JP4090135B2 - Control method of absorption refrigerator - Google Patents

Control method of absorption refrigerator Download PDF

Info

Publication number
JP4090135B2
JP4090135B2 JP02217799A JP2217799A JP4090135B2 JP 4090135 B2 JP4090135 B2 JP 4090135B2 JP 02217799 A JP02217799 A JP 02217799A JP 2217799 A JP2217799 A JP 2217799A JP 4090135 B2 JP4090135 B2 JP 4090135B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
temperature
absorber
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02217799A
Other languages
Japanese (ja)
Other versions
JP2000220906A (en
Inventor
俊之 星野
正之 大能
伸一 上篭
秀明 小穴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP02217799A priority Critical patent/JP4090135B2/en
Publication of JP2000220906A publication Critical patent/JP2000220906A/en
Application granted granted Critical
Publication of JP4090135B2 publication Critical patent/JP4090135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷凍機の起動時の制御方法に係わるものである。
【0002】
【従来の技術】
吸収冷凍機においては、再生器で溶液を加熱して生成した冷媒蒸気を凝縮器に送り、この凝縮器で冷却水によって冷却して得た冷媒液を蒸発器に送って蒸発させ、蒸発器の内部に配管した伝熱管を流れている流体を冷媒の蒸発熱によって冷却し、この冷却した流体を被冷却部に供給して冷房などの冷却運転が行われる。
【0003】
そして、蒸発器の内部に設置した伝熱管に通して冷却する流体が廉価で、漏れても危険のない水であるときには、この冷却した水を被冷却部に供給する冷水ポンプの運転が停止された状態で、冷媒液溜りに溜まった冷媒液を冷媒ポンプを運転して伝熱管に散布すると、伝熱管内にある水が凍ってしまうので、冷水系統の凍結防止を図るために冷水ポンプの運転が最初から行われるようになっている。
【0004】
【発明が解決しようとする課題】
しかし、上記従来の吸収冷凍機においては、冷凍能力がない当初から冷水ポンプの運転が行われて温度の高い水が系内に行き渡り、装置全体の温度が上昇するので、冷房運転を速やかに開始することができないと云った問題点があり、この解決が課題となっていた。
【0005】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するための具体的手段として、再生器・凝縮器・吸収器などと冷凍サイクルを構成する蒸発器の内部に配管した伝熱管内部で冷媒に蒸発熱を奪われて冷却された流体を被冷却部に供給して冷却作用を行う吸収冷凍機の起動時に、再生器における吸収液の加熱と、吸収器および凝縮器への冷却水の供給を先行して開始し、次に蒸発器および/または吸収器の内部圧力、凝縮器から供給されて蒸発器でフラッシングしている冷媒の温度、再生器から吸収器に供給されている吸収液の温度、の少なくとも何れかに基づいて、前記流体を被冷却部に供給するポンプの運転を開始し、そのご凝縮器から供給されて冷媒液溜りに溜まった冷媒液を前記伝熱管に散布するための冷媒ポンプの運転を開始するようにした第1の制御方法と、
【0006】
前記第1の構成の制御方法において、前記流体を被冷却部に供給するポンプの運転を開始したときに、蒸発器および/または吸収器の内部が設定値を超える圧力低下を示すか、凝縮器から供給されて蒸発器でフラッシングしている冷媒が設定値を超える温度低下を示すか、再生器から吸収器に供給されている吸収液が設定値を超える温度上昇を示すときには、冷媒ポンプの運転を開始することなく吸収冷凍機の運転を停止するようにした第2の制御方法と、
を提供することにより、前記した従来技術の課題を解決するものである。
【0007】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて詳細に説明する。
図1に例示したものは、冷水を負荷に循環供給する二重効用吸収冷凍機であり、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用したものである。
【0008】
図において、1はガスバーナ1Aを備えた高温再生器、2は低温再生器、3は凝縮器、4は蒸発器、5は吸収器、6は低温熱交換器、7は高温熱交換器、8〜10は吸収液管、11は吸収液ポンプ、12〜15は冷媒管、16は冷媒ポンプ、17は開閉弁、18は図示しない冷房負荷に循環供給する冷水が流れる冷水管、19は冷水ポンプ、20は冷却水管、21は冷却水ポンプであり、これらの機器はそれぞれ図1に示したように配管接続されており、この構成自体は従来周知である。
【0009】
そして、上記構成の二重効用吸収冷凍機において、開閉弁17を閉じ、冷却水管20に冷却水を流し、ガスバーナ1Aに点火して高温再生器1で稀吸収液を加熱すると、稀吸収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して吸収液の濃度が高くなった中間吸収液とが得られる。
【0010】
高温再生器1で生成された高温の冷媒蒸気は、冷媒管12を通って低温再生器2に入り、高温再生器1で生成され吸収液管9により高温熱交換器7を経由して低温再生器2に入った中間吸収液を加熱して放熱凝縮し、凝縮器3に入る。
【0011】
また、低温再生器2で加熱されて中間吸収液から蒸発分離した冷媒は凝縮器3へ入り、冷却水管20内を流れる水と熱交換して凝縮液化し、冷媒管12から凝縮して供給される冷媒と一緒になって冷媒管13を通って蒸発器4に入る。
【0012】
蒸発器4に入って冷媒液溜りに溜まった冷媒液は、冷水管18に接続された伝熱管18Aの上に冷媒ポンプ16によって散布され、冷水管18を介して供給される水と熱交換して蒸発し、伝熱管18Aの内部を流れる水を冷却する。
【0013】
そして、蒸発器4で蒸発した冷媒は吸収器5に入り、低温再生器2で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち吸収液管10により低温熱交換器6を経由して供給され、上方から散布される濃吸収液に吸収される。
【0014】
吸収器5で冷媒を吸収して濃度の薄くなった吸収液、すなわち稀吸収液は吸収液ポンプ11の運転により、低温熱交換器6・高温熱交換器7を経由して高温再生器1へ吸収液管8から送られる。
【0015】
上記のように吸収冷凍機の運転が行われると、蒸発器4の内部に配管された伝熱管18Aにおいて冷媒の気化熱によって冷却された冷水が、冷水ポンプ19の運転により冷水管18を介して図示しない冷房負荷に循環供給され、冷却作用を果たす。
【0016】
Cは、上記のような動作機能を有する二重効用吸収冷凍機に設けた制御器であり、マイコンや記憶手段などを備えて構成され、図示しない冷房負荷に冷水を循環供給するための冷水管18に蒸発器4の伝熱管18Aから流れ出た冷水の温度情報を、冷水管18の蒸発器4出口側に設けた温度センサ22から取り込み、この冷水の蒸発器出口側温度が所定の設定温度に維持されるように、ガスバーナ1Aに接続された図示しない加熱量制御弁の開度を調節して高温再生器1への入熱量を制御する従来周知の容量制御機能を備えている。
【0017】
すなわち、制御器Cには、予め決めた設定温度と温度センサ22が検出した冷水の温度との差が大きければ大きいほど、ガスバーナ1Aに接続された加熱量制御弁の開度を大きくし、温度センサ22が検出した冷水の温度が設定温度に達すると、加熱量制御弁の開度を設定開度に抑えるか、閉じる等の通常の容量制御を行うための制御プログラムを記憶手段に格納して備えている。
【0018】
また、制御器Cは、高温再生器1にある吸収液の液面が所定のレベルを維持するように吸収液ポンプ11の運転を制御すると共に、温度センサ22が検出した冷水の温度が設定温度(例えば7℃)より高いときに冷媒ポンプ16を運転するための制御プログラムも記憶手段に備えている。
【0019】
さらに、この制御器Cは、蒸発器4に取り付けた圧力センサ23が検出する蒸発器4内部の気相部の圧力Pに基づいて、ガスバーナ1Aの点火・燃焼などに遅らせて冷水ポンプ19を始動するための図2に示した制御プログラムも記憶手段に備えている。
【0020】
すなわち、制御器Cは、図示しない起動スイッチが投入されると、ステップS1においては冷却水ポンプ21に所要の制御信号を出力してこれを起動し、ステップS2では吸収液ポンプ11に所要の制御信号を出力してこれを起動し、ステップS3でガスバーナ1Aに所要の制御信号を出力して点火・燃焼を開始させる。
【0021】
ステップS4では、圧力センサ23によって蒸発器4内の気相部の圧力Pを検出する。
【0022】
そして、ステップS5では、ステップS4で検出した前記圧力Pが、冷媒液が蒸発し易い圧力、例えば1400Pa以下であるか否かを判定し、前記圧力Pが1400Pa以下であると判定されたときにはステップS6に移行して冷水ポンプ19を起動し、そうでないと判定されたときにはステップS4に戻って前記圧力Pの検出を繰り返す。
【0023】
ステップS7では、冷水ポンプ19が図示しない冷房負荷に供給している冷水の流量Vを、冷水管18に取り付けた流量センサ24によって検出する。
【0024】
ステップS8では、この冷水流量Vが所定の流量α以上あるか否かを判定し、イエスと判定されたときには冷媒ポンプ16に所要の制御信号を出力してこれを起動し、そうでないときにはステップS10に移行して前記圧力Pを圧力センサ 23により検出する。
【0025】
そして、ステップS11では、ステップS10で検出した前記圧力Pが、700Pa以上であるか否かを判定し、イエスと判定されたときにはステップS7に戻って前記冷水流量Vを繰り返し検出し、そうでないときには冷却水ポンプ21・吸収液ポンプ11・冷水ポンプ19・ガスバーナ1Aなどを緊急停止すると共に、ブザーの吹鳴、ライトの点灯・点滅などで警報を発する。
【0026】
したがって、本発明によれば、冷媒が容易に蒸発する圧力まで蒸発器4の内部の圧力が下がるのを待って冷水ポンプ19の運転が開始されると共に、冷水の流量が確保されるのを確認してすぐに冷媒ポンプ16の運転が開始されるので、伝熱管18Aの内部にある水は速やかに冷却され、これが冷水ポンプ19によって冷房負荷に供給されるので、速やかな冷房運転の立ち上げが可能となる。
【0027】
また、冷水ポンプ19の運転を開始したときに、蒸発気の内部の圧力Pが設定圧力以下に低下したときには、冷媒ポンプ16を起動しないし、冷凍機全体の運転を停止するので、伝熱管18Aの内部を流れる水や冷媒の水が凍ることもない。
【0028】
なお、制御器Cとしては、圧力センサ23が検出する前記圧力Pが設定圧力以下になるのを待ってステップS6に移行する代わりに、冷媒管13によって凝縮器3から供給され、蒸発器4でフラッシングしている冷媒の温度を温度センサ25によって検出し、その温度が設定温度、例えば15℃以下になるのを待ってステップS6に移行するようにしたり、吸収液管10によって低温再生器2から吸収器5に供給されている濃吸収液の温度を温度センサ26によって検出し、その温度が所定の上昇、例えば5℃/分の上昇を示し、濃吸収液の循環が確認されるのを待ってステップS6に移行するようにしても、前記したのと同様の作用効果が得られる。
【0029】
また、制御器Cとしては、ステップS10、S11も同様に変更することができる。この場合、ステップS4、S5と、ステップS10、S11では同じ物理量を検出して判定する方が、取り付けるセンサが共用できると云ったメリットがあるが、ステップS4、S5と、ステップS10、S11とで異なる物理量、すなわちステップS4、S5では例えば蒸発器4の内部の圧力Pを検出して判定し、ステップS10、S11では温度センサ25または26によって温度を検出し、その温度に基づいて判定するように構成するものであっても構わない。
【0030】
また、制御器Cとしては、ステップS7とS11の間の制御を所定時間を超えて繰り返すようになったときには、緊急停止するように構成することもできる。
【0031】
また、本発明の制御方法は、高温再生器1で加熱生成した高温の冷媒蒸気と吸収液とを、吸収器5または蒸発器4に直接供給できるようにも配管し、蒸発器4の伝熱管18Aの内部を流れる水を加熱して供給することもできるようにした、吸収冷温水機でも同様に有効である。
【0032】
【発明の効果】
以上説明したように本発明によれば、蒸発器で冷媒が容易に蒸発できる状態になるまで待って冷水ポンプの運転を開始することが可能であり、このような制御を行うことで冷却されていない水が冷房負荷に供給され、系内の温度を上げて冷房の立ち上げ時間が長くなると云った従来技術の不都合は解消され、蒸発器の伝熱管で速やかに得られた冷水を冷房負荷に供給することで、短時間で冷房運転を立ち上げることができる。
【0033】
また、冷水ポンプの運転を開始しても、蒸発気の内部が設定値を超える圧力低下を示すなど、冷媒が異常に蒸発し易くなったときには、冷媒ポンプを起動しないし、冷凍機全体の運転を停止するので、伝熱管の内部を流れる水や冷媒の水が凍ることはなく安全性にも優れている。
【図面の簡単な説明】
【図1】装置構成の説明図である。
【図2】制御方法の説明図である。
【符号の説明】
1 高温再生器
1A ガスバーナ
2 低温再生器
3 凝縮器
4 蒸発器
5 吸収器
6 低温熱交換器
7 高温熱交換器
8〜10 吸収液管
11 吸収液ポンプ
12〜15 冷媒管
16 冷媒ポンプ
17 開閉弁
18 冷水管
19 冷水ポンプ
20 冷却水管
21 冷却水ポンプ
22 温度センサ
23 圧力センサ
24 流量センサ
25・26 温度センサ
C 制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method at the time of startup of an absorption refrigerator.
[0002]
[Prior art]
In the absorption refrigerator, the refrigerant vapor generated by heating the solution in the regenerator is sent to the condenser, and the refrigerant liquid obtained by cooling with the cooling water in this condenser is sent to the evaporator to evaporate it. The fluid flowing through the heat transfer pipe piped inside is cooled by the evaporation heat of the refrigerant, and the cooled fluid is supplied to the cooled portion to perform a cooling operation such as cooling.
[0003]
When the fluid cooled through the heat transfer pipe installed in the evaporator is inexpensive and water that does not pose a risk of leakage, the operation of the chilled water pump that supplies the cooled water to the cooled part is stopped. If the refrigerant liquid accumulated in the refrigerant liquid reservoir is sprayed on the heat transfer tube by operating the refrigerant pump, the water in the heat transfer tube will freeze, so the chilled water pump is operated to prevent freezing of the chilled water system. Has been done from the beginning.
[0004]
[Problems to be solved by the invention]
However, in the conventional absorption refrigerator described above, the cooling water pump is operated from the beginning when there is no refrigeration capacity, and hot water spreads in the system and the temperature of the entire apparatus rises. There is a problem that it cannot be done, and this solution has been an issue.
[0005]
[Means for Solving the Problems]
In the present invention, as a specific means for solving the above-described problems of the prior art, the heat of evaporation is deprived from the refrigerant in the heat transfer pipes piped in the regenerator / condenser / absorber and the evaporator constituting the refrigeration cycle. At the start of the absorption chiller that supplies the cooled fluid to the part to be cooled and starts cooling, the heating of the absorption liquid in the regenerator and the supply of cooling water to the absorber and condenser are started in advance. Then, at least one of the internal pressure of the evaporator and / or the absorber, the temperature of the refrigerant supplied from the condenser and flushed by the evaporator, and the temperature of the absorbing liquid supplied from the regenerator to the absorber Based on the above, the operation of the pump for supplying the fluid to the part to be cooled is started, and the operation of the refrigerant pump for spraying the refrigerant liquid supplied from the condenser and accumulated in the refrigerant liquid reservoir to the heat transfer pipe The first to start And the control method,
[0006]
In the control method of the first configuration, when the operation of the pump for supplying the fluid to the cooled part is started, the inside of the evaporator and / or the absorber shows a pressure drop exceeding a set value, or the condenser When the refrigerant supplied from the flasher and flashing in the evaporator shows a temperature drop exceeding the set value, or when the absorption liquid supplied from the regenerator to the absorber shows a temperature rise exceeding the set value, the refrigerant pump is operated. A second control method in which the operation of the absorption refrigerator is stopped without starting
By providing the above, the above-described problems of the prior art are solved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
The example illustrated in FIG. 1 is a double-effect absorption refrigerator that circulates and supplies cold water to a load, and uses water as a refrigerant and an aqueous lithium bromide (LiBr) solution as an absorption liquid.
[0008]
In the figure, 1 is a high temperature regenerator equipped with a gas burner 1A, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low temperature heat exchanger, 7 is a high temperature heat exchanger, 8 10 to 10 are absorption liquid pipes, 11 are absorption liquid pumps, 12 to 15 are refrigerant pipes, 16 are refrigerant pumps, 17 are open / close valves, 18 are cold water pipes through which cold water to be circulated and supplied to a cooling load (not shown), and 19 is a cold water pump. , 20 is a cooling water pipe, and 21 is a cooling water pump. These devices are connected by piping as shown in FIG. 1, and this configuration itself is well known in the art.
[0009]
And in the double effect absorption refrigerator of the said structure, when the on-off valve 17 is closed, cooling water is poured into the cooling water pipe 20, the gas burner 1A is ignited and the rare absorbent is heated by the high temperature regenerator 1, and the rare absorbent is Evaporated and separated refrigerant vapor and an intermediate absorption liquid in which the concentration of the absorption liquid is increased by separating the refrigerant vapor are obtained.
[0010]
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the low-temperature regenerator 2 through the refrigerant pipe 12, and is generated in the high-temperature regenerator 1 through the high-temperature heat exchanger 7 via the high-temperature heat exchanger 7. The intermediate absorption liquid that has entered the condenser 2 is heated and condensed by heat dissipation, and enters the condenser 3.
[0011]
Further, the refrigerant heated by the low-temperature regenerator 2 and evaporated and separated from the intermediate absorption liquid enters the condenser 3, exchanges heat with the water flowing in the cooling water pipe 20 to be condensed and liquefied, and is condensed and supplied from the refrigerant pipe 12. The refrigerant enters the evaporator 4 through the refrigerant pipe 13 together with the refrigerant.
[0012]
The refrigerant liquid that has entered the evaporator 4 and accumulated in the refrigerant liquid reservoir is sprayed by the refrigerant pump 16 on the heat transfer pipe 18 </ b> A connected to the cold water pipe 18, and exchanges heat with water supplied through the cold water pipe 18. The water flowing through the heat transfer tube 18A is cooled.
[0013]
Then, the refrigerant evaporated in the evaporator 4 enters the absorber 5 and is heated in the low-temperature regenerator 2 to evaporate and separate the refrigerant, so that the absorption liquid having a further increased concentration of the absorption liquid, that is, the low-temperature heat exchange by the absorption liquid pipe 10. It is supplied via the vessel 6 and absorbed by the concentrated absorbent dispersed from above.
[0014]
Absorbing liquid having a reduced concentration due to absorption of the refrigerant by the absorber 5, that is, the rare absorbing liquid, is supplied to the high temperature regenerator 1 via the low temperature heat exchanger 6 and the high temperature heat exchanger 7 by the operation of the absorption liquid pump 11. It is sent from the absorption liquid pipe 8.
[0015]
When the absorption refrigerator is operated as described above, the cold water cooled by the heat of vaporization of the refrigerant in the heat transfer pipe 18A piped inside the evaporator 4 is passed through the cold water pipe 18 by the operation of the cold water pump 19. It is circulated and supplied to a cooling load (not shown) and performs a cooling action.
[0016]
C is a controller provided in the dual-effect absorption refrigerator having the above-described operation function, and includes a microcomputer, a storage means, and the like, and a chilled water pipe for circulating and supplying chilled water to a cooling load (not shown) 18, the temperature information of the cold water flowing out from the heat transfer pipe 18A of the evaporator 4 is taken in from the temperature sensor 22 provided on the outlet side of the evaporator 4 of the cold water pipe 18, and the evaporator outlet side temperature of this cold water becomes a predetermined set temperature. A conventionally known capacity control function for controlling the amount of heat input to the high-temperature regenerator 1 by adjusting the opening of a heating amount control valve (not shown) connected to the gas burner 1A so as to be maintained.
[0017]
That is, the controller C increases the degree of opening of the heating amount control valve connected to the gas burner 1A as the difference between the predetermined set temperature and the temperature of the cold water detected by the temperature sensor 22 increases. When the temperature of the chilled water detected by the sensor 22 reaches the set temperature, a control program for performing normal capacity control such as suppressing or closing the heating amount control valve to the set opening is stored in the storage means. I have.
[0018]
Further, the controller C controls the operation of the absorption liquid pump 11 so that the liquid level of the absorption liquid in the high temperature regenerator 1 is maintained at a predetermined level, and the temperature of the cold water detected by the temperature sensor 22 is the set temperature. The storage unit also includes a control program for operating the refrigerant pump 16 when the temperature is higher (for example, 7 ° C.).
[0019]
Further, the controller C starts the chilled water pump 19 by delaying the ignition / combustion of the gas burner 1A based on the pressure P in the vapor phase inside the evaporator 4 detected by the pressure sensor 23 attached to the evaporator 4. The control program shown in FIG. 2 is also provided in the storage means.
[0020]
That is, when a start switch (not shown) is turned on, the controller C outputs a required control signal to the cooling water pump 21 in step S1 and starts it, and in step S2, the controller C controls the absorption liquid pump 11 as required. A signal is output and activated, and in step S3, a required control signal is output to the gas burner 1A to start ignition and combustion.
[0021]
In step S <b> 4, the pressure sensor 23 detects the pressure P in the gas phase in the evaporator 4.
[0022]
In step S5, it is determined whether or not the pressure P detected in step S4 is a pressure at which the refrigerant liquid easily evaporates, for example, 1400 Pa or less. If it is determined that the pressure P is 1400 Pa or less, a step is performed. The process proceeds to S6, the cold water pump 19 is started, and when it is determined that it is not, the process returns to step S4 and the detection of the pressure P is repeated.
[0023]
In step S <b> 7, the flow rate V of chilled water supplied to the cooling load (not shown) by the chilled water pump 19 is detected by the flow rate sensor 24 attached to the chilled water pipe 18.
[0024]
In step S8, it is determined whether or not the chilled water flow rate V is greater than or equal to a predetermined flow rate α. If it is determined as YES, a required control signal is output to the refrigerant pump 16 to start it. If not, step S10 is performed. The pressure P is detected by the pressure sensor 23.
[0025]
In step S11, it is determined whether or not the pressure P detected in step S10 is 700 Pa or more. If it is determined as YES, the process returns to step S7 to repeatedly detect the cold water flow rate V. The cooling water pump 21, the absorption liquid pump 11, the cold water pump 19, the gas burner 1A, etc. are urgently stopped, and an alarm is issued by a buzzer sounding, a light turning on / flashing, or the like.
[0026]
Therefore, according to the present invention, the operation of the chilled water pump 19 is started after waiting for the pressure inside the evaporator 4 to drop to a pressure at which the refrigerant evaporates easily, and it is confirmed that the flow rate of the chilled water is ensured. As soon as the operation of the refrigerant pump 16 is started, the water inside the heat transfer pipe 18A is quickly cooled, and this is supplied to the cooling load by the cold water pump 19, so that the cooling operation can be quickly started up. It becomes possible.
[0027]
Further, when the operation of the cold water pump 19 is started, when the pressure P inside the evaporated gas drops below the set pressure, the refrigerant pump 16 is not started and the operation of the entire refrigerator is stopped. The water flowing through the inside and the coolant water will not freeze.
[0028]
The controller C is supplied from the condenser 3 by the refrigerant pipe 13 instead of waiting for the pressure P detected by the pressure sensor 23 to be equal to or lower than the set pressure, and proceeds to step S6. The temperature of the flushing refrigerant is detected by the temperature sensor 25, and the process waits for the temperature to become a set temperature, for example, 15 ° C. or less, and the process proceeds to step S6. The temperature of the concentrated absorbent supplied to the absorber 5 is detected by the temperature sensor 26, and the temperature shows a predetermined rise, for example, 5 ° C./minute, and waits for the circulation of the concentrated absorbent to be confirmed. Even if the process proceeds to step S6, the same effect as described above can be obtained.
[0029]
Moreover, as the controller C, steps S10 and S11 can be similarly changed. In this case, in steps S4 and S5 and steps S10 and S11, it is advantageous to detect and determine the same physical quantity, so that the attached sensor can be shared, but in steps S4 and S5 and steps S10 and S11. In different physical quantities, that is, in steps S4 and S5, for example, the pressure P inside the evaporator 4 is detected and determined, and in steps S10 and S11, the temperature is detected by the temperature sensor 25 or 26 and determined based on the temperature. You may comprise.
[0030]
Further, the controller C can be configured to make an emergency stop when the control between steps S7 and S11 is repeated over a predetermined time.
[0031]
Further, the control method of the present invention pipes so that the high-temperature refrigerant vapor and the absorption liquid generated by heating in the high-temperature regenerator 1 can be directly supplied to the absorber 5 or the evaporator 4, and the heat transfer tube of the evaporator 4. An absorption chiller / heater that can heat and supply water flowing through the interior of 18A is also effective.
[0032]
【The invention's effect】
As described above, according to the present invention, it is possible to start the operation of the chilled water pump after waiting for the refrigerant to be easily evaporated in the evaporator, and cooling is performed by performing such control. The disadvantages of the prior art, such as the fact that no water is supplied to the cooling load and the temperature inside the system is raised to lengthen the startup time of the cooling, are eliminated, and the cold water quickly obtained by the heat transfer tubes of the evaporator is used as the cooling load. By supplying, cooling operation can be started up in a short time.
[0033]
In addition, even if the operation of the cold water pump is started, the refrigerant pump does not start when the refrigerant becomes apt to evaporate abnormally, such as when the inside of the vapor shows a pressure drop exceeding the set value. Therefore, the water flowing in the heat transfer tube and the coolant water are not frozen and the safety is excellent.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an apparatus configuration.
FIG. 2 is an explanatory diagram of a control method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 1A Gas burner 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Low temperature heat exchanger 7 High temperature heat exchanger 8-10 Absorption liquid pipe 11 Absorption liquid pump 12-15 Refrigerant pipe 16 Refrigerant pump 17 On-off valve 18 Chilled water pipe 19 Chilled water pump 20 Chilled water pipe 21 Chilled water pump 22 Temperature sensor 23 Pressure sensor 24 Flow rate sensor 25/26 Temperature sensor C Controller

Claims (2)

再生器・凝縮器・吸収器などと冷凍サイクルを構成する蒸発器の内部に配管した伝熱管内部で冷媒に蒸発熱を奪われて冷却された流体を被冷却部に供給して冷却作用を行う吸収冷凍機の起動時に、再生器における吸収液の加熱と、吸収器および凝縮器への冷却水の供給を先行して開始し、次に蒸発器および/または吸収器の内部圧力、凝縮器から供給されて蒸発器でフラッシングしている冷媒の温度、再生器から吸収器に供給されている吸収液の温度、の少なくとも何れかに基づいて、前記流体を被冷却部に供給するポンプの運転を開始し、そのご凝縮器から供給されて冷媒液溜りに溜まった冷媒液を前記伝熱管に散布するための冷媒ポンプの運転を開始することを特徴とする吸収冷凍機の制御方法。The refrigerating machine, the condenser, the absorber, etc. and the heat transfer pipes piped inside the evaporator that constitutes the refrigeration cycle supply the cooled fluid to the cooled part by taking the heat of evaporation from the refrigerant and performing the cooling action At the start of the absorption refrigerator, heating of the absorption liquid in the regenerator and the supply of cooling water to the absorber and the condenser are started in advance, and then the internal pressure of the evaporator and / or the absorber, from the condenser Based on at least one of the temperature of the refrigerant supplied and flushed by the evaporator and the temperature of the absorbing liquid supplied from the regenerator to the absorber, an operation of the pump for supplying the fluid to the cooled part is performed. A control method for an absorption refrigeration machine, which starts and starts operation of a refrigerant pump for spraying the refrigerant liquid supplied from the condenser and accumulated in the refrigerant liquid reservoir to the heat transfer pipe. 前記流体を被冷却部に供給するポンプの運転を開始したときに、蒸発器および/または吸収器の内部が設定値を超える圧力低下を示すか、凝縮器から供給されて蒸発器でフラッシングしている冷媒が設定値を超える温度低下を示すか、再生器から吸収器に供給されている吸収液が設定値を超える温度上昇を示すときには、冷媒ポンプの運転を開始することなく吸収冷凍機の運転を停止することを特徴とする請求項1記載の吸収冷凍機の制御方法。When the operation of the pump that supplies the fluid to the cooled part is started, the inside of the evaporator and / or the absorber shows a pressure drop exceeding the set value, or is supplied from the condenser and flushed by the evaporator. The absorption chiller is operated without starting the operation of the refrigerant pump when the refrigerant being cooled shows a temperature drop exceeding the set value or the absorption liquid supplied from the regenerator to the absorber shows a temperature rise exceeding the set value. The method for controlling an absorption refrigerator according to claim 1, wherein:
JP02217799A 1999-01-29 1999-01-29 Control method of absorption refrigerator Expired - Fee Related JP4090135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02217799A JP4090135B2 (en) 1999-01-29 1999-01-29 Control method of absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02217799A JP4090135B2 (en) 1999-01-29 1999-01-29 Control method of absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2000220906A JP2000220906A (en) 2000-08-08
JP4090135B2 true JP4090135B2 (en) 2008-05-28

Family

ID=12075526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02217799A Expired - Fee Related JP4090135B2 (en) 1999-01-29 1999-01-29 Control method of absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4090135B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993771B2 (en) * 2013-03-28 2016-09-14 荏原冷熱システム株式会社 Absorption refrigerator
JP6337056B2 (en) * 2015-10-27 2018-06-06 荏原冷熱システム株式会社 Absorption heat pump

Also Published As

Publication number Publication date
JP2000220906A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
JP2003279186A (en) Absorption type refrigerator and method for controlling same
JPH0473064B2 (en)
JP2002147885A (en) Absorption refrigerating machine
JP2003343940A (en) Absorption water cooler/heater
JP4090135B2 (en) Control method of absorption refrigerator
JP3999893B2 (en) Absorption chiller / heater controller
JP3831425B2 (en) Control method of absorption chiller / heater
JP3241623B2 (en) Absorption air conditioner
JP4090137B2 (en) Control method of absorption chiller / heater
JP3837186B2 (en) Absorption refrigerator
JP4141025B2 (en) Operation method of absorption chiller / heater
JP4115020B2 (en) Control method of absorption refrigerator
JP2918665B2 (en) Operation stop method and stop control device for absorption chiller / chiller / heater
JP3281228B2 (en) Absorption type cold / hot water unit
JP2963566B2 (en) Absorption type cold / hot water unit
JP3748950B2 (en) Heat input control device for absorption chiller / heater
JP3945955B2 (en) Absorption refrigerator
JP3639885B2 (en) Control method of absorption refrigerator
JP3148546B2 (en) Operation control method in absorption refrigerator
JP2668039B2 (en) Absorption chiller / heater
JP3920979B2 (en) Absorption air conditioner control device
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP3328164B2 (en) Absorption air conditioner
JPS6118366Y2 (en)
JPH07248161A (en) Absorption type cooler/heater and hot water supplying apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees