JP4115020B2 - Control method of absorption refrigerator - Google Patents

Control method of absorption refrigerator Download PDF

Info

Publication number
JP4115020B2
JP4115020B2 JP35481298A JP35481298A JP4115020B2 JP 4115020 B2 JP4115020 B2 JP 4115020B2 JP 35481298 A JP35481298 A JP 35481298A JP 35481298 A JP35481298 A JP 35481298A JP 4115020 B2 JP4115020 B2 JP 4115020B2
Authority
JP
Japan
Prior art keywords
refrigerant
absorbent
temperature regenerator
supplied
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35481298A
Other languages
Japanese (ja)
Other versions
JP2000179976A (en
Inventor
修司 石崎
澄雄 池田
雅裕 古川
照夫 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP35481298A priority Critical patent/JP4115020B2/en
Publication of JP2000179976A publication Critical patent/JP2000179976A/en
Application granted granted Critical
Publication of JP4115020B2 publication Critical patent/JP4115020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍負荷が極端に小さい状態が継続しても装置の安全が確保できる技術を提供するものである。
【0002】
【従来の技術】
高温再生器、低温再生器、凝縮器、蒸発器、吸収器などを配管接続して吸収液と冷媒の循環路を形成し、蒸発器で蒸発する冷媒の蒸発潜熱によって冷却した冷水などを冷凍負荷に供給して冷房などに供する吸収式冷凍機においては、冷凍負荷が小さいときには高温再生器に投入する熱量を抑えて高温再生器で生成する冷媒蒸気を少なくし、冷凍負荷が大きいときには高温再生器に投入する熱量を増やして高温再生器で生成する冷媒蒸気を増やし、これにより冷凍負荷が小さいときに蒸発器で蒸発する冷媒液の量を少なくし、冷凍負荷が大きいときには蒸発器で蒸発する冷媒液の量を増やすことで、負荷の増減に対応している。
【0003】
【発明が解決しようとする課題】
しかし、従来の吸収式冷凍機においては、吸収式冷凍機が運転されている限り濃吸収液ポンプを運転し、低温再生器で冷媒を蒸発分離して生成された濃吸収液を吸収器に供給していたので、冷凍負荷が殆どない状態が継続して高温再生器における加熱を停止しても、低温再生器から吸収器に供給される濃吸収液は濃吸収液ポンプのジュール熱によって加熱され、その温度が上昇して濃吸収液が結晶化し、管路が詰まって濃吸収液の循環を妨げる危険があると云った問題点があり、この解決が課題となっていた。
【0004】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するための具体的手段として、冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成して供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給される冷媒液が所用の流体から熱を奪って蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を低温再生器で生成して濃吸収液ポンプによって供給される濃吸収液に吸収させて稀吸収液にし、高温再生器に供給する吸収器とを備えた吸収式冷凍機において、高温再生器における稀吸収液の加熱が所定時間停止されたときに濃吸収液ポンプの運転を停止し、前記加熱の再開を待って濃吸収液ポンプの運転を再開するようにした第1の制御方法と、
【0005】
冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成して供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給される冷媒液が冷媒ポンプによって伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を低温再生器で生成して濃吸収液ポンプによって供給される濃吸収液に吸収させて稀吸収液にし、高温再生器に供給する吸収器とを備えた吸収式冷凍機において、冷媒ポンプの運転が所定時間停止されたときに濃吸収液ポンプの運転を停止し、冷媒ポンプの運転再開を待って濃吸収液ポンプの運転を再開するようにした第2の制御方法と、
【0006】
稀吸収液ポンプによって供給される冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成して供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給される冷媒液が所用の流体から熱を奪って蒸発する蒸発器と、高温再生器に稀吸収液ポンプによって供給される稀吸収液を、蒸発器で生成して供給される冷媒蒸気を低温再生器で生成して濃吸収液ポンプによって供給される濃吸収液に吸収させて得る吸収器とを備えた吸収式冷凍機において、稀吸収液ポンプの運転が所定時間停止されたときに濃吸収液ポンプの運転を停止し、稀吸収液ポンプの運転再開を待って濃吸収液ポンプの運転を再開するようにした第3の制御方法と、
【0007】
稀吸収液ポンプによって供給される冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成して供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給される冷媒液が冷媒ポンプによって伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って蒸発する蒸発器と、高温再生器に稀吸収液ポンプによって供給される稀吸収液を、蒸発器で生成して供給される冷媒蒸気を低温再生器で生成して濃吸収液ポンプによって供給される濃吸収液に吸収させて得る吸収器とを備えた吸収式冷凍機において、高温再生器における稀吸収液の加熱が所定時間停止されるか、冷媒ポンプの運転が所定時間停止されるか、または稀吸収液ポンプの運転が所定時間停止されたときに濃吸収液ポンプの運転を停止し、前記加熱が再開されるか、冷媒ポンプまたは稀吸収液ポンプの運転再開を待って濃吸収液ポンプの運転を再開するようにした第4の制御方法と、
を提供することにより、前記した従来技術の課題を解決するものである。
【0008】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて詳細に説明する。
図1に例示したものは冷水または温水を負荷に循環供給する冷温水機としての二重効用吸収式冷凍機であり、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用したものである。
【0009】
図において、1はガスバーナ1Bを備えた高温再生器、2は低温再生器、3は凝縮器、4は蒸発器、5は吸収器、6は低温熱交換器、7は高温熱交換器、8〜12は吸収液管、13は稀吸収液ポンプ、14は濃吸収液ポンプ、15〜18は冷媒管、19は冷媒ポンプ、22は図示しない冷/暖房負荷に冷熱または温熱を循環供給する冷水または温水が流れる冷温水管、23は冷却水管、24と25は均圧管、26〜29は開閉弁であり、これらの機器はそれぞれ図1に示したように配管接続されており、この構成自体は従来周知である。
【0010】
そして、上記構成の二重効用吸収式冷凍機において、開閉弁26・27・28・29を閉じ、冷却水管23に冷却水を流し、ガスバーナ1Bに点火して高温再生器1で稀吸収液を加熱すると、稀吸収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して吸収液の濃度が高くなった中間吸収液とが得られる。
【0011】
高温再生器1で生成された高温の冷媒蒸気は、冷媒管15を通って低温再生器2に入り、高温再生器1で生成され吸収液管9により高温熱交換器7を経由して低温再生器2に入った中間吸収液を加熱して放熱凝縮し、凝縮器3に入る。また、低温再生器2で加熱されて中間吸収液から蒸発分離した冷媒は凝縮器3へ入り、冷却水管23内を流れる水と熱交換して凝縮液化し、冷媒管15から凝縮して供給される冷媒と一緒になって冷媒管16を通って蒸発器4に入る。
【0012】
蒸発器4に入った冷媒液は、冷媒ポンプ19によって冷温水管22に接続された伝熱管22Aの上に散布され、冷温水管22を介して供給される水と熱交換して蒸発し、伝熱管22Aの内部を流れる水を冷却する。そして、蒸発器4で蒸発した冷媒は吸収器5に入り、低温再生器2で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち濃吸収液ポンプ14によって低温再生器2から吸収液管10により低温熱交換器6を経由して供給され、上方から散布される濃吸収液に吸収される。
【0013】
吸収器5で冷媒を吸収して濃度の薄くなった吸収液、すなわち稀吸収液は稀吸収液ポンプ13の運転により、低温熱交換器6・高温熱交換器7を経由して高温再生器1へ吸収液管8から送られる。
【0014】
上記のように吸収式冷凍機の運転が行われると、蒸発器4において冷媒の気化熱によって冷却された冷水が冷温水管22を介して図示しない冷/暖房負荷に循環供給できるので、冷房運転などが行える。
【0015】
なお、冷/暖房負荷が小さいためにガスバーナ1Bによる吸収液の加熱が行われず、したがって高温再生器1で蒸発分離して低温再生器2に供給される冷媒蒸気の量が少なく、低温再生器2内の圧力が低いときには、濃吸収液ポンプ14から送り出された濃吸収液は吸収器5に入るのではなく濃吸収液ポンプ14の吸入側に吸収液管11を通って回り込み循環する。
【0016】
一方、開閉弁26・27・28・29を開け、冷却水管23に冷却水を流さないでガスバーナ1Bに点火して高温再生器1で稀吸収液を加熱すると、高温再生器1で稀吸収液から蒸発された冷媒は主に流路抵抗の小さい冷媒管15・18を通って吸収器5・蒸発器4に入り、冷温水管22から供給される水と伝熱管22Aを介して熱交換して凝縮し、主にこのときの凝縮熱によって伝熱管22Aの内部を流れる水が加熱される。したがって、この温水を図示しない冷/暖房負荷に循環供給することによって暖房運転などが行なわれる。
【0017】
蒸発器4で加熱作用を行って凝縮した冷媒は、冷媒管18を通って吸収器5に入り、高温再生器1で冷媒を蒸発分離して吸収液管12から流入する吸収液と混合され、稀吸収液ポンプ13の運転によって低温熱交換器6・高温熱交換器7を経て高温再生器1へ送られる。
【0018】
なお、冷却水管23内で停滞している冷却水が吸収器5で加熱されても、均圧管25の開閉弁29が開弁して圧力の逃げが可能であるので、冷却水管23の圧力が異常に高くなることはない。
【0019】
Cは、上記のような動作機能を有する二重効用吸収式冷凍機に設けた制御器であり、マイコンや記憶手段などを備えて構成され、図示しない冷/暖房負荷に循環供給するための冷温水管22に蒸発器4から流れ出た冷温水の温度情報を、冷温水管22の蒸発器4出口側に設けた温度センサ30から入力し、この冷温水の温度が所定の設定温度に維持されるように、ガスバーナ1Bに接続された図示しない加熱量制御弁の開度を調節して高温再生器1への入熱量を制御する従来周知の容量制御機能を備えている。
【0020】
すなわち、制御器Cには、予め設定した所定温度と温度センサ30が検出した冷温水の温度との差が大きければ大きいほど、スバーナ1Bに接続された加熱量制御弁の開度を大きくし、温度センサ30が検出した冷温水の温度が所定温度に達すると、加熱量制御弁の開度を所定開度に抑えるか、閉じる等の通常の容量制御機能を行うための制御プログラムを記憶手段に格納して備えている。
【0021】
また、制御器Cは、高温再生器1にある吸収液の液面が所定のレベルを維持するように稀吸収液ポンプ13の運転を制御すると共に、冷房運転時に温度センサ30が検出した冷水の温度が所定の温度、例えば7℃より高いときに冷媒ポンプ19を運転するための制御プログラムも記憶手段に備えている。
【0022】
さらに、この制御器Cは、冷房運転時に濃吸収液ポンプ14を図2に示したようにオン/オフ制御するための制御プログラムも記憶手段に備えている。
【0023】
すなわち、制御器Cは、ステップS1においてはガスバーナ1Bによる吸収液の加熱が行われているか否かを判定し、加熱が行われているときにはステップS7に移行して計時中であるか否かを判定し、計時中でなければステップS1に直接戻り、計時中であればステップS8に移行してタイマーをリセットしてステップS1に戻る。
【0024】
ステップS1でガスバーナ1Bによる加熱なしと判定されたときにはステップS2に移行して計時中であるか否かを判定し、計時中でなければステップS9に移行してタイマーを起動してステップS3に移行し、計時中であれば直接ステップS3に移行して所定時間(例えば、30分)が経過したか否かを判定する。
【0025】
ステップS3で所定時間が経過したと判定されたときにはステップS4に移行し、所定時間が経過していないと判定されたときにはステップS1に戻る。
【0026】
ステップS4では濃吸収液ポンプ14の運転を停止し、ステップS5ではガスバーナ1Bによる加熱が行われているか否かを判定し、加熱が行われていないときにはこの判定を繰り返し行い、加熱が行われていると判定されたときにはステップS6に移行して濃吸収液ポンプ14の運転を再開すると共に、タイマーをリセットしてステップS1に戻る。
【0027】
すなわち、濃吸収液ポンプ14は、ガスバーナ1Bによる吸収液の加熱が所定時間(例えば、30分)連続して行われなくなると運転を停止し、ガスバーナ1Bによる加熱が行われるようになると運転を再開する。
【0028】
したがって、濃吸収液ポンプ14の運転停止中はジュール熱の発生がないので、吸収液管11を介して循環する濃吸収液の温度上昇はない。このため、ガスバーナ1Bによる吸収液の加熱を停止するだけでは結晶化が防止できなかった吸収液管10・11における濃吸収液の結晶化が防止できるようになった。
【0029】
また、制御器Cは、前記図2におけるステップS1およびステップS5における判定に代えて、冷凍負荷が殆どないか、極めて小さいときに運転が停止される冷媒ポンプ19または稀吸収液ポンプ13の運転が停止しているか否かを判定するようにして、濃吸収液ポンプ14の運転を制御するように構成しても良い。
【0030】
制御器Cをこのように構成しても、負荷が殆どのないときの吸収液管10・11における濃吸収液の結晶化が防止できる。
【0031】
なお、本発明は上記実施例に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0032】
【発明の効果】
以上説明したように本発明によれば、冷凍負荷が殆どない状態が続いたときには濃吸収液ポンプの運転が停止されるので、低温再生器から吸収器に至る吸収液管で濃吸収液が濃吸収液ポンプのジュール熱により加熱されて結晶化し管路が詰まると云った不都合が解消できるようになった。
【図面の簡単な説明】
【図1】装置構成の説明図である。
【図2】制御方法の説明図である。
【符号の説明】
1 高温再生器
1B ガスバーナ
2 低温再生器
3 凝縮器
4 蒸発器
5 吸収器
6 低温熱交換器
7 高温熱交換器
8〜12 吸収液管
13 稀吸収液ポンプ
14 濃吸収液ポンプ
15〜18 冷媒管
19 冷媒ポンプ
22 冷温水管
23 冷却水管
24・25 均圧管
26〜29 開閉弁
30 温度センサ
C 制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a technique capable of ensuring the safety of the apparatus even when the refrigeration load is extremely small.
[0002]
[Prior art]
A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, etc. are connected by piping to form a circulation path between the absorbing liquid and the refrigerant. In an absorption chiller that is supplied to a refrigerator for cooling or the like, when the refrigeration load is small, the amount of heat input to the high-temperature regenerator is suppressed to reduce refrigerant vapor generated by the high-temperature regenerator, and when the refrigeration load is large, the high-temperature regenerator Increase the amount of heat input to the refrigerant to increase the refrigerant vapor generated in the high-temperature regenerator, thereby reducing the amount of refrigerant liquid that evaporates in the evaporator when the refrigeration load is small, and refrigerant that evaporates in the evaporator when the refrigeration load is large By increasing the amount of liquid, the load can be increased or decreased.
[0003]
[Problems to be solved by the invention]
However, in the conventional absorption refrigerator, the concentrated absorption liquid pump is operated as long as the absorption refrigerator is in operation, and the concentrated absorption liquid generated by evaporating and separating the refrigerant in the low temperature regenerator is supplied to the absorber. Therefore, even if there is almost no refrigeration load and heating in the high temperature regenerator is stopped, the concentrated absorbent supplied to the absorber from the low temperature regenerator is heated by the Joule heat of the concentrated absorbent pump. However, there is a problem that there is a risk that the concentrated absorbent is crystallized due to an increase in temperature and the pipe is clogged and the circulation of the concentrated absorbent is hindered.
[0004]
[Means for Solving the Problems]
The present invention is a specific means for solving the above-described problems of the prior art, by heating a rare absorbent that absorbs a large amount of refrigerant, evaporating and separating the refrigerant, and obtaining a refrigerant vapor and an intermediate absorbent from the rare absorbent. The regenerator and the intermediate absorbing liquid generated and supplied by the high temperature regenerator are heated with the refrigerant vapor generated by the high temperature regenerator to further evaporate and separate the refrigerant, thereby obtaining the refrigerant vapor and the concentrated absorbing liquid from the intermediate absorbing liquid. A low-temperature regenerator, and a condenser that heats and condenses the intermediate absorption liquid in the low-temperature regenerator and that cools the refrigerant vapor generated and supplied in the low-temperature regenerator to obtain a refrigerant liquid; An evaporator in which the refrigerant liquid supplied from this condenser takes heat from a desired fluid and evaporates, and a refrigerant vapor generated and supplied in this evaporator is generated in a low-temperature regenerator by a concentrated absorption liquid pump. Absorb it in the concentrated absorbent supplied to make it a rare absorbent. In an absorption refrigerator having an absorber for supplying to a high-temperature regenerator, when the heating of the rare absorbent in the high-temperature regenerator is stopped for a predetermined time, the operation of the concentrated absorbent pump is stopped and the heating is resumed. A first control method of waiting and restarting the operation of the concentrated absorbent pump;
[0005]
A high-temperature regenerator that heats a rare absorbent that absorbs a large amount of refrigerant to evaporate and separate the refrigerant to obtain refrigerant vapor and an intermediate absorbent from the rare absorbent, and an intermediate absorbent that is generated and supplied by the high-temperature regenerator Is heated with the refrigerant vapor generated in the high-temperature regenerator to further evaporate and separate the refrigerant, and the low-temperature regenerator obtains the refrigerant vapor and the concentrated absorption liquid from the intermediate absorption liquid, and the intermediate absorption liquid is heated and condensed in this low-temperature regenerator The condenser liquid is supplied, and the refrigerant vapor generated by the low-temperature regenerator is cooled to obtain the refrigerant liquid, and the refrigerant liquid supplied from the condenser is And an evaporator that removes heat from the fluid flowing in the heat transfer pipe and evaporates, and a refrigerant vapor generated and supplied by the evaporator is generated by a low-temperature regenerator and supplied by a concentrated absorbent pump. Absorb in absorbent to make rare absorbent and regenerate at high temperature In an absorption chiller equipped with an absorber to be supplied to the refrigerant, the operation of the concentrated absorbent pump is stopped when the operation of the refrigerant pump is stopped for a predetermined time, and the operation of the concentrated absorbent pump is A second control method for restarting operation;
[0006]
A high-temperature regenerator that heats the rare absorbent that has absorbed a large amount of refrigerant supplied by the rare absorbent pump, evaporates and separates the refrigerant, and obtains refrigerant vapor and an intermediate absorbent from the rare absorbent, and is produced by this high-temperature regenerator The low-temperature regenerator that heats the intermediate absorbing liquid supplied by the refrigerant vapor generated by the high-temperature regenerator, further evaporates and separates the refrigerant, and obtains the refrigerant vapor and the concentrated absorbing liquid from the intermediate absorbing liquid. A refrigerant liquid condensed by heating the intermediate absorption liquid is supplied, and a condenser for cooling the refrigerant vapor generated and supplied by the low-temperature regenerator to obtain a refrigerant liquid, and the refrigerant liquid supplied from the condenser However, the evaporator that takes heat from the required fluid and evaporates, the rare absorbent supplied by the rare absorbent pump to the high temperature regenerator, and the refrigerant vapor that is supplied by the evaporator are generated by the low temperature regenerator. Concentrated absorbent supplied by concentrated absorbent pump In an absorption chiller equipped with an absorber obtained by absorption, the operation of the concentrated absorbent pump is stopped when the operation of the diluted absorbent pump is stopped for a predetermined time, and the operation of the diluted absorbent pump is awaited. A third control method for restarting the operation of the concentrated absorbent pump;
[0007]
A high-temperature regenerator that heats the rare absorbent that has absorbed a large amount of refrigerant supplied by the rare absorbent pump, evaporates and separates the refrigerant, and obtains refrigerant vapor and an intermediate absorbent from the rare absorbent, and is produced by this high-temperature regenerator The low-temperature regenerator that heats the intermediate absorbing liquid supplied by the refrigerant vapor generated by the high-temperature regenerator, further evaporates and separates the refrigerant, and obtains the refrigerant vapor and the concentrated absorbing liquid from the intermediate absorbing liquid. A refrigerant liquid condensed by heating the intermediate absorption liquid is supplied, and a condenser for cooling the refrigerant vapor generated and supplied by the low-temperature regenerator to obtain a refrigerant liquid, and the refrigerant liquid supplied from the condenser Is sprayed on the heat transfer tube by the refrigerant pump, and the evaporator generates heat from the fluid flowing in the heat transfer tube and evaporates, and the rare absorption liquid supplied by the rare absorption liquid pump to the high temperature regenerator. Refrigerant vapor supplied as a low temperature regenerator In an absorption refrigerator having an absorber that is generated and absorbed by a concentrated absorbent supplied by a concentrated absorbent pump, heating of the rare absorbent in the high-temperature regenerator is stopped for a predetermined time or a refrigerant pump Is stopped for a predetermined time, or when the operation of the rare absorbent pump is stopped for a predetermined time, the operation of the concentrated absorbent pump is stopped and the heating is restarted, or the refrigerant pump or the rare absorbent pump A fourth control method in which the operation of the concentrated absorbent pump is resumed after waiting for the resumption of operation;
By providing the above, the above-described problems of the prior art are solved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
The example illustrated in FIG. 1 is a double-effect absorption refrigerator as a cold / hot water machine that circulates and supplies cold water or hot water to a load, using water as a refrigerant and an aqueous lithium bromide (LiBr) solution as an absorbent. It is.
[0009]
In the figure, 1 is a high temperature regenerator equipped with a gas burner 1B, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low temperature heat exchanger, 7 is a high temperature heat exchanger, 8 -12 is an absorption liquid pipe, 13 is a rare absorption liquid pump, 14 is a concentrated absorption liquid pump, 15-18 is a refrigerant pipe, 19 is a refrigerant pump, 22 is chilled water that circulates and supplies cold or hot heat to a cooling / heating load (not shown). Or, a hot / cold water pipe through which hot water flows, 23 is a cooling water pipe, 24 and 25 are pressure equalizing pipes, and 26 to 29 are open / close valves, and these devices are connected by piping as shown in FIG. Conventionally known.
[0010]
In the double-effect absorption chiller having the above-described configuration, the on-off valves 26, 27, 28, and 29 are closed, the cooling water is allowed to flow through the cooling water pipe 23, the gas burner 1B is ignited, and the high temperature regenerator 1 generates the rare absorbent. When heated, the refrigerant vapor evaporated and separated from the rare absorption liquid and the intermediate absorption liquid in which the concentration of the absorption liquid is increased by separating the refrigerant vapor are obtained.
[0011]
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the low-temperature regenerator 2 through the refrigerant pipe 15, and is generated in the high-temperature regenerator 1 through the high-temperature heat exchanger 7 via the high-temperature heat exchanger 7. The intermediate absorption liquid that has entered the condenser 2 is heated and condensed by heat dissipation, and enters the condenser 3. Further, the refrigerant heated by the low-temperature regenerator 2 and evaporated and separated from the intermediate absorption liquid enters the condenser 3, is heat-exchanged with water flowing in the cooling water pipe 23 to be condensed and liquefied, and is condensed and supplied from the refrigerant pipe 15. The refrigerant enters the evaporator 4 through the refrigerant pipe 16 together with the refrigerant.
[0012]
The refrigerant liquid that has entered the evaporator 4 is sprayed onto the heat transfer pipe 22A connected to the cold / hot water pipe 22 by the refrigerant pump 19, and is evaporated by exchanging heat with the water supplied via the cold / hot water pipe 22. The water flowing inside 22A is cooled. Then, the refrigerant evaporated in the evaporator 4 enters the absorber 5 and is heated in the low-temperature regenerator 2 to evaporate and separate the refrigerant, and the refrigerant is further reduced in concentration by the absorption liquid, that is, the concentrated absorption liquid pump 14. It is supplied from the vessel 2 via the low-temperature heat exchanger 6 through the absorption liquid pipe 10 and is absorbed by the concentrated absorption liquid sprayed from above.
[0013]
Absorbing liquid whose concentration is reduced by absorbing the refrigerant in the absorber 5, that is, the rare absorbing liquid, is operated through the low temperature heat exchanger 6 and the high temperature heat exchanger 7 by the operation of the rare absorbing liquid pump 13. Is sent from the absorption liquid pipe 8 to the pipe.
[0014]
When the absorption refrigerator is operated as described above, the cold water cooled by the heat of vaporization of the refrigerant in the evaporator 4 can be circulated and supplied to a cooling / heating load (not shown) via the cold / hot water pipe 22, so that the cooling operation or the like can be performed. Can be done.
[0015]
Since the cooling / heating load is small, the absorption liquid is not heated by the gas burner 1B. Therefore, the amount of refrigerant vapor evaporated and separated by the high temperature regenerator 1 and supplied to the low temperature regenerator 2 is small, and the low temperature regenerator 2 When the internal pressure is low, the concentrated absorbent delivered from the concentrated absorbent pump 14 does not enter the absorber 5 but circulates around the suction side of the concentrated absorbent pump 14 through the absorbent liquid pipe 11 and circulates.
[0016]
On the other hand, when the on-off valves 26, 27, 28, and 29 are opened to ignite the gas burner 1 B without flowing cooling water through the cooling water pipe 23 and the high temperature regenerator 1 heats the rare absorbent, the high temperature regenerator 1 The refrigerant evaporated from the refrigerant mainly enters the absorber 5 and the evaporator 4 through the refrigerant pipes 15 and 18 having a low flow resistance, and exchanges heat with water supplied from the cold / hot water pipe 22 through the heat transfer pipe 22A. The water that condenses and flows inside the heat transfer tube 22A is heated mainly by the heat of condensation at this time. Therefore, a heating operation or the like is performed by circulating and supplying this hot water to a cooling / heating load (not shown).
[0017]
The refrigerant condensed by performing the heating action in the evaporator 4 enters the absorber 5 through the refrigerant pipe 18 and is mixed with the absorption liquid flowing in from the absorption liquid pipe 12 by evaporating and separating the refrigerant in the high temperature regenerator 1, By the operation of the rare absorbent pump 13, it is sent to the high temperature regenerator 1 through the low temperature heat exchanger 6 and the high temperature heat exchanger 7.
[0018]
Even if the cooling water stagnating in the cooling water pipe 23 is heated by the absorber 5, the on-off valve 29 of the pressure equalizing pipe 25 can be opened and the pressure can be released. It will not be unusually high.
[0019]
C is a controller provided in the dual effect absorption chiller having the above-described operation function, and includes a microcomputer, storage means, and the like, and is used to circulate and supply a cooling / heating load (not shown). The temperature information of the cold / hot water flowing out from the evaporator 4 to the water pipe 22 is input from the temperature sensor 30 provided on the outlet side of the evaporator 4 of the cold / hot water pipe 22 so that the temperature of the cold / hot water is maintained at a predetermined set temperature. Furthermore, a conventionally well-known capacity control function for controlling the amount of heat input to the high-temperature regenerator 1 by adjusting the opening of a heating amount control valve (not shown) connected to the gas burner 1B is provided.
[0020]
That is, the controller C increases the opening degree of the heating amount control valve connected to the sburner 1B as the difference between the predetermined temperature set in advance and the temperature of the cold / hot water detected by the temperature sensor 30 increases. When the temperature of the cold / hot water detected by the temperature sensor 30 reaches a predetermined temperature, a control program for performing a normal capacity control function such as suppressing or closing the opening of the heating amount control valve to the predetermined opening is stored in the storage means. Store and prepare.
[0021]
The controller C controls the operation of the rare absorbent pump 13 so that the liquid level of the absorbent in the high-temperature regenerator 1 maintains a predetermined level, and the cold water detected by the temperature sensor 30 during the cooling operation. The storage means also includes a control program for operating the refrigerant pump 19 when the temperature is higher than a predetermined temperature, for example, 7 ° C.
[0022]
Further, the controller C also has a control program for turning on / off the concentrated absorbent pump 14 as shown in FIG. 2 in the storage means during the cooling operation.
[0023]
That is, the controller C determines whether or not the absorption liquid is heated by the gas burner 1B in step S1, and when the heating is being performed, the controller C shifts to step S7 to determine whether or not the time is being measured. If it is not timed, the process directly returns to step S1, and if time is being measured, the process proceeds to step S8 to reset the timer and return to step S1.
[0024]
If it is determined in step S1 that there is no heating by the gas burner 1B, the process proceeds to step S2 to determine whether or not the time is being measured. If not, the process proceeds to step S9 to start the timer and proceed to step S3. If the time is being measured, the process directly proceeds to step S3 to determine whether or not a predetermined time (for example, 30 minutes) has elapsed.
[0025]
When it is determined in step S3 that the predetermined time has elapsed, the process proceeds to step S4. When it is determined that the predetermined time has not elapsed, the process returns to step S1.
[0026]
In step S4, the operation of the concentrated absorbent pump 14 is stopped, and in step S5, it is determined whether or not heating by the gas burner 1B is performed. When heating is not performed, this determination is repeated and heating is performed. When it is determined that there is, the process proceeds to step S6, the operation of the concentrated absorbent pump 14 is restarted, the timer is reset, and the process returns to step S1.
[0027]
That is, the concentrated absorbent pump 14 stops operation when the absorption liquid heating by the gas burner 1B is not performed continuously for a predetermined time (for example, 30 minutes), and resumes operation when heating by the gas burner 1B is performed. To do.
[0028]
Therefore, no Joule heat is generated while the operation of the concentrated absorbent pump 14 is stopped, so that the temperature of the concentrated absorbent that circulates through the absorbent tube 11 does not increase. For this reason, it became possible to prevent the crystallization of the concentrated absorption liquid in the absorption liquid pipes 10 and 11 that could not be prevented from crystallization only by stopping the heating of the absorption liquid by the gas burner 1B.
[0029]
In addition, instead of the determination in step S1 and step S5 in FIG. 2, the controller C operates the refrigerant pump 19 or the rare absorbent pump 13 that is stopped when there is little or very little refrigeration load. It may be configured to control the operation of the concentrated absorbent pump 14 by determining whether or not it is stopped.
[0030]
Even if the controller C is configured in this manner, crystallization of the concentrated absorbent in the absorbent pipes 10 and 11 when there is almost no load can be prevented.
[0031]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit described in the claims.
[0032]
【The invention's effect】
As described above, according to the present invention, when the state where there is almost no refrigeration load continues, the operation of the concentrated absorbent pump is stopped, so that the concentrated absorbent is concentrated in the absorbent tube from the low temperature regenerator to the absorber. The inconvenience that the pipe line is clogged by being heated by Joule heat of the absorption liquid pump can be solved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an apparatus configuration.
FIG. 2 is an explanatory diagram of a control method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 1B Gas burner 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Low temperature heat exchanger 7 High temperature heat exchanger 8-12 Absorption liquid pipe 13 Rare absorption liquid pump 14 Concentrated absorption liquid pump 15-18 Refrigerant pipe 19 Refrigerant pump 22 Cold / hot water pipe 23 Cooling water pipe 24/25 Pressure equalizing pipe 26-29 On-off valve 30 Temperature sensor C Controller

Claims (4)

冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成して供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給される冷媒液が所用の流体から熱を奪って蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を低温再生器で生成して濃吸収液ポンプによって供給される濃吸収液に吸収させて稀吸収液にし、高温再生器に供給する吸収器とを備えた吸収式冷凍機において、高温再生器における稀吸収液の加熱が所定時間停止されたときに濃吸収液ポンプの運転を停止し、前記加熱の再開を待って濃吸収液ポンプの運転を再開することを特徴とする吸収式冷凍機の制御方法。A high-temperature regenerator that heats a rare absorbent that absorbs a large amount of refrigerant to evaporate and separate the refrigerant to obtain refrigerant vapor and an intermediate absorbent from the rare absorbent, and an intermediate absorbent that is generated and supplied by the high-temperature regenerator Is heated with the refrigerant vapor generated in the high-temperature regenerator to further evaporate and separate the refrigerant, and the low-temperature regenerator obtains the refrigerant vapor and the concentrated absorption liquid from the intermediate absorption liquid, and the intermediate absorption liquid is heated and condensed in this low-temperature regenerator The refrigerant liquid is supplied, the condenser that cools the refrigerant vapor generated and supplied by the low-temperature regenerator to obtain the refrigerant liquid, and the refrigerant liquid supplied from the condenser takes heat from the desired fluid. The evaporator that evaporates and the refrigerant vapor generated and supplied by this evaporator is generated by the low temperature regenerator and absorbed by the concentrated absorbent supplied by the concentrated absorbent pump to form a rare absorbent, and the high temperature regenerator In an absorption chiller equipped with an absorber to be supplied to Absorption type characterized in that when the heating of the rare absorbent in the temperature regenerator is stopped for a predetermined time, the operation of the concentrated absorbent pump is stopped, and the operation of the concentrated absorbent pump is resumed after the heating is resumed. Control method of refrigerator. 冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成して供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給される冷媒液が冷媒ポンプによって伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を低温再生器で生成して濃吸収液ポンプによって供給される濃吸収液に吸収させて稀吸収液にし、高温再生器に供給する吸収器とを備えた吸収式冷凍機において、冷媒ポンプの運転が所定時間停止されたときに濃吸収液ポンプの運転を停止し、冷媒ポンプの運転再開を待って濃吸収液ポンプの運転を再開することを特徴とする吸収式冷凍機の制御方法。A high-temperature regenerator that heats a rare absorbent that absorbs a large amount of refrigerant to evaporate and separate the refrigerant to obtain refrigerant vapor and an intermediate absorbent from the rare absorbent, and an intermediate absorbent that is generated and supplied by the high-temperature regenerator Is heated with the refrigerant vapor generated in the high-temperature regenerator to further evaporate and separate the refrigerant, and the low-temperature regenerator obtains the refrigerant vapor and the concentrated absorption liquid from the intermediate absorption liquid, and the intermediate absorption liquid is heated and condensed in this low-temperature regenerator The condenser liquid is supplied, and the refrigerant vapor generated by the low-temperature regenerator is cooled to obtain the refrigerant liquid, and the refrigerant liquid supplied from the condenser is And an evaporator that removes heat from the fluid flowing in the heat transfer pipe and evaporates, and a refrigerant vapor generated and supplied by the evaporator is generated by a low-temperature regenerator and supplied by a concentrated absorbent pump. Absorb in absorbent to make rare absorbent and regenerate at high temperature In an absorption chiller equipped with an absorber to be supplied to the refrigerant, the operation of the concentrated absorbent pump is stopped when the operation of the refrigerant pump is stopped for a predetermined time, and the operation of the concentrated absorbent pump is A method for controlling an absorption refrigerator, wherein the operation is restarted. 稀吸収液ポンプによって供給される冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成して供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給される冷媒液が所用の流体から熱を奪って蒸発する蒸発器と、高温再生器に稀吸収液ポンプによって供給される稀吸収液を、蒸発器で生成して供給される冷媒蒸気を低温再生器で生成して濃吸収液ポンプによって供給される濃吸収液に吸収させて得る吸収器とを備えた吸収式冷凍機において、稀吸収液ポンプの運転が所定時間停止されたときに濃吸収液ポンプの運転を停止し、稀吸収液ポンプの運転再開を待って濃吸収液ポンプの運転を再開することを特徴とする吸収式冷凍機の制御方法。A high-temperature regenerator that heats the rare absorbent that has absorbed a large amount of refrigerant supplied by the rare absorbent pump, evaporates and separates the refrigerant, and obtains refrigerant vapor and an intermediate absorbent from the rare absorbent, and is produced by this high-temperature regenerator The low-temperature regenerator that heats the intermediate absorbing liquid supplied by the refrigerant vapor generated by the high-temperature regenerator, further evaporates and separates the refrigerant, and obtains the refrigerant vapor and the concentrated absorbing liquid from the intermediate absorbing liquid. A refrigerant liquid condensed by heating the intermediate absorption liquid is supplied, and a condenser for cooling the refrigerant vapor generated and supplied by the low-temperature regenerator to obtain a refrigerant liquid, and the refrigerant liquid supplied from the condenser However, the evaporator that takes heat from the required fluid and evaporates, the rare absorbent supplied by the rare absorbent pump to the high temperature regenerator, and the refrigerant vapor that is supplied by the evaporator are generated by the low temperature regenerator. Concentrated absorbent supplied by concentrated absorbent pump In an absorption chiller equipped with an absorber obtained by absorption, the operation of the concentrated absorbent pump is stopped when the operation of the diluted absorbent pump is stopped for a predetermined time, and the operation of the diluted absorbent pump is awaited. A control method for an absorption chiller, wherein the operation of the concentrated absorbent pump is restarted. 稀吸収液ポンプによって供給される冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成して供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給される冷媒液が冷媒ポンプによって伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って蒸発する蒸発器と、高温再生器に稀吸収液ポンプによって供給される稀吸収液を、蒸発器で生成して供給される冷媒蒸気を低温再生器で生成して濃吸収液ポンプによって供給される濃吸収液に吸収させて得る吸収器とを備えた吸収式冷凍機において、高温再生器における稀吸収液の加熱が所定時間停止されるか、冷媒ポンプの運転が所定時間停止されるか、または稀吸収液ポンプの運転が所定時間停止されたときに濃吸収液ポンプの運転を停止し、前記加熱が再開されるか、冷媒ポンプまたは稀吸収液ポンプの運転再開を待って濃吸収液ポンプの運転を再開することを特徴とする吸収式冷凍機の制御方法。A high-temperature regenerator that heats the rare absorbent that has absorbed a large amount of refrigerant supplied by the rare absorbent pump, evaporates and separates the refrigerant, and obtains refrigerant vapor and an intermediate absorbent from the rare absorbent, and is produced by this high-temperature regenerator The low-temperature regenerator that heats the intermediate absorbing liquid supplied by the refrigerant vapor generated by the high-temperature regenerator, further evaporates and separates the refrigerant, and obtains the refrigerant vapor and the concentrated absorbing liquid from the intermediate absorbing liquid. A refrigerant liquid condensed by heating the intermediate absorption liquid is supplied, and a condenser for cooling the refrigerant vapor generated and supplied by the low-temperature regenerator to obtain a refrigerant liquid, and the refrigerant liquid supplied from the condenser Is sprayed on the heat transfer tube by the refrigerant pump, and the evaporator generates heat from the fluid flowing in the heat transfer tube and evaporates, and the rare absorption liquid supplied by the rare absorption liquid pump to the high temperature regenerator. Refrigerant vapor supplied as a low temperature regenerator In an absorption refrigerator having an absorber that is generated and absorbed by a concentrated absorbent supplied by a concentrated absorbent pump, heating of the rare absorbent in the high-temperature regenerator is stopped for a predetermined time or a refrigerant pump Is stopped for a predetermined time, or when the operation of the rare absorbent pump is stopped for a predetermined time, the operation of the concentrated absorbent pump is stopped and the heating is restarted, or the refrigerant pump or the rare absorbent pump A control method for an absorption refrigeration machine, wherein the operation of the concentrated absorbent pump is resumed after waiting for the resumption of operation.
JP35481298A 1998-12-14 1998-12-14 Control method of absorption refrigerator Expired - Fee Related JP4115020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35481298A JP4115020B2 (en) 1998-12-14 1998-12-14 Control method of absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35481298A JP4115020B2 (en) 1998-12-14 1998-12-14 Control method of absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2000179976A JP2000179976A (en) 2000-06-30
JP4115020B2 true JP4115020B2 (en) 2008-07-09

Family

ID=18440073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35481298A Expired - Fee Related JP4115020B2 (en) 1998-12-14 1998-12-14 Control method of absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4115020B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471756U (en) * 1977-10-31 1979-05-22
JPS5687752A (en) * 1979-12-17 1981-07-16 Ebara Mfg Method and device for controlling direct fire type absorption refrigerator
JPH073301B2 (en) * 1986-08-20 1995-01-18 三洋電機株式会社 Absorption refrigerator
JP2581617B2 (en) * 1991-04-02 1997-02-12 矢崎総業株式会社 Absorption refrigerator
JP3003554B2 (en) * 1995-09-27 2000-01-31 松下電器産業株式会社 Absorption heat pump
JPH09269162A (en) * 1996-03-29 1997-10-14 Sanyo Electric Co Ltd Absorbing type freezer

Also Published As

Publication number Publication date
JP2000179976A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
KR100716706B1 (en) Operating Method of Single or Double Effect Absorption Refrigerator
JPH10197088A (en) Absorption type cooling and heating apparatus
JPH04340066A (en) Absorption air conditioning system
JP2002147885A (en) Absorption refrigerating machine
JP4166037B2 (en) Absorption chiller / heater
JPH10185346A (en) Method of stopping operation of absorption type refrigerating machine
KR100585352B1 (en) Absorption refrigerator
JP4115020B2 (en) Control method of absorption refrigerator
JP4090135B2 (en) Control method of absorption refrigerator
JP3837186B2 (en) Absorption refrigerator
JP7054855B2 (en) Absorption chiller
JP4077973B2 (en) Operation method of exhaust heat absorption cold water heater
JP3831425B2 (en) Control method of absorption chiller / heater
JP2918665B2 (en) Operation stop method and stop control device for absorption chiller / chiller / heater
JP3283780B2 (en) Absorption cooling device
JP4278315B2 (en) Absorption refrigerator
JP4090137B2 (en) Control method of absorption chiller / heater
JP2902305B2 (en) Absorption air conditioner
JP3920979B2 (en) Absorption air conditioner control device
JP3660493B2 (en) Absorption refrigeration system controller
JP3241623B2 (en) Absorption air conditioner
JP2895974B2 (en) Absorption refrigerator
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP3251100B2 (en) Absorption refrigerator
JPS6118366Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees