JP3819485B2 - Operation control method of absorption chiller / heater - Google Patents

Operation control method of absorption chiller / heater Download PDF

Info

Publication number
JP3819485B2
JP3819485B2 JP20255096A JP20255096A JP3819485B2 JP 3819485 B2 JP3819485 B2 JP 3819485B2 JP 20255096 A JP20255096 A JP 20255096A JP 20255096 A JP20255096 A JP 20255096A JP 3819485 B2 JP3819485 B2 JP 3819485B2
Authority
JP
Japan
Prior art keywords
temperature
hot water
water
cold
main operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20255096A
Other languages
Japanese (ja)
Other versions
JPH1047804A (en
Inventor
伸一 上篭
智之 村山
修司 石崎
英樹 内田
澄雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20255096A priority Critical patent/JP3819485B2/en
Publication of JPH1047804A publication Critical patent/JPH1047804A/en
Application granted granted Critical
Publication of JP3819485B2 publication Critical patent/JP3819485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
この発明は、冷房や暖房が同時に行えるように、冷水と温水が同時に供給できる吸収冷温水機の制御に関するものである。
【0002】
【従来の技術】
冷/温水同時供給型の吸収冷温水機においては、一般に冷水供給を主、温水供給を従として制御する冷主運転と、逆に温水供給を主、冷水供給を従として制御する暖主運転とは、例えば図4に示したように、冷媒の主に蒸発熱で冷却するために還流してきた冷水の温度、すなわち還流冷水温度tと、冷媒の主に凝縮熱で加熱するために還流してきた温水の温度、すなわち還流温水温度Tに基づいて、その領域をはっきりと区分するようにしていた。
【0003】
【発明が解決しようとする課題】
しかし、上記従来の冷/温水同時供給型の吸収冷温水機においては、冷却負荷(例えば、冷房負荷)と、加熱負荷(例えば、暖房負荷)が共に小さい低負荷状態、すなわち、例えば7.0℃を目標に冷却した冷水が循環供給される冷却負荷からは7.0℃より僅かに高い、例えば7.3℃以下の冷水が還流し、例えば55.0℃を目標に加熱した温水が循環供給される加熱負荷からは55.0より僅かに低い、例えば54.7℃以上の温水が還流しているような負荷状態では、高温再生器に設けたガスバーナなどの燃焼器の燃焼をオン/オフして入熱制御することになるので、冷水と温水を所定の目標温度に制御することが困難となる。特に、冷主運転と暖主運転の切換を、冷却/加熱作用を終えて吸収冷温水機に還流してくる冷水と温水の温度のみに基づいて行うため、ある条件下では冷主運転と暖主運転とが頻繁に切換わり、冷水温度と温水温度の安定制御が一層困難になると云った問題点があり、この点の解決が課題とされていた。
【0004】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するための具体的手段として、再生器・凝縮器・蒸発器・吸収器などを配管接続して冷媒と吸収液の循環サイクルを形成すると共に、蒸発器の内部に通水して第1の冷水所定温度t1を目標に冷却した冷水を冷却負荷に循環供給する冷水供給経路と、再生器から冷媒蒸気が流入し、熱交換して凝縮した冷媒液が再生器に還流する容器内に通水して第1の温水所定温度T1を目標に加熱した温水を加熱負荷に循環供給する温水供給経路とを備え、冷水/温水同時供給運転時に、冷却のために前記蒸発器に通水する水の温度(以下、還流冷水温度)tまたは加熱のために前記容器に通水する水の温度(以下、還流温水温度)Tに基づいて、冷水主、温水従(以下、冷主運転)、若しくは温水主、冷水従(以下、暖主運転)の何れかの制御が選択されて、前記再生器に供給する熱量を制御する吸収冷温水機において、
【0005】
還流冷水温度tが第1の冷水所定温度より僅かに高い第2の冷水所定温度t2より低く、還流温水温度Tが第1の温水所定温度T1より僅かに低い第2の温水所定温度T2より高い、冷却/加熱負荷共に小さい低負荷状態に、少なくとも還流冷水温度tが第2の冷水所定温度t2より高いか、還流温水温度Tが第2の温水所定温度T2より低い高負荷状態から移行するときに、冷主運転から移行するときには冷主運転を継続させて燃焼器の燃焼量を制御し、暖主運転から移行するときには暖主運転を継続させて燃焼器の燃焼量を制御することを特徴とする運転制御方法、
を提供することにより、前記した従来技術の課題を解決するものである。
【0006】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0007】
図1に例示したものは冷/温水を冷却負荷、加熱負荷それぞれに循環供給することができる冷温水機としての二重効用吸収式冷凍機であり、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用したものである。
【0008】
図において、1は加熱手段としてのガスバーナ1Bを備えた高温再生器、2は低温再生器、3は凝縮器、4は蒸発器、5は吸収器、6は低温熱交換器、7は高温熱交換器、8は温水器、9〜11は吸収液配管、13は吸収液ポンプ、14〜19は冷媒配管、20は冷媒ポンプ、22は図示しない冷房などの冷却負荷に冷水を循環供給するための、途中に蒸発器熱交換器4Aを備えた冷水配管、23は途中に吸収器熱交換器5Aおよび凝縮器熱交換器3Aを備えた冷却水配管、24は図示しない暖房などの加熱負荷に温水を循環供給するための、途中に温水器熱交換器8Aを備えた温水配管、25〜28は開閉弁、29と30は流量制御弁であり、これらの機器はそれぞれ図1に示したように配管接続されており、この構成自体は従来周知である。
【0009】
すなわち、上記構成の吸収冷温水機においては、開閉弁25・26・27を閉じると共に、冷却水配管23への冷却水の供給を停止してガスバーナ1Bを点火すると、高温再生器1では溶液が加熱され、この加熱溶液から蒸発分離した冷媒蒸気が冷媒配管18を介して温水器8に入り、ここで温水器熱交換器8Aを流れる水と熱交換して凝縮し、冷媒配管19を通って高温再生器1に戻る循環が行われるので、温水器熱交換器8Aを流れて冷媒蒸気と熱交換し、温度上昇した水、すなわち温水を図示しない加熱負荷に循環供給することで暖房運転などが行える。
【0010】
一方、開閉弁25・26・27を開き、開閉弁28を閉じると共に温水配管24による温水循環を停止した状態で冷却水配管23に冷却水を通し、ガスバーナ1Bを点火して高温再生器1で溶液を加熱すると、高温再生器1で溶液から蒸発分離した冷媒蒸気は冷媒配管14に流れ、低温再生器2で中間吸収液を加熱濃縮して凝縮器3に入り、低温再生器2で冷媒蒸気により加熱されて中間吸収液から蒸発分離した冷媒蒸気は凝縮器3へ入り、冷却水配管23から凝縮器熱交換器3Aへ流れた冷却水と熱交換して凝縮液化した後、冷媒配管14からの凝縮冷媒と一緒になって冷媒配管15を介して蒸発器4へ入る。
【0011】
蒸発器4では、冷媒ポンプ20によって蒸発器熱交換器4Aの上に散布された冷媒液が冷水配管22からの水と熱交換して蒸発し、このときの気化熱によって蒸発器熱交換器4A内を流れる水が冷却される。そして、蒸発器4で蒸発した冷媒蒸気は吸収器5に入り、上方から散布される吸収液に吸収される。
【0012】
冷媒を吸収して濃度の薄くなった吸収器5の吸収液は、吸収液ポンプ13の運転により低温熱交換器6・高温熱交換器7を経て高温再生器1へ送られる。高温再生器1に入った吸収液は、ガスバーナ1Bにより加熱されて冷媒が蒸発し、中濃度の吸収液となって高温熱交換器7を介し低温再生器2に入る。そして、ここで吸収液は高温再生器1から冷媒配管14を流れて来た冷媒蒸気によって加熱され、さらに冷媒が蒸発分離されて濃度が高くなる。高濃度になった吸収液は低温熱交換器6を経て吸収器5へ入り、上方から散布される。
【0013】
上記のように吸収冷温水機の運転が行われると、蒸発器4において蒸発器熱交換器4Aの管壁を介して冷媒の気化熱によって冷却された水が、冷水配管22を介して図示しない冷却負荷に循環供給できるので、冷房運転などが行える。
【0014】
また、開閉弁25・26・27を開く一方で開閉弁28を閉じ、温水配管24による温水循環を行いながら冷却水配管23に冷却水を通してガスバーナ1Bを点火し、高温再生器1で溶液を加熱すると、高温再生器1で溶液から蒸発分離した冷媒蒸気は冷媒配管14と18を介して低温再生器2と温水器8に同時に供給されるので、冷水配管22から冷水を循環供給して行う冷房運転などと、温水配管24から温水を循環供給して行う暖房運転などが同時に行える。
【0015】
31は、上記のような動作が可能な吸収冷温水機に設けた制御装置であり、その具体的な一構成例について説明すると、32は、冷水配管22の蒸発器4出口部に設けられて、冷却作用を終えて蒸発器4に流入する冷水の温度、すなわち還流冷水温度tを検出する温度センサ40と、温水配管24の温水器8入口部に設けられて、加熱作用を終えて温水器8に流入する温水の温度、すなわち還流温水温度Tを検出する温度センサ41が出力する温度信号を入力し、信号変換して中央演算処理装置(以下、CPUと云う)33へ出力する入力インターフェイス、34は所定の演算式や制御プログラムなどを記憶している記憶装置(以下、ROMと云う)、35はCPU33からの信号を入力してガスバーナ1Bなどへ所要の制御信号を出力する出力インターフェイス、36は所定時間毎に信号を出力する信号発生器(以下、CLOCKと云う)、37は温度センサ40・41が出力した温度信号などを記憶する読込/消去可能な記憶装置(以下、RAMと云う)である。
【0016】
例えば、ROM34には、CLOCK36が出力する信号に基づいて所定時間毎に、温度センサ40による還流冷水温度tと、温度センサ41による還流温水温度Tとを検出し、この検出した還流冷水温度t・還流温水温度Tに基づいて冷主運転を行うか、暖主運転を行うかを判定して指示する図2の制御選択指示基準や、所要の制御プログラムを記憶させてある。
【0017】
すなわち、CPU33は、ROM34に記憶してある制御プログラムに基づいて動作し、還流冷水温度tと還流温水温度Tとが領域Aにあるときには、無条件で冷主運転を選択し、還流冷水温度tと還流温水温度Tとが領域Bにあるときも、無条件で暖主運転を選択し、還流冷水温度tと還流温水温度Tとが領域Cにあるときには、RAM37に記憶してある還流冷水温度t・還流温水温度Tに基づいて、領域A・Bの何れから領域Cに移行したのかを確認し、領域Aから移行したときには冷主運転の継続を選択し、領域Bから移行したときには暖主運転の継続を選択して、ガスバーナ1Bに所要の制御信号を出力してオン/オフ制御したり、その燃焼量を制御する。
【0018】
上記機能を有する制御装置31を備えた吸収冷温水機においては、冷水と温水を同時に供給していて冷/暖房の負荷が急減したような場合にも、冷主運転の状態から低負荷運転に移行したときには冷主運転を継続し、暖主運転の状態から低負荷運転に移行したときには暖主運転が継続されるので、ガスバーナ1Bの燃焼をオン/オフすることで生じる、冷水と温水の温度がハンチングすることによる冷主運転/暖主運転の頻繁な切換がなくなり、これにより安定した温度の冷/温水同時供給運転が可能になった。
【0019】
なお、本発明は上記実施例に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲でさらに各種の変形実施が可能である。
【0020】
例えば、ROM34には、図2の制御選択指示基準に代えて、図3のような制御選択指示基準を記憶させておいても良い。
【0021】
この場合も、還流冷水温度tと還流温水温度Tとが領域Aにあるときには、冷主運転を選択し、還流冷水温度tと還流温水温度Tとが領域Bにあるときには、暖主運転を選択し、還流冷水温度tと還流温水温度Tとが領域Cにあるときには、領域Aから領域Cに入ったときには冷主運転を継続し、領域Bから領域Cに入ったときには暖主運転を継続する制御プログラムを記憶させておく。
【0022】
また、還流冷水温度tと還流温水温度Tとが、領域A・Bの何れにあるのかをRAM37に所定時間毎に記憶しておき、還流冷水温度tと還流温水温度Tとが領域Cに移行したときに、領域A・Bの何れから移行したのかをRAM37の記憶内容から直接判定できるように構成することもできる。
【0023】
【発明の効果】
以上説明したように本発明の運転制御方法によれば、冷水と温水を同時に供給していて冷/暖房の負荷が急減したような場合にも、冷主運転の状態から低負荷運転に移行したときには冷主運転を継続し、暖主運転の状態から低負荷運転に移行したときには暖主運転が継続されるので、ガスバーナなどの加熱手段の燃焼をオン/オフすることで生じる、冷水と温水の温度がハンチングすることによる冷主運転/暖主運転の頻繁な切換がなくなり、これにより安定した温度の冷/温水同時運転が可能となった。
【図面の簡単な説明】
【図1】装置構成を示す説明図である。
【図2】制御の一例を示す説明図である。
【図3】他の制御例を示す説明図である。
【図4】従来の制御を示す説明図である。
【符号の説明】
1 高温再生器
1B ガスバーナ
2 低温再生器
3 凝縮器
3A 凝縮器熱交換器
4 蒸発器
4A 蒸発器熱交換器
5 吸収器
5A 吸収器熱交換器
6 低温熱交換器
7 高温熱交換器
8 温水器
8A 温水器熱交換器
9〜11 吸収液配管
13 吸収液ポンプ
14〜19 冷媒配管
20 冷媒ポンプ
22 冷水配管
23 冷却水配管
24 温水配管
25〜28 開閉弁
29・30 流量制御弁
31 制御装置
32 入力インターフェイス
33 CPU
34 ROM
35 出力インターフェイス
36 CLOCK
37 RAM
40・41 温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to control of an absorption chiller / heater that can supply cold water and hot water simultaneously so that cooling and heating can be performed simultaneously.
[0002]
[Prior art]
In the cold / hot water simultaneous supply type absorption chiller / heater, in general, the cold water supply is controlled mainly by the cold water supply, and the hot water supply is controlled by the slave, and conversely, the warm water supply is controlled by the main and the cold water supply is controlled by the slave. For example, as shown in FIG. 4, the temperature of the chilled water that has been recirculated to cool mainly with the heat of evaporation of the refrigerant, that is, the temperature of the refrigerated cold water t, and the refrigerant has recirculated mainly to be heated with the heat of condensation. Based on the temperature of the hot water, that is, the refluxing hot water temperature T, the region was clearly divided.
[0003]
[Problems to be solved by the invention]
However, in the conventional cold / hot water simultaneous supply type absorption chiller / heater, the cooling load (for example, cooling load) and the heating load (for example, heating load) are both low, that is, 7.0, for example. Cooling water that is circulated and supplied with chilled water with a target of ℃ circulates chilled water that is slightly higher than 7.0 ℃, for example, 7.3 ℃ or less, and circulates hot water that is heated to 5,000 ℃, for example. In a load state in which warm water having a temperature slightly lower than 55.0, for example, 54.7 ° C. or higher, is recirculated from the supplied heating load, combustion of a combustor such as a gas burner provided in the high-temperature regenerator is turned on / off. Since the heat input is controlled after being turned off, it becomes difficult to control the cold water and the hot water to a predetermined target temperature. In particular, the switching between the cold main operation and the warm main operation is performed based only on the temperature of the cold water and the warm water returning to the absorption chiller / heater after finishing the cooling / heating action. The main operation is frequently switched, and there is a problem that stable control of the cold water temperature and the hot water temperature becomes more difficult, and the solution to this point has been a problem.
[0004]
[Means for Solving the Problems]
In the present invention, as a specific means for solving the above-mentioned problems of the prior art, a regenerator, a condenser, an evaporator, an absorber, and the like are connected to form a circulation cycle of a refrigerant and an absorbing liquid. Refrigerant liquid that has passed through the inside and circulated cooling water that has been cooled to the first predetermined temperature t1 as a target and circulated to the cooling load and refrigerant vapor flows from the regenerator and is condensed by heat exchange is regenerated. A hot water supply path for supplying hot water to the heating load by circulating water through a container that circulates into the vessel to target the first predetermined temperature T1 for cooling during the cold water / hot water simultaneous supply operation Based on the temperature of the water that passes through the evaporator (hereinafter referred to as reflux cold water temperature) t or the temperature of the water that passes through the vessel for heating (hereinafter referred to as reflux hot water temperature) T, the cold water main, hot water subordinate ( Hereinafter, cold main operation), or hot water main, cold water subordinate (hereinafter, Is selected either the control of the main operation), in the absorption chiller to control the amount of heat supplied to the regenerator,
[0005]
The reflux cold water temperature t is lower than the second cold water predetermined temperature t2 slightly higher than the first cold water predetermined temperature, and the reflux hot water temperature T is higher than the second hot water predetermined temperature T2 slightly lower than the first hot water predetermined temperature T1. , When the cooling / heating load is small and the transition from a high load state in which at least the reflux cold water temperature t is higher than the second cold water predetermined temperature t2 or the reflux hot water temperature T is lower than the second hot water predetermined temperature T2 Furthermore, when shifting from the cold main operation, the cool main operation is continued to control the combustion amount of the combustor, and when shifting from the warm main operation, the warm main operation is continued to control the combustion amount of the combustor. An operation control method,
By providing the above, the above-described problems of the prior art are solved.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0007]
The example illustrated in FIG. 1 is a double-effect absorption refrigerator as a cold / hot water machine that can circulate and supply cold / hot water to a cooling load and a heating load, with water as a refrigerant and lithium bromide as an absorption liquid. (LiBr) aqueous solution is used.
[0008]
In the figure, 1 is a high temperature regenerator equipped with a gas burner 1B as a heating means, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low temperature heat exchanger, and 7 is high temperature heat. An exchanger, 8 is a hot water heater, 9 to 11 are absorption liquid pipes, 13 is an absorption liquid pump, 14 to 19 are refrigerant pipes, 20 is a refrigerant pump, and 22 is a circulatory supply of chilled water to a cooling load such as cooling (not shown). A cold water pipe provided with an evaporator heat exchanger 4A in the middle, 23 a cooling water pipe provided with an absorber heat exchanger 5A and a condenser heat exchanger 3A in the middle, and 24 a heating load such as heating (not shown). A hot water pipe provided with a water heater heat exchanger 8A in the middle for circulating hot water, 25 to 28 are on-off valves, 29 and 30 are flow control valves, and these devices are as shown in FIG. This structure itself is well known in the art. .
[0009]
That is, in the absorption chiller / heater configured as described above, when the on-off valves 25, 26, and 27 are closed and the supply of the cooling water to the cooling water pipe 23 is stopped and the gas burner 1B is ignited, the solution in the high-temperature regenerator 1 The refrigerant vapor that has been heated and evaporated and separated from the heated solution enters the water heater 8 through the refrigerant pipe 18, where it is condensed by exchanging heat with water flowing through the water heater heat exchanger 8 </ b> A, and passes through the refrigerant pipe 19. Since circulation returning to the high-temperature regenerator 1 is performed, heat exchange with the refrigerant vapor through the water heater heat exchanger 8A is performed, and heating operation or the like can be performed by circulatingly supplying the heated water, that is, hot water to a heating load (not shown). Yes.
[0010]
On the other hand, the on-off valves 25, 26, and 27 are opened, the on-off valve 28 is closed and the hot water circulation through the hot water pipe 24 is stopped, cooling water is passed through the cooling water pipe 23, the gas burner 1B is ignited, and the high temperature regenerator 1 When the solution is heated, the refrigerant vapor evaporated and separated from the solution in the high temperature regenerator 1 flows into the refrigerant pipe 14, the intermediate absorption liquid is heated and concentrated in the low temperature regenerator 2 and enters the condenser 3, and the refrigerant vapor is generated in the low temperature regenerator 2. The refrigerant vapor evaporated and separated from the intermediate absorption liquid enters the condenser 3 and exchanges heat with the cooling water flowing from the cooling water pipe 23 to the condenser heat exchanger 3A to be condensed and liquefied. The refrigerant enters the evaporator 4 through the refrigerant pipe 15 together with the condensed refrigerant.
[0011]
In the evaporator 4, the refrigerant liquid sprayed onto the evaporator heat exchanger 4 </ b> A by the refrigerant pump 20 evaporates by exchanging heat with water from the cold water pipe 22, and the evaporator heat exchanger 4 </ b> A is generated by the heat of vaporization at this time. The water flowing inside is cooled. Then, the refrigerant vapor evaporated by the evaporator 4 enters the absorber 5 and is absorbed by the absorbing liquid sprayed from above.
[0012]
The absorption liquid of the absorber 5 whose concentration has been reduced by absorbing the refrigerant is sent to the high temperature regenerator 1 through the low temperature heat exchanger 6 and the high temperature heat exchanger 7 by the operation of the absorption liquid pump 13. The absorption liquid that has entered the high-temperature regenerator 1 is heated by the gas burner 1B, and the refrigerant evaporates to enter the low-temperature regenerator 2 via the high-temperature heat exchanger 7 as an intermediate-concentration absorption liquid. Here, the absorbing liquid is heated by the refrigerant vapor flowing from the high-temperature regenerator 1 through the refrigerant pipe 14, and the refrigerant is further evaporated and separated to increase the concentration. The absorbing solution having a high concentration enters the absorber 5 through the low-temperature heat exchanger 6 and is sprayed from above.
[0013]
When the operation of the absorption chiller / heater is performed as described above, the water cooled by the heat of vaporization of the refrigerant through the tube wall of the evaporator heat exchanger 4A in the evaporator 4 is not shown via the chilled water pipe 22. Since it can be circulated and supplied to the cooling load, it can perform cooling operations.
[0014]
Further, while opening the on-off valves 25, 26, and 27, the on-off valve 28 is closed, and while circulating hot water through the hot water pipe 24, the coolant is passed through the cooling water pipe 23 to ignite the gas burner 1 B, and the high-temperature regenerator 1 heats the solution. Then, the refrigerant vapor evaporated and separated from the solution in the high-temperature regenerator 1 is simultaneously supplied to the low-temperature regenerator 2 and the water heater 8 through the refrigerant pipes 14 and 18, so that cooling is performed by circulating and supplying cold water from the cold water pipe 22. An operation and the like can be performed simultaneously with a heating operation in which hot water is circulated and supplied from the hot water pipe 24.
[0015]
31 is a control device provided in the absorption chiller / heater capable of the above-described operation, and a specific configuration example thereof will be described. 32 is provided at the outlet of the evaporator 4 of the chilled water pipe 22. The temperature sensor 40 for detecting the temperature of the cold water flowing into the evaporator 4 after finishing the cooling action, that is, the reflux cold water temperature t, and the water heater 8 inlet of the hot water pipe 24 are provided. An input interface for inputting a temperature signal output from the temperature sensor 41 for detecting the temperature of the hot water flowing into the water 8, that is, the reflux hot water temperature T, and converting the signal into a central processing unit (hereinafter referred to as a CPU) 33; Reference numeral 34 denotes a storage device (hereinafter referred to as ROM) that stores predetermined arithmetic expressions, control programs, and the like. Reference numeral 35 denotes a signal input from the CPU 33 and outputs a required control signal to the gas burner 1B or the like. A power interface 36 is a signal generator (hereinafter referred to as CLOCK) that outputs a signal at a predetermined time, and 37 is a readable / erasable storage device (hereinafter referred to as a temperature signal) output by the temperature sensors 40 and 41. RAM)).
[0016]
For example, the ROM 34 detects the recirculated cold water temperature t by the temperature sensor 40 and the recirculated hot water temperature T by the temperature sensor 41 at predetermined intervals based on the signal output from the CLOCK 36, and detects the recirculated cold water temperature t · The control selection instruction criteria of FIG. 2 for determining and instructing whether to perform the cold main operation or the warm main operation based on the recirculated hot water temperature T and a necessary control program are stored.
[0017]
That is, the CPU 33 operates based on a control program stored in the ROM 34, and when the reflux cold water temperature t and the reflux hot water temperature T are in the region A, the CPU 33 selects the cold main operation unconditionally and sets the reflux cold water temperature t. And when the reflux hot water temperature T is in the region B, the warm main operation is selected unconditionally, and when the reflux cold water temperature t and the reflux hot water temperature T are in the region C, the reflux cold water temperature stored in the RAM 37 t Based on the recirculated hot water temperature T, it is confirmed which of the regions A and B has shifted to the region C. When the region A is shifted, the continuation of the cold main operation is selected. The continuation of operation is selected, and a required control signal is output to the gas burner 1B to perform on / off control, or the amount of combustion is controlled.
[0018]
In the absorption chiller / heater equipped with the control device 31 having the above-described function, even when chilled water and hot water are supplied at the same time and the load of cooling / heating is suddenly reduced, the cold main operation state is changed to the low load operation. When the transition is made, the cold main operation is continued, and when the transition from the warm main operation state to the low load operation is continued, the warm main operation is continued, so the temperature of the cold water and the hot water generated by turning on / off the combustion of the gas burner 1B As a result, frequent switching between the cold main operation and the warm main operation due to hunting is eliminated, and thus a stable cold / hot water simultaneous supply operation can be performed.
[0019]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit described in the claims.
[0020]
For example, the ROM 34 may store control selection instruction criteria as shown in FIG. 3 instead of the control selection instruction criteria shown in FIG.
[0021]
Also in this case, when the reflux cold water temperature t and the reflux hot water temperature T are in the region A, the cold main operation is selected, and when the reflux cold water temperature t and the reflux hot water temperature T are in the region B, the warm main operation is selected. When the reflux cold water temperature t and the reflux hot water temperature T are in the region C, the cold main operation is continued when entering the region C from the region A, and the warm main operation is continued when entering the region C from the region B. A control program is stored.
[0022]
Further, the RAM 37 stores the reflux cold water temperature t and the reflux hot water temperature T in the areas A and B every predetermined time, and the reflux cold water temperature t and the reflux hot water temperature T shift to the area C. In this case, it can be configured so that it can be directly determined from the stored contents of the RAM 37 whether the region A or B has been transferred.
[0023]
【The invention's effect】
As described above, according to the operation control method of the present invention, even when cold water and hot water are supplied at the same time and the load of cooling / heating is suddenly reduced, the state is changed from the cold main operation state to the low load operation. Sometimes the cold main operation is continued, and when the warm main operation state shifts to the low load operation, the warm main operation is continued. Therefore, the cold water and the hot water generated by turning on / off the combustion of the heating means such as the gas burner The frequent switching between the cold main operation and the warm main operation due to the hunting of the temperature is eliminated, thereby enabling the simultaneous operation of the cold / hot water at a stable temperature.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a device configuration.
FIG. 2 is an explanatory diagram showing an example of control.
FIG. 3 is an explanatory diagram illustrating another control example.
FIG. 4 is an explanatory diagram showing conventional control.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 1B Gas burner 2 Low temperature regenerator 3 Condenser 3A Condenser heat exchanger 4 Evaporator 4A Evaporator heat exchanger 5 Absorber 5A Absorber heat exchanger 6 Low temperature heat exchanger 7 High temperature heat exchanger 8 Hot water heater 8A Hot water heat exchanger 9-11 Absorbing liquid piping 13 Absorbing liquid pump 14-19 Refrigerant piping 20 Refrigerant pump 22 Cold water piping 23 Cooling water piping 24 Hot water piping 25-28 Open / close valve 29/30 Flow control valve 31 Control device 32 Input Interface 33 CPU
34 ROM
35 Output interface 36 CLOCK
37 RAM
40 ・ 41 Temperature sensor

Claims (1)

再生器、凝縮器、蒸発器、吸収器などを配管接続して冷媒と吸収液の循環サイクルを形成すると共に、蒸発器の内部に通水して第1の冷水所定温度t1を目標に冷却した冷水を冷却負荷に循環供給する冷水供給経路と、再生器から冷媒蒸気が流入し、熱交換して凝縮した冷媒液が再生器に還流する容器内に通水して第1の温水所定温度T1を目標に加熱した温水を加熱負荷に循環供給する温水供給経路とを供え、冷水/温水同時供給運転時に、冷却のために、前記容器に通水する水の温度(以下、還流温水温度)Tに基づいて、冷水主、温水従(以下、冷主運転)、若しくは温水主、冷水従(以下、暖主運転)の何れかの制御が選択されて、前記再生器に供給する熱量を制御する吸収冷温水機において、
還流冷水温度tが第1の冷水所定温度t1より僅かに高い第2の冷水所定温度t2より低く、還流温水温度Tが第1の温水所定温度T1より僅かに低い第2の温水所定温度T2より高い、冷却/加熱負荷共に小さい低負荷状態に、少なくとも還流冷水温度tが第2の冷水所定温度t2より高いか、還流温水温度Tが第2の温水所定温度T2より低い高負荷状態から移行するときに、冷主運転から移行するときには冷主運転を継続させて燃焼器の燃焼量を制御し、暖主運転から移行するときには暖主運転を継続させて燃焼器の燃焼量を制御することを特徴とする運転制御方法。
A regenerator, a condenser, an evaporator, an absorber, and the like are connected to form a circulation cycle of the refrigerant and the absorbing liquid, and water is passed through the evaporator to cool the first cold water at a predetermined temperature t1. A cooling water supply path that circulates cooling water to the cooling load, and a refrigerant liquid that flows in from the regenerator and flows through the container where the refrigerant liquid condensed by heat exchange flows back to the regenerator, and the first hot water has a predetermined temperature T1. And a hot water supply path that circulates and supplies hot water heated to a heating load, and at the time of cold water / hot water simultaneous supply operation, the temperature of water that passes through the vessel for cooling (hereinafter referred to as reflux hot water temperature) T On the basis of the control, the control of the cold water master, the hot water slave (hereinafter referred to as the cold main operation), or the hot water master, the cold water slave (hereinafter referred to as the warm main operation) is selected to control the amount of heat supplied to the regenerator. In absorption chiller / heater
The reflux cold water temperature t is lower than the second cold water predetermined temperature t2 slightly higher than the first cold water predetermined temperature t1, and the reflux hot water temperature T is lower than the second hot water predetermined temperature T2 slightly lower than the first hot water predetermined temperature T1. A transition to a low load state where both the cooling / heating load is high and at least the reflux cold water temperature t is higher than the second predetermined cold water temperature t2 or the high temperature reflux water temperature T is lower than the second predetermined hot water temperature T2 is made. Sometimes, when shifting from the cold main operation, the cool main operation is continued to control the combustion amount of the combustor, and when shifting from the warm main operation, the warm main operation is continued to control the combustion amount of the combustor. A characteristic operation control method.
JP20255096A 1996-07-31 1996-07-31 Operation control method of absorption chiller / heater Expired - Fee Related JP3819485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20255096A JP3819485B2 (en) 1996-07-31 1996-07-31 Operation control method of absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20255096A JP3819485B2 (en) 1996-07-31 1996-07-31 Operation control method of absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH1047804A JPH1047804A (en) 1998-02-20
JP3819485B2 true JP3819485B2 (en) 2006-09-06

Family

ID=16459366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20255096A Expired - Fee Related JP3819485B2 (en) 1996-07-31 1996-07-31 Operation control method of absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3819485B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721783B2 (en) * 2005-06-24 2011-07-13 三洋電機株式会社 Operation control method of absorption chiller / heater

Also Published As

Publication number Publication date
JPH1047804A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
KR100448424B1 (en) Control method of absorption refrigerator
JP2002147885A (en) Absorption refrigerating machine
JP2008025915A (en) Absorption refrigerator system
KR101137582B1 (en) Single and double effect absorption refrigerator and operation control method therefor
JP3819485B2 (en) Operation control method of absorption chiller / heater
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP4721783B2 (en) Operation control method of absorption chiller / heater
JP3748950B2 (en) Heat input control device for absorption chiller / heater
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
JP2003343939A (en) Absorption refrigerating machine
JP3831425B2 (en) Control method of absorption chiller / heater
KR100493598B1 (en) Absorption Type Refrigerator
JP4079570B2 (en) Control method of absorption refrigerator
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP4115020B2 (en) Control method of absorption refrigerator
JP3143251B2 (en) Absorption refrigerator
JP4596683B2 (en) Absorption refrigerator
JPS602580B2 (en) Absorption type water chiller/heater control device
JPS602543Y2 (en) absorption refrigerator
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JPS5829819Y2 (en) Absorption heat pump
JPH11211262A (en) Absorption type refrigerating machine system
JPH0621730B2 (en) Single-double-effect absorption refrigerator
JP2005106408A (en) Absorption type freezer
JPH1047805A (en) Operation control method of absorption cold and hot water device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees