve 25 will be opened and combustion of the gas burner 1B will be started.
[0028]
Then, the capacity control of the heating amount is performed so that the temperature T1 detected by the first temperature sensor 29 becomes a predetermined set temperature 7 ° C., and when the temperature T1 detected by the first temperature sensor 29 becomes 6 ° C. or less. The heating amount control valve 25 is closed to stop the combustion of the gas burner 1B. At this time, the temperature T2 of the cold water detected by the second temperature sensor 30 is stored in the RAM 37, and after the combustion of the gas burner 1B is stopped, the second temperature sensor When the temperature T2 of the cold water detected by the temperature 30 becomes equal to or higher than the temperature T2 previously stored in the RAM 37 plus the second predetermined temperature A, for example, 1.5 ° C., the heating amount control valve 25 is opened. The combustion of the gas burner 1B is restarted.
[0029]
In this way, it is possible to circulate and supply chilled water in a predetermined temperature range to a cooling load (not shown) via the chilled / hot water pipe 22 and perform cooling operation, and the chilled water returning to the evaporator 4 after finishing the cooling action. The temperature is long from the outlet of the evaporator 4 to the temperature detection unit of the cold water flowing back to the evaporator 4, that is, the second temperature sensor 30, and the amount of retained water is sufficient to stop the combustion of the gas burner 1B. Since it is not easily affected by the capacity change due to resumption and reflects the actual load, the frequency of combustion stop / restart of the gas burner 1B is reduced, the life of the apparatus is extended, and the controllability is improved.
[0030]
On the other hand, when the heating operation is selected by operating the cooling / heating switching switch 41 of the remote controller 40, the control program for starting the heating operation is started, and the temperature T1 detected by the first temperature sensor 29 is low because the outside air temperature is low . If it is 44 degrees C or less, the heating amount control valve 25 will be opened and combustion of the gas burner 1B will be started.
[0031]
Then, the capacity control of the heating amount is performed so that the temperature T1 detected by the first temperature sensor 29 becomes a predetermined set temperature 45 ° C., and the temperature T1 detected by the first temperature sensor 29 is 47.5 ° C. or higher. Then, the heating amount control valve 25 is closed to stop the combustion of the gas burner 1B. At this time, the temperature T2 of the hot water detected by the second temperature sensor 30 is stored in the RAM 37, and after the combustion of the gas burner 1B is stopped, the second When the temperature T2 of the hot water detected by the temperature sensor 30 becomes equal to or lower than the temperature T2 previously stored in the RAM 37 minus the second predetermined temperature B, for example, 3.5 ° C., the heating amount control valve 25 is turned on. Open and restart the combustion of the gas burner 1B.
[0032]
Accordingly, in this case as well, it is possible to perform heating operation by circulatingly supplying hot water in a predetermined temperature range to a heating load (not shown) via the cold / hot water pipe 22, and to return to the evaporator 4 after completing the heating operation. The temperature of the hot water returning from the outlet of the evaporator 4 to the evaporator 4 is long, that is, the path to the second temperature sensor 30 is long, and the amount of retained water is sufficient to stop the combustion of the gas burner 1B. / Because it is hardly affected by the capacity change due to resumption and reflects the actual load, the frequency of combustion stop / resumption of the gas burner 1B is reduced, the life of the apparatus is extended, and the controllability is improved.
[0033]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit described in the claims.
[0034]
For example, in either case of cooling / heating, the first predetermined temperature may be set to 0 ° C. and two-position control may be performed.
[0035]
The set temperature during cooling operation is, for example, in the range of 5.0 to 12.0 ° C. (can be set in increments of 0.1 ° C., and so on), and the first predetermined temperature is, for example, 0.5 to 2.5 ° C. The range and the second predetermined temperature can be appropriately set within a range of 1.0 to 9.0 ° C.
[0036]
The set temperature during the heating operation is, for example, in the range of 40.0 to 60.0 ° C., the first predetermined temperature is in the range of, for example, 0.5 to 5.0 ° C., and the second predetermined temperature is, for example, in the range of 0.5 to 8. It can set suitably in the range of 5 degreeC.
[0037]
Moreover, you may use antifreezing liquids, such as ethylene glycol and a calcium chloride solution, as the heat operation fluid which flows into the cold / hot water piping 22. FIG.
[0038]
【The invention's effect】
As described above, in the absorption chiller / heater of the present invention, the path from the evaporator outlet to the temperature detection part of the heat operating fluid that is refluxed to the evaporator is long, and the amount of the heat operating fluid held during that time is long. The temperature of the thermal operation fluid that is sufficient to be hardly affected by the capacity change due to the on / off of the combustion in the regenerator, and that the resumption of the combustion reflects the size of the cooling / heating load is returned to the evaporator. Therefore, not only is the controllability improved, but there is a significant advantage that the frequency of stopping / resuming combustion is reduced and the life of the apparatus is extended.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 1B Gas burner 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Low temperature heat exchanger 7 High temperature heat exchanger 8-11 Absorption liquid piping 13 Absorption liquid pump 14-17 Refrigerant piping 19 Refrigerant pump 22 Cold / hot water Piping 23 Cooling water piping 24 Gas supply pipe 25 Heating amount control valve 26 to 28 On-off valve 29 First temperature sensor
30 Second temperature sensor 31 Control device 32 Input interface 33 CPU
34 ROM
35 Output interface 36 CLOCK
37 RAM
40 Remote control 40S On / off switch 41 Cooling / heating switch 51 Signal line

Claims (5)

再生器・凝縮器・蒸発器・吸収器などを配管接続して冷凍サイクルを構成し、蒸発器における冷媒液の蒸発に伴う吸熱作用または冷媒蒸気の主に凝縮に伴う放熱作用によって所要の熱操作流体を冷却または加熱し、この熱操作流体を冷温水配管により所要の機器に循環供給する吸収式冷温水機において、前記冷温水配管における前記蒸発器の出口に第1の温度センサを設けると共に、蒸発器の入口に第2の温度センサを設け、前記蒸発器から吐出した熱操作流体の温度を前記第1の温度センサで検出し、この検出温度が制御装置により演算算出する温度以下になったとき再生器における燃焼を停止し、前記蒸発器に還流している熱操作流体の温度を前記第2の温度センサで検出し、この検出温度が制御装置により演算算出する温度以上になったとき再生器における燃焼を再開することを特徴とする吸収式冷温水器の制御方法。Refrigerators, condensers, evaporators, absorbers, etc. are connected by pipes to form a refrigeration cycle. In the absorption chiller / heater that cools or heats the fluid and circulates the thermal operation fluid to a required device through the chilled / hot water pipe, the first temperature sensor is provided at the outlet of the evaporator in the chilled / hot water pipe, A second temperature sensor is provided at the inlet of the evaporator, the temperature of the thermal operation fluid discharged from the evaporator is detected by the first temperature sensor, and the detected temperature is equal to or lower than the temperature calculated and calculated by the control device. when stopping the combustion in the regenerator, and detects the temperature of the heat operation fluid in reflux to the evaporator at the second temperature sensor, the detected temperature is equal to or higher than a temperature for calculating calculated by the control device The method of the absorption chiller heater, characterized in that resuming combustion in the regenerator when. 冷却作用を行って蒸発器に還流している熱操作流体の温度が、再生器における前回の燃焼を停止したときに蒸発器に還流していた熱操作流体の温度+所定温度以上になったときに再生器における燃焼を再開する請求項1記載の吸収式冷温水機の制御方法。  When the temperature of the heat control fluid that has been cooled and returned to the evaporator becomes equal to or higher than the temperature of the heat control fluid that was returned to the evaporator when the previous combustion in the regenerator was stopped The method for controlling an absorption chiller / heater according to claim 1, wherein combustion in the regenerator is restarted. 加熱作用を行って蒸発器に還流している熱操作流体の温度が、再生器における前回の燃焼を停止したときに蒸発器に還流していた熱操作流体の温度−所定温度以下になったときに再生器における燃焼を再開する請求項1記載の吸収式冷温水機の制御方法。  When the temperature of the heat control fluid that has been heated and returned to the evaporator falls below the temperature of the heat control fluid that was returned to the evaporator when the previous combustion in the regenerator was stopped-below the specified temperature. The method for controlling an absorption chiller / heater according to claim 1, wherein combustion in the regenerator is restarted. 冷却されて蒸発器から吐出し熱操作流体の温度が設定温度−第1の所定温度+第2の所定温度以上であるとき再生器における燃焼を開始し、その後、蒸発器から吐出し熱操作流体の温度が設定温度−第1の所定温度以下になったときに再生器における燃焼を停止し、蒸発器に還流している熱操作流体の温度が、再生器における前回の燃焼を停止したときに蒸発器に還流していた熱操作流体の温度+第2の所定温度以上となったときに再生器における燃焼を再開する請求項1記載の吸収式冷温水機の制御方法。When the temperature of the thermal operation fluid cooled and discharged from the evaporator is equal to or higher than the set temperature-first predetermined temperature + second predetermined temperature, combustion in the regenerator is started, and then the heat discharged from the evaporator Combustion in the regenerator is stopped when the temperature of the operating fluid is lower than the preset temperature minus the first predetermined temperature, and the temperature of the heat operating fluid returning to the evaporator stops the previous combustion in the regenerator. The control method for an absorption chiller-heater according to claim 1, wherein the combustion in the regenerator is resumed when the temperature of the thermal operation fluid that has been refluxed to the evaporator + the second predetermined temperature or higher. 加熱されて蒸発器から吐出し熱操作流体の温度が設定温度+第1の所定温度−第2の所定温度以下であるとき再生器における加熱を開始し、その後、蒸発器から吐出し熱操作流体の温度が設定温度+第1の所定温度以上になったときに再生器における燃焼を停止し、蒸発器に還流している熱操作流体の温度が、再生器における前回の燃焼が停止したときに蒸発器に還流していた熱操作流体の温度−第2の所定温度以下となったときに再生器における燃焼を再開する請求項1記載の吸収式冷温水機の制御方法。Heating in the regenerator is started when the temperature of the thermal operation fluid heated and discharged from the evaporator is equal to or lower than the set temperature + first predetermined temperature−second predetermined temperature, and then the heat discharged from the evaporator Combustion in the regenerator is stopped when the temperature of the operating fluid is equal to or higher than the preset temperature + the first predetermined temperature, and the previous combustion in the regenerator is stopped when the temperature of the heat operating fluid returning to the evaporator The method for controlling an absorption chiller / heater according to claim 1, wherein combustion in the regenerator is resumed when the temperature of the thermal operation fluid that has been refluxed to the evaporator sometimes falls below a second predetermined temperature.
JP15222995A 1995-05-26 1995-05-26 Control method of absorption chiller / heater Expired - Fee Related JP3831425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15222995A JP3831425B2 (en) 1995-05-26 1995-05-26 Control method of absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15222995A JP3831425B2 (en) 1995-05-26 1995-05-26 Control method of absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH08320168A JPH08320168A (en) 1996-12-03
JP3831425B2 true JP3831425B2 (en) 2006-10-11

Family

ID=15535916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15222995A Expired - Fee Related JP3831425B2 (en) 1995-05-26 1995-05-26 Control method of absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3831425B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765056B2 (en) * 2016-11-10 2020-10-07 パナソニックIpマネジメント株式会社 Absorption chiller

Also Published As

Publication number Publication date
JPH08320168A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP3223122B2 (en) Method of stopping operation of absorption refrigeration system
JP2003343940A (en) Absorption water cooler/heater
JP3831425B2 (en) Control method of absorption chiller / heater
JP2985513B2 (en) Absorption cooling and heating system and its control method
JP4090135B2 (en) Control method of absorption refrigerator
JP3748950B2 (en) Heat input control device for absorption chiller / heater
JP2001099474A (en) Air conditioner
JP4079570B2 (en) Control method of absorption refrigerator
JP3837186B2 (en) Absorption refrigerator
JP2532982B2 (en) Absorption refrigerator control device
JP4278315B2 (en) Absorption refrigerator
JP2918665B2 (en) Operation stop method and stop control device for absorption chiller / chiller / heater
JPS602543Y2 (en) absorption refrigerator
JP4115020B2 (en) Control method of absorption refrigerator
JP3143251B2 (en) Absorption refrigerator
JP3819485B2 (en) Operation control method of absorption chiller / heater
JP3942303B2 (en) Absorption refrigerator
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP2940787B2 (en) Double effect absorption refrigerator
JP3429904B2 (en) Absorption refrigerator
JP2885637B2 (en) Absorption refrigeration apparatus and control method thereof
JPS6117319Y2 (en)
KR0183567B1 (en) Variable load control apparatus of absorptive refrigerator
JPS6118366Y2 (en)
JP3157668B2 (en) Absorption chiller / heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees