JP2902305B2 - Absorption air conditioner - Google Patents

Absorption air conditioner

Info

Publication number
JP2902305B2
JP2902305B2 JP6163733A JP16373394A JP2902305B2 JP 2902305 B2 JP2902305 B2 JP 2902305B2 JP 6163733 A JP6163733 A JP 6163733A JP 16373394 A JP16373394 A JP 16373394A JP 2902305 B2 JP2902305 B2 JP 2902305B2
Authority
JP
Japan
Prior art keywords
absorption
temperature
heating
refrigeration cycle
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6163733A
Other languages
Japanese (ja)
Other versions
JPH0828998A (en
Inventor
寿洋 佐藤
茂 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP6163733A priority Critical patent/JP2902305B2/en
Publication of JPH0828998A publication Critical patent/JPH0828998A/en
Application granted granted Critical
Publication of JP2902305B2 publication Critical patent/JP2902305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷凍サイクルを
用いて室内の冷房と暖房が可能な吸収式空調装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type air conditioner capable of cooling and heating a room using an absorption type refrigeration cycle.

【0002】[0002]

【従来の技術】吸収式冷凍サイクルの基本的な構成は、
吸収液を加熱し、吸収液の一部を気化させる再生器と、
この再生器で発生した気化冷媒を冷却して液化する凝縮
器と、この凝縮器で液化した液化冷媒を低圧下で蒸発さ
せる蒸発器と、この蒸発器で蒸発した気化冷媒を吸収液
に吸収させる吸収器とから構成され、吸収器で気化冷媒
を吸収した吸収液は、溶液ポンプによって再生器へ送ら
れる。そして、蒸発器で冷媒が蒸発する際、蒸発器から
熱媒体回路を介して室内熱交換器へ送られる熱媒体(水
等)から潜熱を奪う。そして、熱が奪われて冷却された
熱媒体は、室内熱交換器に送られて室内空気と熱交換
し、室内を冷房する。
2. Description of the Related Art The basic structure of an absorption refrigeration cycle is as follows.
A regenerator that heats the absorbing liquid and vaporizes a part of the absorbing liquid,
A condenser that cools and liquefies the vaporized refrigerant generated in the regenerator, an evaporator that evaporates the liquefied refrigerant liquefied by the condenser under low pressure, and absorbs the vaporized refrigerant evaporated by the evaporator into an absorbing liquid. The absorbing liquid, which includes an absorber and absorbs the vaporized refrigerant by the absorber, is sent to a regenerator by a solution pump. When the refrigerant evaporates in the evaporator, latent heat is taken from a heat medium (water or the like) sent from the evaporator to the indoor heat exchanger via the heat medium circuit. The heat medium that has been deprived of heat and cooled is sent to the indoor heat exchanger and exchanges heat with the indoor air to cool the room.

【0003】冷房運転中、吸収式冷凍サイクルの内部の
吸収液は、濃度の薄い低濃度吸収液(例えば、吸収器か
ら再生器へ送られる吸収液)や、冷媒が蒸発して濃度の
高くなった高濃度吸収液(例えば再生器から吸収器へ送
られる吸収液)が存在する。濃度の高い吸収液は、濃度
の低い吸収液に比較して、高い温度で晶析する。吸収式
冷凍サイクルの内部で吸収液が晶析すると、晶析部分を
吸収液が流れなくなり、吸収式冷凍サイクルが作動でき
なくなるとともに、吸収式冷凍サイクルの作動を継続さ
せるとサイクルが破損する可能性もある。このため、冷
房運転を停止する際、吸収液を加熱する加熱手段の作動
を停止した状態で、溶液ポンプを作動させ、吸収液の濃
度を均一化させる希釈運転を行う必要がある。
During the cooling operation, the absorption liquid inside the absorption refrigeration cycle becomes high in concentration due to low concentration of low concentration absorption liquid (for example, absorption liquid sent from an absorber to a regenerator) or refrigerant. High-concentration absorbing liquid (for example, absorbing liquid sent from the regenerator to the absorber). Absorbents with higher concentrations crystallize at higher temperatures than absorbers with lower concentrations. If the absorption liquid crystallizes inside the absorption refrigeration cycle, the absorption liquid will not flow through the crystallized part, and the absorption refrigeration cycle will not be able to operate, and if the absorption refrigeration cycle is continued, the cycle may be damaged. There is also. For this reason, when the cooling operation is stopped, it is necessary to perform the dilution operation for operating the solution pump and making the concentration of the absorbing solution uniform while the operation of the heating means for heating the absorbing solution is stopped.

【0004】[0004]

【発明が解決しようとする課題】吸収式冷凍サイクルに
よる冷房運転は、吸収液の濃度差を利用して冷房を行う
ものである。このため、冷房運転が停止後、希釈運転に
よって吸収液の濃度を殆ど均一化すると、次回、冷房運
転を起動させた際、吸収液に十分な濃度差が生じるまで
に時間がかかり、冷房運転の立ち上がりが悪くなる。逆
に、冷房の立ち上がりを良くするために、吸収液に濃度
差を残したままサイクルを停止すると、例えば、冬期な
ど、吸収式冷凍サイクルの設置された環境温度が低下
し、吸収式冷凍サイクル内における濃度の比較的高い吸
収液の温度も低下し、この濃度の比較的高い吸収液が晶
析する不具合が生じる。
In the cooling operation using the absorption refrigeration cycle, the cooling operation is performed by utilizing the concentration difference of the absorption liquid. For this reason, after the cooling operation is stopped, if the concentration of the absorbing solution is made almost uniform by the dilution operation, the next time the cooling operation is started, it takes time until a sufficient concentration difference occurs in the absorbing solution, and the cooling operation has to be started. The rise becomes worse. Conversely, if the cycle is stopped with a concentration difference remaining in the absorbent to improve the rise of cooling, for example, during winter, the environmental temperature at which the absorption refrigeration cycle is installed will decrease, and , The temperature of the relatively high-absorbent solution also decreases, and the relatively high-absorbent solution crystallizes.

【0005】[0005]

【発明の目的】本発明は、上記の事情に鑑みてなされた
もので、その目的は、夏期など続けて冷房を行う場合
は、冷房の立ち上がりに優れ、冬期など吸収式冷凍サイ
クルの設置された環境温度が低下しても、吸収式冷凍サ
イクル内で吸収液の晶析が発生しない吸収式空調装置の
提供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has an object to provide an excellent cooling start-up when cooling is performed continuously in summer or the like, and to install an absorption refrigeration cycle in winter. It is an object of the present invention to provide an absorption air conditioner in which crystallization of an absorption liquid does not occur in an absorption refrigeration cycle even when the environmental temperature is reduced.

【0006】[0006]

〔請求項1の手段〕[Means of claim 1]

吸収式空調装置は、 a)吸収液を加熱させる加熱手段と、 b)この加熱手段で吸収液を加熱することによって吸収
液の一部を気化させる再生器、この再生器で発生した気
化冷媒を冷却して液化する凝縮器、この凝縮器で液化し
た液化冷媒を低圧下で蒸発させる蒸発器、この蒸発器で
蒸発した気化冷媒を吸収液に吸収させる吸収器、この吸
収器内の吸収液を前記再生器へ圧送する溶液ポンプを具
備する吸収式冷凍サイクルと、 c)室内に設置され、室内空気と熱媒体とを熱交換する
室内熱交換器、前記蒸発器で液化冷媒が蒸発する際に蒸
発潜熱が奪われて冷却された熱媒体を、前記室内熱交換
器へ導くとともに、室内熱交換器で室内空気と熱交換さ
れた熱媒体を再び前記蒸発器へ導く熱媒体回路、この熱
媒体回路に設けられ、熱媒体を循環させる熱媒体ポンプ
を備えた室内空調手段と、 d)冷房運転を停止する際、前記加熱手段を停止した状
態で、前記溶液ポンプを作動させ、前記吸収式冷凍サイ
クル内の冷媒および吸収液を循環させ、運転停止中に前
記吸収式冷凍サイクル内における濃度の高い吸収液が、
所定吸収液温度で晶析しない濃度まで希釈させる第1希
釈運転手段と、 e)運転停止中に前記吸収式冷凍サイクル内における濃
度の高い吸収液の温度を検出する吸収液温度検出手段
と、 f)前記加熱手段によって加熱された吸収液を直接前記
蒸発器へ導き、この蒸発器を流れる熱媒体を加熱して室
内暖房を行う暖房運転手段と、 g)前記吸収式冷凍サイクルの最後の運転状態を記憶す
る運転状態記憶手段と、 h)この運転状態記憶手段の記憶する前回の運転状態が
冷房運転で、且つ前記吸収液温度検出手段の検出する吸
収液の温度が、前記所定吸収液温度以上に設定された所
定希釈開始温度に低下すると、前記加熱手段を停止した
状態で、前記溶液ポンプを作動させ、前記吸収式冷凍サ
イクル内の冷媒および吸収液を循環させて、吸収液の濃
度をほぼ均一化させる第2希釈運転手段とを備える。
The absorption-type air conditioner includes: a) heating means for heating the absorption liquid; b) a regenerator for heating the absorption liquid with the heating means to vaporize a part of the absorption liquid; A condenser that cools and liquefies, an evaporator that evaporates the liquefied refrigerant liquefied by the condenser under low pressure, an absorber that absorbs the vaporized refrigerant evaporated by the evaporator into an absorbent, and an absorbent that absorbs the liquid in the absorber. An absorption refrigeration cycle having a solution pump for pumping to the regenerator; c) an indoor heat exchanger installed inside the room for exchanging heat between indoor air and a heat medium, and when the liquefied refrigerant evaporates in the evaporator. A heat medium circuit that guides the heat medium cooled by the deprivation of latent heat of evaporation to the indoor heat exchanger and guides the heat medium heat-exchanged with the indoor air to the evaporator again to the evaporator; Provided in the circuit and circulated heat medium D) when the cooling operation is stopped, the solution pump is operated while the heating means is stopped to circulate the refrigerant and the absorbing liquid in the absorption refrigeration cycle. During the operation stop, the absorbent having a high concentration in the absorption refrigeration cycle,
First dilution operation means for diluting to a concentration that does not crystallize at a predetermined absorption liquid temperature; e) absorption liquid temperature detection means for detecting the temperature of the highly concentrated absorption liquid in the absorption refrigeration cycle while the operation is stopped; ) Heating operation means for guiding the absorbing liquid heated by the heating means directly to the evaporator and heating a heating medium flowing through the evaporator to perform indoor heating; and g) final operation state of the absorption refrigeration cycle. H) the last operation state stored in the operation state storage means is a cooling operation, and the temperature of the absorption liquid detected by the absorption liquid temperature detection means is equal to or higher than the predetermined absorption liquid temperature. When the temperature decreases to the predetermined dilution start temperature set in the above, the solution pump is operated in a state where the heating means is stopped, and the refrigerant and the absorbent in the absorption refrigeration cycle are circulated, and the absorption liquid is cooled. Second dilution operation means for making the concentration substantially uniform.

【0007】〔請求項2の手段〕請求項1の吸収式空調
装置において、前記吸収液温度検出手段は、前記吸収式
冷凍サイクルの設置された環境温度を検出する外気温度
センサで、前記第2希釈運転手段は、運転停止中に前記
外気温度センサの検出する環境温度が所定希釈開始温度
に低下すると、前記吸収式冷凍サイクル内における濃度
の高い吸収液の温度も所定希釈開始温度に低下したと判
断することを特徴とする。
According to a second aspect of the present invention, in the absorption type air conditioner of the first aspect, the absorption liquid temperature detecting means is an outside air temperature sensor for detecting an environmental temperature in which the absorption refrigeration cycle is installed, When the ambient temperature detected by the outside air temperature sensor decreases to a predetermined dilution start temperature while the operation is stopped, the dilution operation means determines that the temperature of the highly concentrated absorbent in the absorption refrigeration cycle has also decreased to the predetermined dilution start temperature. It is characterized by making a judgment.

【0008】[0008]

【0009】〔請求項3の手段〕 請求項1または請求項2の吸収式空調装置において、前
記暖房運転手段は、前記加熱手段で加熱された吸収液を
前記蒸発器へ導く暖房管、およびこの暖房管を暖房運転
中に開く暖房弁とを備え、前記第2希釈運転手段は、吸
収液の濃度を均一化する際、前記暖房弁を開くことを特
徴とする。
[0009] [Claim 3] In the absorption type air conditioner according to claim 1 or 2, the heating operation means includes a heating pipe for guiding the absorbent heated by the heating means to the evaporator; A heating valve that opens the heating pipe during the heating operation, wherein the second dilution operation means opens the heating valve when the concentration of the absorbing solution is made uniform.

【0010】〔請求項4の手段〕 請求項1ないし請求項3のいずれかの吸収式空調装置に
おいて、前記運転状態記憶手段は、不揮発性メモリを用
いた記憶手段であることを特徴とする。
[0010] In the absorption air conditioner according to any one of claims 1 to 3, the operating state storage means is a storage means using a nonvolatile memory.

【0011】[0011]

【作用および発明の効果】[Action and effect of the invention]

〔請求項1の作用〕冷房運転中、吸収式冷凍サイクルの
再生器では吸収液が加熱手段に加熱されて、気化冷媒が
発生するとともに、吸収液の濃度が高くなる。気化冷媒
は凝縮器で凝縮され、液化冷媒となる。液化冷媒は、蒸
発器を流れる熱媒体から気化熱を奪って蒸発する。蒸発
によって気化した冷媒は、吸収器で濃度の高い吸収液に
吸収される。そして、冷媒を吸収して濃度の低くなった
吸収液は、溶液ポンプによって、吸収器から再生器へ送
られ、上記サイクルを繰り返す。
[Function of Claim 1] During the cooling operation, in the regenerator of the absorption refrigeration cycle, the absorption liquid is heated by the heating means to generate vaporized refrigerant and increase the concentration of the absorption liquid. The vaporized refrigerant is condensed in the condenser and becomes a liquefied refrigerant. The liquefied refrigerant evaporates by removing vaporization heat from the heat medium flowing through the evaporator. The refrigerant vaporized by the evaporation is absorbed by the absorbent having a high concentration in the absorber. Then, the absorbing liquid whose concentration has been lowered by absorbing the refrigerant is sent from the absorber to the regenerator by the solution pump, and the above cycle is repeated.

【0012】冷房運転を停止する際、第1希釈運転手段
によって、加熱手段を停止した状態で、溶液ポンプを作
動させ、吸収式冷凍サイクル内における濃度の高い吸収
液が、所定吸収液温度(例えば夏期など冷房を行う頻度
の高い時期における最低温度)で晶析しない濃度まで希
釈させる(第1希釈運転)。
When the cooling operation is stopped, the solution pump is operated by the first dilution operation means while the heating means is stopped, and the high concentration absorbent in the absorption refrigeration cycle is cooled to a predetermined absorbent temperature (for example, (The lowest temperature during a period in which cooling is frequently performed such as in summer) to a concentration that does not crystallize (first dilution operation).

【0013】冷房運転後、季節の移行等によって、吸収
式冷凍サイクルの設置された環境温度が低下し、吸収液
温度検出手段の検出する温度が所定の希釈開始温度(所
定吸収液温度以上に設定された温度)に低下した場合
で、運転状態記憶手段が記憶する前回の運転状態が冷房
であった場合に、第2希釈運転手段によって、加熱手段
を停止した状態で、溶液ポンプを作動させ、吸収式冷凍
サイクル内の冷媒および吸収液を循環させて、吸収液の
濃度をほぼ均一化させる(第2希釈運転)。
After the cooling operation, the environmental temperature at which the absorption refrigeration cycle is installed decreases due to the change of seasons, etc., and the temperature detected by the absorption liquid temperature detecting means is set to a predetermined dilution start temperature (above a predetermined absorption liquid temperature). If the previous operation state stored in the operation state storage means is cooling, the second dilution operation means operates the solution pump in a state in which the heating means is stopped, The refrigerant and the absorption liquid in the absorption refrigeration cycle are circulated to make the concentration of the absorption liquid substantially uniform (second dilution operation).

【0014】〔請求項1の効果〕 本発明の吸収式空調装置は、冷房運転を停止する際に行
う第1希釈運転は、吸収式冷凍サイクル内の吸収液に濃
度差を残した希釈運転で、吸収液の晶析を防ぐととも
に、次回の冷房の立ち上がりをよくする。吸収式冷凍サ
イクルの設置された環境温度が低下し、且つ前回の運転
が冷房運転の場合に行う第2希釈運転は、吸収式冷凍サ
イクル内の吸収液の濃度をほぼ均一化する希釈運転で、
環境温度が極めて低下しても吸収式冷凍サイクル内で吸
収液が晶析するのを防ぐ。吸収式冷凍サイクルによって
暖房運転が行なわれると、吸収式冷凍サイクル内の吸収
液の濃度はほぼ均一化される。このため、運転停止中、
吸収式冷凍サイクル内の吸収液の温度が所定希釈開始温
度に低下しても、運転状態記憶手段の記憶する前回の運
転が暖房運転であった場合は、第2希釈運転は行わな
い。このように、前回の運転状態が暖房運転の場合は、
無駄な第2希釈運転は行われないため、無駄なエネルギ
ー消費を抑えることができる。
In the absorption air conditioner of the present invention, the first dilution operation performed when the cooling operation is stopped is a dilution operation in which a concentration difference is left in the absorption liquid in the absorption refrigeration cycle. In addition, the crystallization of the absorbing solution is prevented, and the next start of cooling is improved. The second dilution operation performed when the environmental temperature at which the absorption refrigeration cycle is installed is lowered and the previous operation is the cooling operation is a dilution operation that makes the concentration of the absorbent in the absorption refrigeration cycle substantially uniform,
Prevents the absorption liquid from crystallizing in the absorption refrigeration cycle even when the environmental temperature is extremely low. When the heating operation is performed by the absorption refrigeration cycle, the concentration of the absorption liquid in the absorption refrigeration cycle becomes substantially uniform. Therefore, during operation stop,
Even if the temperature of the absorbent in the absorption refrigeration cycle drops to the predetermined dilution start temperature, the second dilution operation is not performed if the previous operation stored in the operation state storage means is the heating operation. Thus, when the previous operation state is the heating operation,
Since the useless second dilution operation is not performed, useless energy consumption can be suppressed.

【0015】〔請求項2の作用および効果〕運転停止
中、吸収式冷凍サイクルの設置された環境温度が低下す
ると、吸収式冷凍サイクル内の冷媒の温度も環境温度の
低下に伴い低下する。そして、運転停止中に外気温度セ
ンサの検出する環境温度が所定希釈開始温度に低下する
と、吸収式冷凍サイクル内における濃度の高い吸収液の
温度も所定希釈開始温度に低下したと判断して、第2希
釈運転手段は第2希釈運転を行い、吸収式冷凍サイクル
内の吸収液の濃度をほぼ均一化する。環境温度が低下す
る場合、環境温度の方が、吸収式冷凍サイクル内の吸収
液の温度よりも先に低下する。一方、吸収式冷凍サイク
ル内における吸収液の温度は、吸収液の検出位置によっ
ては温度の低下速度が異なる場合がある。このため、環
境温度を検出して第2希釈運転を行うことにより、吸収
式冷凍サイクル内における吸収液の晶析を確実に防ぐこ
とができる。
When the environmental temperature at which the absorption refrigeration cycle is installed decreases during operation stoppage, the temperature of the refrigerant in the absorption refrigeration cycle also decreases as the environmental temperature decreases. When the ambient temperature detected by the outside air temperature sensor decreases to the predetermined dilution start temperature during the operation stop, it is determined that the temperature of the highly concentrated absorbent in the absorption refrigeration cycle has also decreased to the predetermined dilution start temperature. The second dilution operation means performs the second dilution operation to make the concentration of the absorption liquid in the absorption refrigeration cycle substantially uniform. When the environmental temperature decreases, the environmental temperature decreases before the temperature of the absorbent in the absorption refrigeration cycle. On the other hand, the temperature of the absorbent in the absorption refrigeration cycle may have a different rate of decrease depending on the position at which the absorbent is detected. For this reason, by detecting the environmental temperature and performing the second dilution operation, crystallization of the absorbent in the absorption refrigeration cycle can be reliably prevented.

【0016】[0016]

【0017】〔請求項3の作用および効果〕 第2希釈運転手段は、吸収液の濃度を均一化する際、暖
房弁を開く。すると、再生器の比較的濃度の高い吸収液
が、暖房管を通って蒸発器および吸収器に導かれる。蒸
発器には、冷媒が存在するとともに、吸収器には、気化
冷媒を吸収した後の比較的濃度の低い吸収液が存在す
る。このため、暖房管から供給された濃度の高い吸収液
は、冷媒や濃度の低い吸収液に混ざり合い、溶液ポンプ
によって、再び再生器に導かれる。このように、暖房弁
を開くことにより、吸収式冷凍サイクル内における吸収
液の循環を促進し、吸収液の均一化する時間を短くする
ことができる。
[Function and Effect of Claim 3] The second dilution operation means opens the heating valve when making the concentration of the absorbing solution uniform. Then, the absorbent having a relatively high concentration in the regenerator is guided to the evaporator and the absorber through the heating pipe. In the evaporator, a refrigerant is present, and in the absorber, an absorbing liquid having a relatively low concentration after absorbing the vaporized refrigerant is present. Therefore, the high-concentration absorbing liquid supplied from the heating pipe is mixed with the refrigerant and the low-concentration absorbing liquid, and is again guided to the regenerator by the solution pump. As described above, by opening the heating valve, the circulation of the absorbing liquid in the absorption refrigeration cycle is promoted, and the time required for equalizing the absorbing liquid can be shortened.

【0018】〔請求項4の作用および効果〕 運転状態記憶手段は、不揮発性メモリを用いることによ
って、前回の運転状態を簡単な回路で記憶することがで
きる。
[Operation and Effect of Claim 4] The operating state storage means can store the previous operating state with a simple circuit by using a nonvolatile memory.

【0019】[0019]

【実施例】次に、本発明の吸収式空調装置を、図に示す
実施例に基づき説明する。 〔実施例の構成〕図1および図2は実施例を示すもの
で、図1は室内の空調を行う2重効用型の吸収式冷凍サ
イクルを用いた吸収式空調装置の概略構成図である。本
実施例の吸収式空調装置1は、大別して、吸収液(本実
施例では臭化リチウム水溶液)を加熱する加熱手段2
と、2重効用型の吸収式冷凍サイクル3と、吸収式冷凍
サイクル3で冷却または加熱された冷温水(本発明の熱
媒体で、本実施例では水)で室内を空調する室内空調手
段4と、吸収式冷凍サイクル3内で主に気化冷媒(本実
施例では水蒸気)を冷やすために用いられる冷却水を冷
却する冷却水冷却手段5と、搭載された各電気機能部品
を制御する制御装置6とから構成される。
Next, an absorption type air conditioner of the present invention will be described based on an embodiment shown in the drawings. FIG. 1 and FIG. 2 show an embodiment, and FIG. 1 is a schematic configuration diagram of an absorption air conditioner using a double effect absorption refrigeration cycle for performing indoor air conditioning. The absorption type air conditioner 1 of the present embodiment is roughly divided into a heating means 2 for heating an absorbing liquid (a lithium bromide aqueous solution in this embodiment).
A double-effect absorption refrigeration cycle 3, and indoor air-conditioning means 4 for air-conditioning the room with cold / hot water cooled or heated by the absorption refrigeration cycle 3 (the heat medium of the present invention, water in this embodiment). And a cooling water cooling means 5 for cooling cooling water mainly used for cooling a vaporized refrigerant (steam in this embodiment) in the absorption refrigeration cycle 3, and a control device for controlling each mounted electric functional component And 6.

【0020】〔加熱手段2の説明〕本実施例の加熱手段
2は、燃料であるガスを燃焼して熱を発生させ、発生し
た熱によって吸収液を加熱するガス燃焼装置で、ガスの
燃焼を行うガスバーナ11、このガスバーナ11へガス
の供給を行うガス供給手段12、ガスバーナ11へ燃焼
用の空気を供給する燃焼ファン13等から構成される。
そして、ガスバーナ11のガス燃焼で得られた熱で、吸
収式冷凍サイクル3の沸騰器14を加熱し、沸騰器14
内の低濃度吸収液を加熱するように設けられている。
[Explanation of the Heating Means 2] The heating means 2 of this embodiment is a gas combustion device which burns a gas as a fuel to generate heat and heats the absorbing liquid by the generated heat. The gas burner 11 includes a gas supply unit 12 that supplies gas to the gas burner 11, a combustion fan 13 that supplies air for combustion to the gas burner 11, and the like.
Then, the heat obtained by the gas combustion of the gas burner 11 heats the boiler 14 of the absorption refrigeration cycle 3, and the boiler 14
It is provided so as to heat the low-concentration absorbing solution inside.

【0021】〔吸収式冷凍サイクル3の説明〕吸収式冷
凍サイクル3は、加熱手段2によって加熱される沸騰器
14を備え、この沸騰器14内の低濃度吸収液が加熱さ
れることによって低濃度吸収液に含まれる冷媒(水)を
気化(蒸発)させ、低濃度吸収液を中濃度吸収液にする
高温再生器15と、この高温再生器15内の気化冷媒の
凝縮熱を利用して中濃度吸収液を加熱し、中濃度吸収液
に含まれる冷媒を気化させて中濃度吸収液を高濃度吸収
液にする低温再生器16と、高温再生器15および低温
再生器16からの気化冷媒(水蒸気)を冷却して液化す
る凝縮器17と、この凝縮器17で液化した液化冷媒
(水)を真空に近い圧力下で蒸発させる蒸発器18と、
この蒸発器18で蒸発した気化冷媒を低温再生器16で
得られた高濃度吸収液に吸収させる吸収器19とから構
成される。
[Description of Absorption Refrigeration Cycle 3] The absorption refrigeration cycle 3 is provided with a boiler 14 heated by the heating means 2, and the low-concentration absorption liquid in the boiler 14 is heated to reduce the concentration of the low-concentration absorbent. A high-temperature regenerator 15 that vaporizes (evaporates) the refrigerant (water) contained in the absorption liquid to convert the low-concentration absorption liquid into a medium-concentration absorption liquid, and uses the heat of condensation of the vaporized refrigerant in the high-temperature regenerator 15 to form a medium. A low-temperature regenerator 16 that heats the concentration absorbing liquid to vaporize a refrigerant contained in the medium-concentration absorbing liquid to convert the medium-concentration absorbing liquid into a high-concentration absorbing liquid; A condenser 17 for cooling and liquefying the water vapor), an evaporator 18 for evaporating the liquefied refrigerant (water) liquefied in the condenser 17 under a pressure close to vacuum,
An absorber 19 for absorbing the vaporized refrigerant evaporated in the evaporator 18 into the high-concentration absorbent obtained in the low-temperature regenerator 16.

【0022】〔高温再生器15の説明〕高温再生器15
は、上述のように、加熱手段2によって低濃度吸収液を
加熱する沸騰器14を備える。この沸騰器14で沸騰し
た低濃度吸収液は、沸騰器14から上方へ延びる吹出筒
21から、円筒容器形状の高温再生容器22内に吹き出
す。この高温再生容器22内に吹き出された高温の低濃
度吸収液は、気液分離用のバッフル23に衝突する。そ
して、高温再生容器22内に吹き出された低濃度吸収液
は、一部蒸発して気化冷媒になり、残りが吹出筒21の
周囲に滴下して中濃度吸収液になる。なお、気化冷媒
は、高温再生容器22の壁によって低温再生器4内の中
濃度吸収液の蒸発時の気化熱として熱が奪われて冷却さ
れて液化冷媒(水)になる。
[Explanation of high-temperature regenerator 15] High-temperature regenerator 15
Is provided with the boiler 14 for heating the low concentration absorbing liquid by the heating means 2 as described above. The low-concentration absorbing liquid boiled by the boiler 14 is blown into a cylindrical high-temperature regeneration vessel 22 from a blow-off cylinder 21 extending upward from the boiler 14. The high-temperature, low-concentration absorbent blown into the high-temperature regeneration container 22 collides with a baffle 23 for gas-liquid separation. Then, the low-concentration absorbing liquid blown out into the high-temperature regeneration container 22 is partially evaporated to become a vaporized refrigerant, and the remaining liquid drops around the blowing cylinder 21 to become a medium-concentration absorbing liquid. Note that the vaporized refrigerant is deprived of heat by the wall of the high-temperature regenerating container 22 as heat of vaporization during evaporation of the medium-concentration absorbent in the low-temperature regenerator 4, and is cooled to become a liquefied refrigerant (water).

【0023】高温再生容器22内には、液化冷媒(水)
と、中濃度吸収液とを分離するために、吹出筒21と高
温再生容器22との間に仕切筒24が設けられている。
そして、高温再生容器22で冷却されて液化し、仕切筒
24の外側に分離された液化冷媒(水)は下部に接続さ
れた液冷媒管25を通って凝縮器17に供給される。ま
た、仕切筒24の内側と吹出筒21との間に分離された
中濃度吸収液は下部に接続された中液管26を通って低
温再生器16に供給される。なお、中液管26には、オ
リフィス等の絞り手段27が設けられている。この絞り
手段27は、後述する冷暖切替弁55が閉じられると、
高温再生器15と低温再生器16との圧力差を保った状
態で中濃度吸収液を流し、冷暖切替弁55が開かれると
中濃度吸収液を殆ど流さない。
A liquefied refrigerant (water) is contained in the high-temperature regeneration vessel 22.
A partition tube 24 is provided between the blow-out tube 21 and the high-temperature regeneration container 22 in order to separate the high-concentration absorbent from the medium-concentration absorbent.
The liquefied refrigerant (water) cooled and liquefied in the high-temperature regeneration container 22 and separated outside the partition tube 24 is supplied to the condenser 17 through a liquid refrigerant pipe 25 connected to the lower part. The medium-concentration absorbing liquid separated between the inside of the partition tube 24 and the blow-out tube 21 is supplied to the low-temperature regenerator 16 through a middle liquid pipe 26 connected to the lower part. The middle liquid pipe 26 is provided with a throttle means 27 such as an orifice. When the cooling / heating switching valve 55 to be described later is closed,
When the pressure difference between the high-temperature regenerator 15 and the low-temperature regenerator 16 is maintained, the medium-concentration absorbing liquid flows, and when the cooling / heating switching valve 55 is opened, the medium-concentration absorbing liquid hardly flows.

【0024】〔低温再生器16の説明〕低温再生器16
は、高温再生容器22を覆う筒状容器形状の低温再生容
器31を備え、中液管26を通って供給される中濃度吸
収液を高温再生容器22の天井部分に向けて注入するも
のである。低温再生容器31内の温度は、高温再生容器
22の温度に比較して低いため、低温再生容器31内の
圧力は高温再生容器22の圧力に比較して低い。このた
め、中液管26から低温再生容器31内に供給された中
濃度吸収液は蒸発し易い。そして、中濃度吸収液が高温
再生容器22の天井部分に注入されると、高温再生容器
22の壁によって中濃度吸収液が加熱され、中濃度吸収
液に含まれる冷媒の一部が蒸発して気化冷媒になり、残
りが高濃度吸収液になる。
[Explanation of the low-temperature regenerator 16]
Is provided with a cylindrical low-temperature regeneration container 31 covering the high-temperature regeneration container 22, and injects the medium-concentration absorption liquid supplied through the middle liquid pipe 26 toward the ceiling of the high-temperature regeneration container 22. . Since the temperature in the low-temperature regeneration container 31 is lower than the temperature of the high-temperature regeneration container 22, the pressure in the low-temperature regeneration container 31 is lower than the pressure in the high-temperature regeneration container 22. For this reason, the medium-concentration absorbing liquid supplied from the medium liquid pipe 26 into the low-temperature regeneration container 31 is easily evaporated. Then, when the medium-concentration absorbent is injected into the ceiling of the high-temperature regeneration container 22, the medium-concentration absorption is heated by the walls of the high-temperature regeneration container 22, and a part of the refrigerant contained in the medium-concentration absorption is evaporated. It becomes a vaporized refrigerant, and the rest becomes a high concentration absorbing liquid.

【0025】ここで、低温再生容器31の上方は、環状
容器形状の凝縮容器32の上側と、連通部33により連
通している。このため、低温再生容器31内で蒸発した
気化冷媒は、連通部33を通って凝縮容器32内に供給
される。一方、高濃度吸収液は、低温再生容器31の下
部に落下し、低温再生容器31の下部に接続された高液
管34を通って吸収器19に供給される。なお、低温再
生容器31内の上側には、天井板35が設けられ、この
天井板35の外周端と低温再生容器31との間には、気
化冷媒が通過する隙間36が設けられている。
Here, the upper portion of the low-temperature regeneration container 31 communicates with the upper portion of the condensing container 32 in the shape of an annular container through a communication portion 33. Therefore, the vaporized refrigerant evaporated in the low-temperature regeneration container 31 is supplied into the condensation container 32 through the communication portion 33. On the other hand, the high-concentration absorbing liquid falls to the lower part of the low-temperature regeneration vessel 31 and is supplied to the absorber 19 through the high-liquid pipe 34 connected to the lower part of the low-temperature regeneration vessel 31. A ceiling plate 35 is provided above the low-temperature regeneration container 31, and a gap 36 through which the vaporized refrigerant passes is provided between the outer peripheral end of the ceiling plate 35 and the low-temperature regeneration container 31.

【0026】〔凝縮器17の説明〕凝縮器17は、環状
容器形状の凝縮容器32によって覆われている。この凝
縮容器32の内部には、凝縮容器32内の気化冷媒を冷
却して液化させる凝縮用熱交換器37が配置されてい
る。この凝縮用熱交換器37は、環状のコイルで、内部
には冷却水が流れる。そして、低温再生器16から凝縮
容器32内に供給された液化冷媒は、凝縮用熱交換器3
7によって冷却されて液化し、凝縮用熱交換器37の下
方へ滴下する。
[Explanation of the Condenser 17] The condenser 17 is covered by a condensing container 32 having an annular container shape. Inside the condensing container 32, a condensing heat exchanger 37 for cooling and liquefying the vaporized refrigerant in the condensing container 32 is arranged. The condensing heat exchanger 37 is an annular coil through which cooling water flows. The liquefied refrigerant supplied from the low-temperature regenerator 16 into the condensing container 32 is supplied to the condensing heat exchanger 3.
The mixture is cooled and liquefied by 7 and dropped below the condensing heat exchanger 37.

【0027】一方、凝縮容器32の下側には、上述の高
温再生器15から液冷媒管25を通って冷媒が供給され
る。なお、この供給冷媒は、凝縮容器32内に供給され
る際に、圧力の違い(凝縮容器32内は約70mmHg
の低圧)から、再沸騰し、気化冷媒と液化冷媒とが混合
した状態で供給される。また、凝縮容器32には、液化
冷媒を蒸発器18に導く低液供給管38が接続されてい
る。この低液供給管38には、凝縮容器32から蒸発器
18に供給される液化冷媒の供給量を調節する冷媒弁3
9が設けられている。
On the other hand, a refrigerant is supplied to the lower side of the condensing container 32 from the high-temperature regenerator 15 through the liquid refrigerant pipe 25. When the supplied refrigerant is supplied into the condensing container 32, the pressure difference (the pressure inside the condensing container 32 is about 70 mmHg).
From low pressure), the mixture is reboiled, and supplied in a state where the vaporized refrigerant and the liquefied refrigerant are mixed. Further, a low-liquid supply pipe 38 that guides the liquefied refrigerant to the evaporator 18 is connected to the condensation container 32. The low liquid supply pipe 38 has a refrigerant valve 3 for adjusting the supply amount of the liquefied refrigerant supplied from the condensation container 32 to the evaporator 18.
9 are provided.

【0028】〔蒸発器18の説明〕蒸発器18は、吸収
器19とともに、凝縮容器32の下部に設けられるもの
で、低温再生容器31の周囲に設けられた環状容器形状
の蒸発吸収容器41によって覆われている。この蒸発吸
収容器41の内部の外側には、凝縮器17から供給され
る液化冷媒を蒸発させる蒸発用熱交換器42が配置され
ている。この蒸発用熱交換器42は、環状のコイルで、
内部には室内空調手段4に供給される熱媒体(冷温水)
が流れる。そして、凝縮器17から低液供給管38を介
して供給された液化冷媒は、蒸発用熱交換器42の上部
に配置された冷媒散布具43から蒸発用熱交換器42の
上に散布される。
[Explanation of the evaporator 18] The evaporator 18 is provided below the condensing container 32 together with the absorber 19, and is formed by an annular-shaped evaporative absorption container 41 provided around the low-temperature regeneration container 31. Covered. An evaporation heat exchanger 42 for evaporating the liquefied refrigerant supplied from the condenser 17 is disposed outside the inside of the evaporation absorption container 41. This evaporating heat exchanger 42 is an annular coil,
Heat medium (cold and hot water) supplied to the indoor air-conditioning means 4 inside
Flows. The liquefied refrigerant supplied from the condenser 17 via the low liquid supply pipe 38 is sprayed onto the evaporating heat exchanger 42 from the refrigerant spraying tool 43 disposed above the evaporating heat exchanger 42. .

【0029】蒸発吸収容器41内は、ほぼ真空(例えば
6.5mmHg)に保たれるため、沸点が低く、蒸発用
熱交換器42に散布された液化冷媒は、大変蒸発しやす
い。そして、蒸発用熱交換器42に散布された液化冷媒
は、蒸発用熱交換器42内を流れる熱媒体から気化熱を
奪って蒸発する。この結果、蒸発用熱交換器42内を流
れる熱媒体が冷却される。そして、冷却された熱媒体
は、室内空調手段4に導かれ、室内を冷房する。
Since the inside of the evaporative absorption container 41 is kept substantially at a vacuum (for example, 6.5 mmHg), it has a low boiling point, and the liquefied refrigerant sprayed to the evaporating heat exchanger 42 is very easy to evaporate. Then, the liquefied refrigerant sprayed to the evaporating heat exchanger 42 evaporates by taking heat of vaporization from the heat medium flowing in the evaporating heat exchanger 42. As a result, the heat medium flowing in the evaporating heat exchanger 42 is cooled. Then, the cooled heat medium is guided to the indoor air conditioner 4 to cool the room.

【0030】〔吸収器19の説明〕吸収器19は、上述
のように、蒸発吸収容器41に覆われる。そして、吸収
器19は、蒸発吸収容器41の内部の内側に、高液管3
4から供給される高濃度吸収液を冷却する吸収用熱交換
器44が配置されている。この吸収用熱交換器44は、
環状のコイルで、内部には、コイル上に散布された高濃
度吸収液を冷却する冷却水が供給される。なお、吸収用
熱交換器44を通過した冷却水は、凝縮器17の凝縮用
熱交換器37を通過した後、冷却水冷却手段5に導か
れ、冷却される。そして冷却水冷却手段5で冷却された
冷却水は、再び吸収用熱交換器44に導かれる。
[Description of Absorber 19] The absorber 19 is covered with the evaporation absorption container 41 as described above. The absorber 19 is provided inside the evaporative absorption container 41 with the high liquid pipe 3.
An absorption heat exchanger 44 for cooling the high-concentration absorption liquid supplied from 4 is arranged. This absorption heat exchanger 44
Cooling water for cooling the high-concentration absorbing liquid sprayed on the coil is supplied inside the annular coil. After passing through the heat exchanger 44 for absorption, the cooling water passes through the heat exchanger 37 for condensation of the condenser 17 and is guided to the cooling water cooling means 5 to be cooled. Then, the cooling water cooled by the cooling water cooling means 5 is guided again to the absorption heat exchanger 44.

【0031】一方、吸収用熱交換器44の上部には、高
液管34から供給される高濃度吸収液を吸収用熱交換器
44に散布する吸収液散布具45が配置される。吸収用
熱交換器44に散布された高濃度吸収液は、吸収用熱交
換器44のコイル表面を伝わって上方から下方へ落下す
る間に、蒸発用熱交換器42において蒸発により生成さ
れた気化冷媒を吸収する。この結果、蒸発吸収容器41
の底に落下した吸収液は、濃度が薄くなった低濃度吸収
液となる。蒸発吸収容器41の底には、蒸発吸収容器4
1の底の低濃度吸収液を沸騰器14に供給するための低
液管46が接続されている。この低液管46には、ほぼ
真空状態の蒸発吸収容器41内から沸騰器14に向けて
低濃度吸収液を流すために、溶液ポンプ47が設けられ
ている。
On the other hand, above the absorption heat exchanger 44, an absorption liquid spraying device 45 for spraying the high concentration absorption liquid supplied from the high liquid pipe 34 to the absorption heat exchanger 44 is arranged. The high-concentration absorbing liquid sprayed on the absorption heat exchanger 44 passes through the coil surface of the absorption heat exchanger 44 and falls from above to below while evaporating generated by evaporation in the evaporation heat exchanger 42. Absorbs refrigerant. As a result, the evaporation absorption container 41
Absorbent liquid that has fallen to the bottom of the container becomes a low-concentration absorbent liquid with a reduced concentration. At the bottom of the evaporative absorption container 41, the evaporative absorption container 4
A low liquid pipe 46 for supplying the low concentration absorbing liquid at the bottom of 1 to the boiler 14 is connected. The low-liquid pipe 46 is provided with a solution pump 47 for flowing the low-concentration absorption liquid from the evaporation absorption container 41 in a substantially vacuum state toward the boiler 14.

【0032】〔吸収式冷凍サイクル3における上記以外
の構成部品の説明〕図1に示す符号51は、高温再生器
15から低温再生器16へ流れる中濃度吸収液と、吸収
器19から沸騰器14へ流れる低濃度吸収液とを熱交換
する高温熱交換器で、高温再生器15から低温再生器1
6へ流れる中濃度吸収液を冷却し、逆に吸収器19から
沸騰器14へ流れる低濃度吸収液を加熱するものであ
る。また、図1に示す符号52は、低温再生器16から
吸収器19へ流れる高濃度吸収液と、吸収器19から沸
騰器14へ流れる低濃度吸収液とを熱交換する低温熱交
換器で、低温再生器16から吸収器19へ流れる高濃度
吸収液を冷却し、逆に吸収器19から沸騰器14へ流れ
る低濃度吸収液を加熱するものである。
[Explanation of Other Components in Absorption Refrigeration Cycle 3] Reference numeral 51 shown in FIG. 1 designates a medium-concentration absorbing liquid flowing from the high-temperature regenerator 15 to the low-temperature regenerator 16 and a liquid from the absorber 19 to the boiling unit 14. A high-temperature heat exchanger for exchanging heat with the low-concentration absorbent flowing to the low-temperature regenerator 1 from the high-temperature regenerator 15
6 is used to cool the medium-concentration absorbing liquid, and conversely to heat the low-concentration absorbing liquid flowing from the absorber 19 to the boiler 14. Reference numeral 52 shown in FIG. 1 denotes a low-temperature heat exchanger that exchanges heat between the high-concentration absorbent flowing from the low-temperature regenerator 16 to the absorber 19 and the low-concentration absorbent flowing from the absorber 19 to the boiler 14, The high-concentration absorbent flowing from the low-temperature regenerator 16 to the absorber 19 is cooled, while the low-concentration absorbent flowing from the absorber 19 to the boiler 14 is heated.

【0033】また、本実施例の吸収式冷凍サイクル3に
は、上述の作動による冷房運転の他に、暖房運転を行う
ための暖房運転手段53が設けられている。暖房運転手
段53は、高温再生器15から低温再生器16へ中濃度
吸収液を導く中液管26の途中から分岐して、温度の高
い吸収液を蒸発器18および吸収器19を収納する蒸発
吸収容器41へ導く暖房管54と、この暖房管54を開
閉する冷暖切替弁55(本発明の暖房弁に相当)とから
構成される。この冷暖切替弁55は、暖房運転時に開弁
して高温の吸収液を蒸発吸収容器41内へ導き、蒸発器
18の蒸発用熱交換器42内を流れる冷温水を加熱する
ものである。
The absorption refrigeration cycle 3 of this embodiment is provided with a heating operation means 53 for performing a heating operation in addition to the cooling operation by the above-described operation. The heating operation means 53 branches off from the middle of the middle liquid pipe 26 that guides the medium-concentration absorbent from the high-temperature regenerator 15 to the low-temperature regenerator 16, and evaporates the high-temperature absorbent into the evaporator 18 and the absorber 19. It comprises a heating pipe 54 leading to the absorption container 41 and a cooling / heating switching valve 55 (corresponding to a heating valve of the present invention) for opening and closing the heating pipe 54. The cooling / heating switching valve 55 opens during the heating operation to guide the high-temperature absorbing liquid into the evaporating / absorbing container 41 and heat the cold / hot water flowing in the evaporating heat exchanger 42 of the evaporator 18.

【0034】〔室内空調手段4の説明〕室内に設置され
た室内熱交換器61、冷温水を循環させる冷温水回路6
2(本発明の熱媒体回路に相当する)、および熱媒体回
路で熱媒体を循環させる冷温水ポンプ63(本発明の熱
媒体ポンプに相当)を備える。室内熱交換器61は、蒸
発器18を通過した冷温水と室内空気とを熱交換する気
体と液体の熱交換器で、室内熱交換器61を流れる冷温
水と室内空気とを強制的に熱交換し、熱交換後の空気を
室内に吹き出させるための室内ファン64を備える。
[Explanation of Indoor Air-Conditioning Means 4] An indoor heat exchanger 61 installed indoors, a cold / hot water circuit 6 for circulating cold / hot water
2 (corresponding to the heat medium circuit of the present invention) and a cold / hot water pump 63 (corresponding to the heat medium pump of the present invention) for circulating the heat medium in the heat medium circuit. The indoor heat exchanger 61 is a gas and liquid heat exchanger that exchanges heat between the cold and hot water that has passed through the evaporator 18 and the indoor air, and forcibly heats the cold and hot water that flows through the indoor heat exchanger 61 and the indoor air. An indoor fan 64 for exchanging and blowing out the air after the heat exchange into the room is provided.

【0035】冷温水回路62は、蒸発器18を通過した
冷温水を、室内に設置された室内熱交換器61に導き、
室内空気と熱交換した冷温水を再び蒸発器18へ導く水
管で、この冷温水回路62中には、室内熱交換器61と
冷温水ポンプ63の他に、冷温水を蓄えて、冷温水回路
62内に冷温水の補充を行うシスターン65を備える。
このシスターン65には、内部へ冷温水(水道水)を供
給する給水管66が接続されている。この給水管66に
は、シスターン65内へ冷温水の供給、停止を行う給水
バルブ67が設けられている。このシスターン65に
は、図示しない水位センサを備え、シスターン65内の
冷却水が低下すると、給水バルブ67を開いてシスター
ン65内に冷温水を補充するように設けられている。ま
た、シスターン65には、オーバーフローした冷温水
を、後述する冷却水タンク78内へ導くオーバーフロー
水供給手段68が設けられている。
The cold / hot water circuit 62 guides the cold / hot water passing through the evaporator 18 to the indoor heat exchanger 61 installed in the room.
A water pipe for introducing the cold and hot water that has exchanged heat with the indoor air to the evaporator 18 again. In the cold and hot water circuit 62, in addition to the indoor heat exchanger 61 and the cold and hot water pump 63, cold and hot water is stored. A cistern 65 for replenishing cold and hot water is provided in 62.
A water supply pipe 66 for supplying cold / hot water (tap water) to the inside is connected to the cistern 65. The water supply pipe 66 is provided with a water supply valve 67 that supplies and stops cold and hot water into the cistern 65. The cistern 65 is provided with a water level sensor (not shown). When the cooling water in the cistern 65 decreases, the water supply valve 67 is opened to replenish the cistern 65 with cold and hot water. Further, the cistern 65 is provided with overflow water supply means 68 for guiding the overflowed cold / hot water into a cooling water tank 78 described later.

【0036】〔冷却水冷却手段5の説明〕冷却水冷却手
段5は、蒸発型の冷却塔71、冷却水を循環させる冷却
水回路72、および冷却水回路72で冷却水を循環させ
る冷却水ポンプ73を備える。冷却塔71は、吸収器1
9および凝縮器17を通過した冷却水を、上方から下方
へ流し、流れている間に外気と熱交換して放熱するとと
もに、流れている間に一部蒸発させて、蒸発時に流れて
いる冷却水から気化熱を奪い、流れている冷却水を冷却
するもので、上方において冷却水を散布する散布部74
と、冷却水が流れる広い表面積の蒸発部75と、この蒸
発部75を通過した冷却水を集める収集部76とから構
成される。また、この冷却塔71は、蒸発部75に空気
流を生じさせ、蒸発部75における冷却水の蒸発および
冷却を促進する冷却水ファン77を備える。
[Description of Cooling Water Cooling Means 5] The cooling water cooling means 5 includes an evaporative cooling tower 71, a cooling water circuit 72 for circulating cooling water, and a cooling water pump for circulating cooling water in the cooling water circuit 72. 73 is provided. The cooling tower 71 includes the absorber 1
The cooling water that has passed through the condenser 9 and the condenser 17 flows downward from above, exchanges heat with the outside air while flowing to radiate heat, and partially evaporates during the flow, thereby cooling during the evaporation. A spraying unit 74 for removing the vaporization heat from the water and cooling the flowing cooling water, and spraying the cooling water upward.
And an evaporator 75 having a large surface area through which the cooling water flows, and a collector 76 for collecting the cooling water passing through the evaporator 75. In addition, the cooling tower 71 includes a cooling water fan 77 that generates an airflow in the evaporating section 75 and promotes evaporation and cooling of the cooling water in the evaporating section 75.

【0037】冷却水回路72は、吸収器19および凝縮
器17を通過して、温度の上昇した冷却水を、冷却塔7
1へ導き、この冷却塔71で冷却された冷却水を再び吸
収器19および凝縮器17へ送る水管で、この冷却水回
路72中には、冷却塔71と冷却水ポンプ73の他に、
冷却水を蓄える冷却水タンク78を備える。この冷却水
タンク78は、冷却塔71の下方で、且つシスターン6
5の下方に設置され、冷却塔71を通過した冷却水が供
給されるととともに、シスターン65でオーバーフロー
した水が供給されるように設けられている。冷却水タン
ク78には、図示しない水位センサを備え、冷却水タン
ク78内の冷却水が低下すると、給水バルブ67を開い
てシスターン65から水を溢れさせ、溢れた水をオーバ
ーフロー水供給手段68から冷却水タンク78内へ導
き、冷却水を補充するように設けられている。
The cooling water circuit 72 passes the cooling water, which has passed through the absorber 19 and the condenser 17 and has increased in temperature, to the cooling tower 7.
1 and sends the cooling water cooled by the cooling tower 71 to the absorber 19 and the condenser 17 again. In the cooling water circuit 72, in addition to the cooling tower 71 and the cooling water pump 73,
A cooling water tank 78 for storing cooling water is provided. The cooling water tank 78 is provided below the cooling tower 71 and at the cistern 6
5, the cooling water passing through the cooling tower 71 is supplied, and the water overflowed by the cistern 65 is supplied. The cooling water tank 78 is provided with a water level sensor (not shown). When the cooling water in the cooling water tank 78 decreases, the water supply valve 67 is opened to overflow water from the cistern 65, and the overflowed water is supplied from the overflow water supply means 68. It is provided so as to be guided into the cooling water tank 78 and replenish the cooling water.

【0038】〔制御装置6の説明〕制御装置6は、上述
の冷媒弁39、溶液ポンプ47、冷温水ポンプ63、室
内ファン64、冷暖切替弁55、給水バルブ67、冷却
水ポンプ73、冷却水ファン77などの電気機能部品、
および加熱手段2の電気機能部品(燃焼ファン13、ガ
ス量調節弁81、ガス開閉弁82、点火装置83等)
を、使用者によって手動設定されるコントローラ(図示
しない)の操作指示や、複数設けられた各センサの入力
信号に応じて通電制御するものである。
[Explanation of the control device 6] The control device 6 includes the refrigerant valve 39, the solution pump 47, the cold / hot water pump 63, the indoor fan 64, the cooling / heating switching valve 55, the water supply valve 67, the cooling water pump 73, and the cooling water. Electrical functional components such as fan 77,
And electric functional components of the heating means 2 (combustion fan 13, gas amount control valve 81, gas on-off valve 82, ignition device 83, etc.)
Is controlled in accordance with an operation instruction of a controller (not shown) manually set by a user and input signals of a plurality of sensors provided.

【0039】制御装置6に入力されるセンサの一例とし
て、沸騰器14内の低濃度吸収液の温度を検出する液温
度センサ85と、吸収式冷凍サイクル3が設置された屋
外温度(環境温度)を検出することによって、吸収式冷
凍サイクル3内の吸収液の温度を検出する外気温度セン
サ86(本発明の吸収液温度検出手段に相当)とを備え
る。制御装置6は、冷房運転を停止する際に、加熱手段
2を停止し、冷媒弁39および冷暖切替弁55を閉じた
状態で、液温度センサ85の検出する低濃度吸収液の温
度が所定温度(例えば110℃)に低下するまで、溶液
ポンプ47を作動させる第1希釈運転手段87を備え
る。この希釈運転によって、吸収式冷凍サイクル3内の
冷媒および吸収液が循環し、吸収式冷凍サイクル3内に
おける濃度の高い吸収液が、所定吸収液温度(例えば3
℃、この温度は、後述する希釈開始温度と同じか、希釈
開始温度よりも低く設定された温度)で晶析しない濃度
まで希釈される。つまり、運転停止後、次回の冷房が開
始された際の冷房の立ち上がりを向上するために、吸収
式冷凍サイクル3内に、多少の濃度差を残した状態であ
るが、吸収式冷凍サイクル3の設置された外気温度が所
定吸収液温度に低下して、吸収式冷凍サイクル3内にお
ける吸収液の温度も所定吸収液温度に低下しても、吸収
式冷凍サイクル3内において晶析の発生を防ぐものであ
る。
As an example of a sensor input to the control device 6, a liquid temperature sensor 85 for detecting the temperature of the low-concentration absorbent in the boiler 14, and an outdoor temperature (environmental temperature) where the absorption refrigeration cycle 3 is installed. And an outside air temperature sensor 86 (corresponding to the absorbent temperature detecting means of the present invention) for detecting the temperature of the absorbent in the absorption refrigeration cycle 3 by detecting the temperature of the absorbent. When stopping the cooling operation, the control device 6 stops the heating means 2 and, when the refrigerant valve 39 and the cooling / heating switching valve 55 are closed, the temperature of the low-concentration absorbing liquid detected by the liquid temperature sensor 85 reaches a predetermined temperature. A first dilution operation means 87 for operating the solution pump 47 until the temperature decreases to (for example, 110 ° C.) is provided. By this dilution operation, the refrigerant and the absorbing liquid in the absorption refrigeration cycle 3 circulate, and the absorption liquid having a high concentration in the absorption refrigeration cycle 3 becomes a predetermined absorption liquid temperature (for example,
° C, this temperature is equal to or lower than the dilution start temperature to be described later) to a concentration that does not cause crystallization. In other words, after the operation is stopped, a slight concentration difference is left in the absorption refrigeration cycle 3 in order to improve the rise of the cooling when the next cooling is started. Even if the installed outside air temperature decreases to the predetermined absorption liquid temperature and the temperature of the absorption liquid in the absorption refrigeration cycle 3 also decreases to the predetermined absorption liquid temperature, crystallization is prevented from occurring in the absorption refrigeration cycle 3. Things.

【0040】制御装置6は、吸収式冷凍サイクル3の最
後の運転状態、つまり、吸収式空調装置1の最後の運転
状態を記憶する運転状態記憶手段88を備える。この運
転状態記憶手段88は、電源をOFF しても記憶内容が消
去されない不揮発性メモリ(例えばEEPROM)を用
いたものである。また、制御装置6は、吸収式空調装置
1の運転停止中、運転状態記憶手段88の記憶する前回
の運転状態が冷房運転で、且つ外気温度センサ86の検
出する外気温度が、上述した所定吸収液温度以上に設定
された所定の希釈開始温度(例えば5℃)以下に低下す
ると、加熱手段2を停止した状態で、冷媒弁39および
冷暖切替弁55を開き、溶液ポンプ47を作動させ、吸
収式冷凍サイクル3内の冷媒および吸収液を所定時間
(例えば2分間)循環させて、吸収液の濃度をほぼ均一
化させる第2希釈運転手段89を備える。この作動によ
って、外気温度が所定吸収液温度以下に低下し、吸収式
冷凍サイクル3内の吸収液も所定吸収液温度以下に低下
しても、吸収式冷凍サイクル3内に晶析が発生しない。
The control device 6 includes operating state storage means 88 for storing the last operating state of the absorption refrigeration cycle 3, that is, the last operating state of the absorption air conditioner 1. The operating state storage means 88 uses a nonvolatile memory (for example, an EEPROM) whose stored contents are not erased even when the power is turned off. Further, the controller 6 determines that while the operation of the absorption air conditioner 1 is stopped, the previous operation state stored in the operation state storage means 88 is the cooling operation, and the outside air temperature detected by the outside air temperature sensor 86 is equal to the above-mentioned predetermined absorption. When the temperature drops to a predetermined dilution start temperature (for example, 5 ° C.) or lower which is higher than the liquid temperature, the refrigerant valve 39 and the cooling / heating switching valve 55 are opened with the heating means 2 stopped, and the solution pump 47 is operated to absorb the liquid. A second dilution operation means 89 is provided for circulating the refrigerant and the absorbing liquid in the refrigerating cycle 3 for a predetermined time (for example, 2 minutes) to make the concentration of the absorbing liquid almost uniform. By this operation, crystallization does not occur in the absorption refrigeration cycle 3 even if the outside air temperature falls below the predetermined absorption liquid temperature and the absorption liquid in the absorption refrigeration cycle 3 also falls below the predetermined absorption liquid temperature.

【0041】次に、上記第1希釈運転手段87の作動
を、図2のフローチャートに基づき説明する。冷房運転
中、コントローラより冷房運転を停止する指示が与えら
れた場合、あるいは安全作動のために冷房運転を停止す
る指示が制御装置6より与えられると(スタート)、溶
液ポンプ47や冷却水冷却手段5の作動を継続するとと
もに、加熱手段2の燃焼ファン13は作動させたまま、
ガス量調節弁81、ガス開閉弁82の通電を停止してガ
スバーナ11におけるガスの燃焼を停止する(ステップ
S1 )。
Next, the operation of the first dilution operation means 87 will be described with reference to the flowchart of FIG. During the cooling operation, when the controller gives an instruction to stop the cooling operation, or when the controller 6 gives an instruction to stop the cooling operation for safe operation (start), the solution pump 47 and the cooling water cooling means are provided. 5 while continuing to operate the combustion fan 13 of the heating means 2.
The energization of the gas control valve 81 and the gas on-off valve 82 is stopped to stop gas combustion in the gas burner 11 (step S1).

【0042】次に、液温度センサ85の検出する低濃度
吸収液の温度が110℃以下であるか否かの判断を行う
(ステップS2 )。この判断結果がNOの場合は、ステッ
プS2 へ戻る。ステップS2 の判断結果がYES の場合
は、吸収式冷凍サイクル3内における吸収液の濃度が、
所定吸収液温度に低下するまで晶析しない状態まで希釈
されたと判断して、吸収式空調装置1の全ての作動を停
止する(ステップS3 )。
Next, it is determined whether the temperature of the low-concentration absorbing liquid detected by the liquid temperature sensor 85 is 110 ° C. or less (step S2). If this determination is NO, the process returns to step S2. If the decision result in the step S2 is YES, the concentration of the absorbent in the absorption refrigeration cycle 3 becomes:
It is determined that the dilution is performed to a state where crystallization does not occur until the temperature of the absorption liquid drops to a predetermined value, and all the operations of the absorption air conditioner 1 are stopped (step S3).

【0043】次に、上記第2希釈運転手段89の作動
を、図3のフローチャートに基づき説明する。吸収式空
調装置1の停止中で、運転状態記憶手段88の記憶する
前回の運転状態が冷房運転の場合(スタート)、外気温
度センサ86の検出する外気温度が5℃(希釈開始温
度)以下に低下したか否かの判断を行う(ステップS1
1)。この判断結果がNOの場合は、ステップS11へ戻
る。また、判断結果がYES の場合は、吸収式冷凍サイク
ル3内の吸収液の濃度を均一化させるために、冷媒弁3
9および冷暖切替弁55を開き、溶液ポンプ47を作動
させる(ステップS12)。次に、この希釈運転が開始さ
れてから、2分経過したか否かの判断を行う(ステップ
S13)。この判断結果がNOの場合は、ステップS13へ戻
る。ステップS13の判断結果がYES の場合は、吸収液の
濃度がほぼ均一化したと判断して、吸収式空調装置1の
全ての作動を停止する(ステップS14)。なお、この希
釈運転後は、運転状態記憶手段88の記憶する前回の運
転状態は、冷房運転ではなく、第2希釈運転となるた
め、次回、外気温度が5℃以下に低下しても、第2希釈
運転は行わない。
Next, the operation of the second dilution operation means 89 will be described with reference to the flowchart of FIG. If the previous operation state stored in the operation state storage means 88 is the cooling operation (start) while the absorption air conditioner 1 is stopped, the outside air temperature detected by the outside air temperature sensor 86 becomes 5 ° C. (dilution start temperature) or less. A determination is made as to whether or not the temperature has decreased (step S1).
1). If this determination is NO, the process returns to step S11. If the determination result is YES, the refrigerant valve 3 is used to make the concentration of the absorbent in the absorption refrigeration cycle 3 uniform.
9 and the cooling / heating switching valve 55 are opened, and the solution pump 47 is operated (step S12). Next, it is determined whether two minutes have passed since the start of the dilution operation (step S13). If this determination is NO, the process returns to step S13. If the decision result in the step S13 is YES, it is determined that the concentration of the absorbing liquid has become substantially uniform, and all the operations of the absorption air conditioner 1 are stopped (step S14). After the dilution operation, the previous operation state stored in the operation state storage unit 88 is not the cooling operation but the second dilution operation. No 2 dilution operation is performed.

【0044】〔実施例の効果〕本実施例の吸収式空調装
置1は、上記作動で示したように、冷房運転を停止する
際に行う第1希釈運転は、吸収式冷凍サイクル3内の吸
収液に多少の濃度差を残した希釈運転であり、次回の冷
房の立ち上がりに優れる。また、夏期など、冷房運転を
行う頻度が高い時期では、吸収液の温度が低下しても、
吸収液の晶析が防がれる。また、冷房シーズンが終わ
り、吸収式冷凍サイクル3の設置された外気温度が5℃
(希釈開始温度)に低下した場合に行う第2希釈運転
は、吸収式冷凍サイクル3内の吸収液の濃度をほぼ均一
化するため、冬期など、外気温度が極めて低下しても、
吸収液の晶析を防ぐことができる。
[Effects of the Embodiment] In the absorption type air conditioner 1 of the present embodiment, as shown in the above-mentioned operation, the first dilution operation performed when the cooling operation is stopped is performed by the absorption type air conditioner in the absorption refrigeration cycle 3. This is a dilution operation in which a slight difference in concentration is left in the liquid, and is excellent in the next startup of cooling. In addition, during the period when the cooling operation is frequently performed, such as in the summer, even if the temperature of the absorbent decreases,
Crystallization of the absorbing solution is prevented. When the cooling season is over and the outside air temperature at which the absorption refrigeration cycle 3 is installed is 5 ° C.
The second dilution operation performed when the temperature has decreased to (dilution start temperature) substantially equalizes the concentration of the absorption liquid in the absorption refrigeration cycle 3, and therefore, even if the outside air temperature is extremely reduced, such as in winter,
Crystallization of the absorbing solution can be prevented.

【0045】また、本実施例では、第2希釈運転によっ
て吸収液の濃度を均一化する際、冷媒弁39および冷暖
切替弁55を開くため、ガスバーナ11による加熱運転
を行わなくても高温再生器15から暖房管54を介して
蒸発吸収容器41内へ吸収液を供給することができ、供
給された比較的濃度の高い吸収液は、凝縮器17から冷
媒弁39を介して供給された冷媒や濃度の低い吸収液に
混ざり合う。この結果、吸収式冷凍サイクル3内におけ
る吸収液の均一化する時間を、本実施例では2分と短く
することができる。さらに、運転状態記憶手段88に不
揮発性メモリを用いたことによって、前回の運転状態を
簡単な回路で記憶することができる。
In this embodiment, when the concentration of the absorbing solution is made uniform by the second dilution operation, the refrigerant valve 39 and the cooling / heating switching valve 55 are opened. 15 can supply the absorbing liquid into the evaporation absorption container 41 via the heating pipe 54, and the supplied relatively high-absorbing liquid is supplied to the refrigerant supplied from the condenser 17 through the refrigerant valve 39 or the refrigerant. Mixes with low concentration absorbents. As a result, in the present embodiment, the time for equalizing the absorption liquid in the absorption refrigeration cycle 3 can be shortened to 2 minutes. Furthermore, by using a non-volatile memory for the operation state storage means 88, the previous operation state can be stored by a simple circuit.

【0046】〔変形例〕上記の実施例では、吸収式冷凍
サイクルの設置されている環境温度(外気温度)を検出
して吸収液温度の低下を推測し、第2希釈運転を開始さ
せた例を示したが、吸収式冷凍サイクルの吸収液の温度
を直接検出し、直接検出された吸収液の温度が希釈開始
温度に低下した場合に第2希釈運転を行うように設けて
も良い。上記の実施例では、2重効用型の吸収式冷凍サ
イクル3を例に示したが、1重効用型の吸収式冷凍サイ
クルでも良いし、3重以上の多重効用型の吸収式冷凍サ
イクルでも良い。また、低温再生器内に中濃度吸収液を
注入する際、低温再生器の上方から注入する例を示した
が、下方から注入しても良い。
[Modification] In the above embodiment, the second dilution operation is started by detecting the environmental temperature (outside air temperature) where the absorption refrigeration cycle is installed and estimating a decrease in the absorption liquid temperature. However, the temperature of the absorbent in the absorption refrigeration cycle may be directly detected, and the second dilution operation may be performed when the directly detected temperature of the absorbent drops to the dilution start temperature. In the above embodiment, the double-effect absorption refrigeration cycle 3 has been described as an example, but a single-effect absorption refrigeration cycle may be used, or a triple-effect or multiple-effect absorption refrigeration cycle may be used. . In addition, when the medium-concentration absorbing liquid is injected into the low-temperature regenerator, an example in which the medium-concentration absorbing liquid is injected from above the low-temperature regenerator has been described.

【0047】加熱手段の加熱源としてガスバーナを用い
たが、石油バーナや電気ヒータを用いたり、他の装置
(例えば内燃機関)の排熱を利用しても良い。凝縮用熱
交換器、蒸発用熱交換器、吸収用熱交換器をコイル状に
設けた例を示したが、チューブアンドフィンや、積層型
熱交換器など他の形式の熱交換器を用いても良い。吸収
液の一例として臭化リチウム水溶液を例に示したが、冷
媒にアンモニア、吸収剤に水を利用したアンモニア水溶
液など他の吸収液を用いても良い。
Although a gas burner is used as a heating source of the heating means, an oil burner or an electric heater may be used, or exhaust heat of another device (for example, an internal combustion engine) may be used. Although the example in which the heat exchanger for condensation, the heat exchanger for evaporation, and the heat exchanger for absorption are provided in a coil shape is shown, the heat exchanger of another type such as a tube and fin or a stacked heat exchanger is used. Is also good. Although an aqueous lithium bromide solution has been described as an example of the absorbing liquid, other absorbing liquids such as an aqueous ammonia solution using ammonia as a refrigerant and water as an absorbent may be used.

【0048】熱媒体の一例として、水道水を用い、冷却
水回路の冷却水と共用した例を示したが、冷却水回路の
冷却水とは異なる不凍液やオイルなど他の熱媒体を用い
ても良い。上記実施例中で示した数値は、実施例を判り
易くするために用いた一例であって、本願発明は実施例
の数値になんら限定されるものではなく、使用目的や装
置の規模に適した数値を適宜採用可能なものである。
Although an example in which tap water is used as the heat medium and shared with the cooling water in the cooling water circuit has been described, other heat medium such as antifreeze or oil different from the cooling water in the cooling water circuit may be used. good. The numerical values shown in the above embodiments are examples used for easy understanding of the embodiments, and the present invention is not limited to the numerical values of the embodiments at all, and is suitable for the purpose of use and the scale of the apparatus. Numerical values can be appropriately adopted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】吸収式空調装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an absorption type air conditioner.

【図2】第1希釈運転手段の作動を示すフローチャート
である。
FIG. 2 is a flowchart showing an operation of a first dilution operation means.

【図3】第2希釈運転手段の作動を示すフローチャート
である。
FIG. 3 is a flowchart showing the operation of a second dilution operation means.

【符号の説明】[Explanation of symbols]

1 吸収式空調装置 2 加熱手段 3 吸収式冷凍サイクル 4 室内空調手段 5 冷却水冷却手段 6 制御装置 15 高温再生器 16 低温再生器 17 凝縮器 18 蒸発器 19 吸収器 47 溶液ポンプ 54 暖房管 55 冷暖切替弁 61 室内熱交換器 62 冷温水回路(熱媒体回路) 63 冷温水ポンプ(熱媒体ポンプ) 86 外気温度センサ(吸収液温度検出手段) 87 第1希釈運転手段 88 運転状態記憶手段 89 第2希釈運転手段 DESCRIPTION OF SYMBOLS 1 Absorption air conditioner 2 Heating means 3 Absorption refrigeration cycle 4 Indoor air conditioning means 5 Cooling water cooling means 6 Control device 15 High temperature regenerator 16 Low temperature regenerator 17 Condenser 18 Evaporator 19 Absorber 47 Solution pump 54 Heating pipe 55 Cooling / heating Switching valve 61 Indoor heat exchanger 62 Cold and hot water circuit (heat medium circuit) 63 Cold and hot water pump (heat medium pump) 86 Outside air temperature sensor (absorbent temperature detection means) 87 First dilution operation means 88 Operating state storage means 89 Second Dilution operation means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25B 15/00 306 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) F25B 15/00 306

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】a)吸収液を加熱させる加熱手段と、 b)この加熱手段で吸収液を加熱することによって吸収
液の一部を気化させる再生器、この再生器で発生した気
化冷媒を冷却して液化する凝縮器、この凝縮器で液化し
た液化冷媒を低圧下で蒸発させる蒸発器、この蒸発器で
蒸発した気化冷媒を吸収液に吸収させる吸収器、この吸
収器内の吸収液を前記再生器へ圧送する溶液ポンプを具
備する吸収式冷凍サイクルと、 c)室内に設置され、室内空気と熱媒体とを熱交換する
室内熱交換器、前記蒸発器で液化冷媒が蒸発する際に蒸
発潜熱が奪われて冷却された熱媒体を、前記室内熱交換
器へ導くとともに、室内熱交換器で室内空気と熱交換さ
れた熱媒体を再び前記蒸発器へ導く熱媒体回路、この熱
媒体回路に設けられ、熱媒体を循環させる熱媒体ポンプ
を備えた室内空調手段と、 d)冷房運転を停止する際、前記加熱手段を停止した状
態で、前記溶液ポンプを作動させ、前記吸収式冷凍サイ
クル内の冷媒および吸収液を循環させ、運転停止中に前
記吸収式冷凍サイクル内における濃度の高い吸収液が、
所定吸収液温度で晶析しない濃度まで希釈させる第1希
釈運転手段と、 e)運転停止中に前記吸収式冷凍サイクル内における濃
度の高い吸収液の温度を検出する吸収液温度検出手段
と、f)前記加熱手段によって加熱された吸収液を直接前記
蒸発器へ導き、この蒸発器を流れる熱媒体を加熱して室
内暖房を行う暖房運転手段と、 g)前記吸収式冷凍サイクルの最後の運転状態を記憶す
る運転状態記憶手段と、 h)この運転状態記憶手段の記憶する前回の運転状態が
冷房運転で、且つ前記 吸収液温度検出手段の検出する吸
収液の温度が、前記所定吸収液温度以上に設定された所
定希釈開始温度に低下すると、前記加熱手段を停止した
状態で、前記溶液ポンプを作動させ、前記吸収式冷凍サ
イクル内の冷媒および吸収液を循環させて、吸収液の濃
度をほぼ均一化させる第2希釈運転手段とを備える吸収
式空調装置。
A) a heating means for heating the absorbing liquid; b) a regenerator for heating the absorbing liquid with the heating means to vaporize a part of the absorbing liquid; and cooling the vaporized refrigerant generated in the regenerator. A condenser that liquefies and evaporates the liquefied refrigerant liquefied by the condenser under a low pressure; an absorber that absorbs the vaporized refrigerant evaporated by the evaporator into an absorbing liquid; An absorption refrigeration cycle having a solution pump for pumping to a regenerator; c) an indoor heat exchanger installed in a room for exchanging heat between indoor air and a heat medium; evaporating when the liquefied refrigerant evaporates in the evaporator. A heat medium circuit that guides the heat medium, which has been deprived of latent heat and cooled, to the indoor heat exchanger, and also guides the heat medium that has been heat-exchanged with the indoor air by the indoor heat exchanger to the evaporator again; Heat that circulates the heat medium Indoor air-conditioning means having a body pump; d) when stopping the cooling operation, while the heating means is stopped, operating the solution pump to circulate the refrigerant and the absorbent in the absorption refrigeration cycle; While the operation is stopped, the absorbent having a high concentration in the absorption refrigeration cycle,
A first dilution operation means for diluting to a concentration that does not crystallize at a predetermined absorption liquid temperature, e) the absorption liquid temperature detecting means for detecting the temperature of the high absorption liquid density in the shutdown of the absorption refrigeration cycle, f ) The absorbent heated by the heating means is directly
The heat medium flowing through the evaporator is guided to the evaporator,
Heating operation means for performing internal heating; and g) storing the last operation state of the absorption refrigeration cycle.
And operating state storage means that, h) the previous operating conditions to be stored in the operating state storage means
In cooling operation, when the temperature of the absorbing solution detected by the absorbing solution temperature detecting means decreases to a predetermined dilution start temperature set to be equal to or higher than the predetermined absorbing solution temperature, the solution pump is stopped with the heating means stopped. And a second dilution operation unit for circulating the refrigerant and the absorption liquid in the absorption refrigeration cycle to make the concentration of the absorption liquid substantially uniform.
【請求項2】請求項1の吸収式空調装置において、 前記吸収液温度検出手段は、 前記吸収式冷凍サイクルの設置された環境温度を検出す
る外気温度センサで、前記第2希釈運転手段は、運転停
止中に前記外気温度センサの検出する環境温度が所定希
釈開始温度に低下すると、前記吸収式冷凍サイクル内に
おける濃度の高い吸収液の温度も所定希釈開始温度に低
下したと判断することを特徴とする吸収式空調装置。
2. The absorption air conditioner according to claim 1, wherein said absorption liquid temperature detection means is an outside air temperature sensor for detecting an environmental temperature in which said absorption refrigeration cycle is installed, and said second dilution operation means is: When the ambient temperature detected by the outside air temperature sensor decreases to the predetermined dilution start temperature during operation stop, it is determined that the temperature of the highly concentrated absorbent in the absorption refrigeration cycle has also decreased to the predetermined dilution start temperature. Absorption type air conditioner.
【請求項3】請求項1または請求項2の吸収式空調装置
において、 前記暖房運転手段は、前記加熱手段で加熱された吸収液
を前記蒸発器へ導く暖房管、およびこの暖房管を暖房運
転中に開く暖房弁とを備え、 前記第2希釈運転手段は、吸収液の濃度を均一化する
際、前記暖房弁を開くことを特徴とする吸収式空調装
置。
3. The absorption type air conditioner according to claim 1 , wherein the heating operation means guides the absorbing liquid heated by the heating means to the evaporator, and performs a heating operation on the heating pipe. An absorption air conditioner, comprising: a heating valve that opens therein; and wherein the second dilution operation unit opens the heating valve when the concentration of the absorbing solution is made uniform.
【請求項4】請求項1ないし請求項3のいずれかの吸収
式空調装置において、 前記運転状態記憶手段は、 不揮発性メモリを用いた記憶手段であることを特徴とす
る吸収式空調装置。
4. The absorption type air conditioner according to claim 1 , wherein said operation state storage means is a storage means using a nonvolatile memory.
JP6163733A 1994-07-15 1994-07-15 Absorption air conditioner Expired - Fee Related JP2902305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6163733A JP2902305B2 (en) 1994-07-15 1994-07-15 Absorption air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6163733A JP2902305B2 (en) 1994-07-15 1994-07-15 Absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH0828998A JPH0828998A (en) 1996-02-02
JP2902305B2 true JP2902305B2 (en) 1999-06-07

Family

ID=15779642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6163733A Expired - Fee Related JP2902305B2 (en) 1994-07-15 1994-07-15 Absorption air conditioner

Country Status (1)

Country Link
JP (1) JP2902305B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5536855B2 (en) * 2012-11-15 2014-07-02 荏原冷熱システム株式会社 Absorption refrigerator
JP2023019576A (en) * 2021-07-29 2023-02-09 矢崎エナジーシステム株式会社 Absorption-type refrigerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320147B2 (en) * 1973-11-20 1978-06-24
JPS602858A (en) * 1983-06-20 1985-01-09 株式会社荏原製作所 Absorption refrigerator
JPH04295558A (en) * 1991-03-25 1992-10-20 Tokyo Gas Co Ltd Absorption refrigerator

Also Published As

Publication number Publication date
JPH0828998A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
JP2003343940A (en) Absorption water cooler/heater
JP2902305B2 (en) Absorption air conditioner
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP3283780B2 (en) Absorption cooling device
JP2650654B2 (en) Absorption refrigeration cycle device
JP3328156B2 (en) Absorption air conditioner
JP2846583B2 (en) Absorption air conditioner
JP2846582B2 (en) Absorption air conditioner
JP3837186B2 (en) Absorption refrigerator
JP3322994B2 (en) Absorption air conditioner
JPH11304398A (en) Air conditioner
JP3920979B2 (en) Absorption air conditioner control device
JP3281564B2 (en) Absorption air conditioner
KR100219910B1 (en) Absorption type air conditioner
JP3660493B2 (en) Absorption refrigeration system controller
JPH0829000A (en) Absorption type air conditioner
JP2954514B2 (en) Absorption air conditioner
JP2746323B2 (en) Absorption air conditioner
JP3117631B2 (en) Absorption air conditioner
KR200143514Y1 (en) Absorptive refrigerator
JP2618192B2 (en) Absorption refrigeration cycle device
JP2898202B2 (en) Absorption cooling system
JP4115020B2 (en) Control method of absorption refrigerator
JP2954515B2 (en) Absorption air conditioner
JP2000274861A (en) Method for operating exhaust heat utilizing absorption chilled and warm water generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees