JP3281564B2 - Absorption air conditioner - Google Patents

Absorption air conditioner

Info

Publication number
JP3281564B2
JP3281564B2 JP02513697A JP2513697A JP3281564B2 JP 3281564 B2 JP3281564 B2 JP 3281564B2 JP 02513697 A JP02513697 A JP 02513697A JP 2513697 A JP2513697 A JP 2513697A JP 3281564 B2 JP3281564 B2 JP 3281564B2
Authority
JP
Japan
Prior art keywords
temperature
cooling water
cooling
absorption
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02513697A
Other languages
Japanese (ja)
Other versions
JPH10220904A (en
Inventor
寿洋 佐藤
克也 大島
尚優 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP02513697A priority Critical patent/JP3281564B2/en
Publication of JPH10220904A publication Critical patent/JPH10220904A/en
Application granted granted Critical
Publication of JP3281564B2 publication Critical patent/JP3281564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷凍サイク
ルを用いて少なくとも冷房運転が可能な空調装置に関す
るもので、特に、吸収器で吸収熱を奪うとともに、凝縮
器で気化冷媒を冷却する冷却水の温度が上昇して、吸収
器および凝縮器に供給される冷却水の温度が上昇して、
吸収式冷凍サイクルに異常をきたす冷却水高温異常の判
断を行う判断手段を備えた吸収式空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner capable of performing at least a cooling operation by using an absorption refrigeration cycle, and more particularly, to a cooling system in which an absorber absorbs absorbed heat and a condenser cools a vaporized refrigerant. As the temperature of the water increases, the temperature of the cooling water supplied to the absorber and the condenser increases,
The present invention relates to an absorption type air conditioner provided with determination means for determining a cooling water high temperature abnormality that causes an abnormality in an absorption refrigeration cycle.

【0002】[0002]

【従来の技術】吸収式冷凍サイクルは、吸収液を加熱す
る加熱手段、加熱された吸収液の一部を気化させる再生
器、この再生器で発生した気化冷媒を冷却して液化する
凝縮器、この凝縮器で液化した液化冷媒を低圧下で蒸発
させる蒸発器、この蒸発器で蒸発した気化冷媒を吸収液
に吸収させる吸収器、この吸収器内の吸収液を再生器へ
圧送する溶液ポンプを具備するもので、吸収器で発生す
る吸収熱を吸収する手段として冷却水が用いられるとと
もに、凝縮器で気化冷媒を冷却する手段として冷却水が
用いられる。
2. Description of the Related Art An absorption refrigeration cycle includes a heating means for heating an absorption liquid, a regenerator for evaporating a part of the heated absorption liquid, a condenser for cooling and liquefying a vaporized refrigerant generated in the regenerator. An evaporator that evaporates the liquefied refrigerant liquefied by the condenser under a low pressure, an absorber that absorbs the vaporized refrigerant evaporated by the evaporator into an absorbent, and a solution pump that pumps the absorbent in the absorber to a regenerator. The cooling water is used as a means for absorbing the heat of absorption generated in the absorber, and the cooling water is used as a means for cooling the vaporized refrigerant in the condenser.

【0003】吸収器や凝縮器を通過して温度が上昇した
冷却水は、クーリングタワーなどの冷却手段に導かれ、
室外空気(以下、外気)によって冷却され、冷却された
冷却水が再び吸収器や凝縮器に導かれる。ここで、夏期
の冷房運転中など、外気温度が高く、冷却手段を通過し
ても冷却水の温度が十分冷却されない場合や、冷却手段
に何らかの不具合が生じ(例えば、外気を送るファンが
停止した場合など)、冷却手段を通過しても冷却水の温
度が十分冷却されない場合がある。
[0003] Cooling water whose temperature has risen after passing through an absorber or a condenser is guided to cooling means such as a cooling tower.
Cooled by outdoor air (hereinafter referred to as outside air), the cooled cooling water is guided again to the absorber and the condenser. Here, such as during the cooling operation in summer, when the outside air temperature is high and the temperature of the cooling water is not sufficiently cooled even after passing through the cooling means, or some trouble occurs in the cooling means (for example, the fan for sending outside air is stopped). And the like, the temperature of the cooling water may not be sufficiently cooled even after passing through the cooling means.

【0004】このように、吸収器や凝縮器に送られる冷
却水の温度が上昇すると、吸収器で吸収熱を奪う能力、
および凝縮器で気化冷媒を冷却する能力が低下するだけ
でなく、冷却能力の低下によって吸収器や凝縮器の内圧
が上昇する。吸収器や凝縮器の内圧が上昇すると、その
数倍〜十数倍も再生器の内圧が上昇する。この結果、吸
収器と再生器との圧力差が大変大きくなり、溶液ポンプ
が作動不良を起こすようになる。また、吸収器や凝縮器
の内圧の上昇によって、再生器の内圧が上昇すると、腐
蝕性の強い吸収液も高温になり、再生器の腐蝕が飛躍的
に進む不具合が生じる。
[0004] As described above, when the temperature of the cooling water sent to the absorber or the condenser rises, the ability of the absorber to remove heat of absorption,
In addition, not only does the capacity of the condenser cool the vaporized refrigerant, but also the internal pressure of the absorber and the condenser increases due to the decrease in the cooling capacity. When the internal pressure of the absorber or the condenser increases, the internal pressure of the regenerator increases several to several tens of times. As a result, the pressure difference between the absorber and the regenerator becomes very large, causing the solution pump to malfunction. In addition, when the internal pressure of the regenerator increases due to the increase of the internal pressure of the absorber or the condenser, the temperature of the strongly corrosive absorbing liquid also becomes high, and the corrosion of the regenerator rapidly progresses.

【0005】このような不具合を回避するために従来で
は、吸収器や凝縮器に送られる冷却水の温度を冷却水温
度センサで検出し、冷却水温度センサの検出する冷却水
の温度が所定温度以上(溶液ポンプが作動不良を発生す
る温度より少し低めに設定された温度、例えば38℃以
上)の時に、冷却水高温異常が発生したと判断し、加熱
手段による吸収液の加熱を停止していた。
In order to avoid such a problem, conventionally, the temperature of cooling water sent to an absorber or a condenser is detected by a cooling water temperature sensor, and the temperature of the cooling water detected by the cooling water temperature sensor is set to a predetermined temperature. At this time (at a temperature set slightly lower than the temperature at which the solution pump malfunctions, for example, at least 38 ° C.), it is determined that a cooling water high temperature abnormality has occurred, and heating of the absorbent by the heating means is stopped. Was.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述のよう
に、冷却水温度センサの検出する冷却水の温度で冷却水
高温異常を判断すると、冷房運転の停止直後に冷房を再
起動させた場合や、室内の冷房負荷が小さく、室内温度
が低下して一時的に冷房運転が停止した後に再起動した
場合に、冷却水を冷却する冷却手段の冷却不足ではな
く、冷却水温度センサの取付部分が外気の熱を受ける影
響や、吸収式冷凍サイクル内の吸収液から伝わった熱の
影響、および前回の運転停止時の冷却水ポンプ停止後の
残存反応熱の影響によって、冷却水温度センサの検出温
度が所定温度以上に上昇する場合がある。
However, as described above, when the cooling water high temperature abnormality is determined based on the temperature of the cooling water detected by the cooling water temperature sensor, the cooling operation may be restarted immediately after the cooling operation is stopped. When the cooling load in the room is small and the room temperature is lowered and the cooling operation is temporarily stopped and then restarted, the cooling means for cooling the cooling water is not insufficiently cooled, but the mounting portion of the cooling water temperature sensor is installed. The temperature detected by the cooling water temperature sensor depends on the influence of the heat from the outside air, the heat transmitted from the absorbing liquid in the absorption refrigeration cycle, and the residual reaction heat after the cooling water pump stopped during the previous operation stop. May rise above a predetermined temperature.

【0007】このように、冷却水温度センサの検出温度
が所定温度以上に上昇した状態であっても、冷却水の冷
却不足が生じない状態であれば、冷房運転の再起動直後
に一時的に吸収器で吸収熱を奪う能力、および凝縮器で
気化冷媒を冷却する能力が低下するだけで、その後、所
定温度以下の冷却水が吸収器や凝縮器に送られれば、溶
液ポンプが作動不良を起こしたり、腐蝕が飛躍的に進む
など吸収式冷凍サイクルに異常をきたす不具合は生じ
ず、通常の冷房運転が行われる。しかるに、このような
場合であっても、従来の技術では、冷却水温度センサの
検出温度が所定温度以上の場合に、冷却水高温異常と判
断していたため、加熱手段による吸収液の加熱が停止さ
れて、冷房運転が再起動されない不具合があった。
As described above, even if the temperature detected by the cooling water temperature sensor has risen to a predetermined temperature or higher, as long as the cooling water is not insufficiently cooled, the cooling operation is temporarily stopped immediately after restarting the cooling operation. If only the ability to take away the heat of absorption in the absorber and the ability to cool the vaporized refrigerant in the condenser are reduced, then if cooling water below a certain temperature is sent to the absorber or condenser, the solution pump will malfunction. There is no problem that causes an abnormality in the absorption refrigeration cycle, such as occurrence of corrosion and rapid progress of corrosion, and normal cooling operation is performed. However, even in such a case, in the related art, when the detected temperature of the cooling water temperature sensor is equal to or higher than a predetermined temperature, it is determined that the cooling water high temperature is abnormal. As a result, there was a problem that the cooling operation was not restarted.

【0008】[0008]

【発明の目的】本発明は、上記の事情に鑑みてなされた
もので、その目的は、冷却水の温度が上昇しても、吸収
式冷凍サイクルに異常をきたさない場合は、吸収式冷凍
サイクルによる冷房運転を停止しない吸収式空調装置の
提供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an absorption type refrigeration cycle that does not cause an abnormality in the absorption type refrigeration cycle even if the temperature of the cooling water rises. To provide an absorption type air conditioner that does not stop the cooling operation.

【0009】[0009]

【課題を解決するための手段】本発明の吸収式空調装置
は、上記の目的を達成するために、次の技術的手段を採
用した。 (請求項1の手段) 吸収式空調装置は、 a)吸収液を加熱させる加熱手段と、 b)この加熱手段で加熱された吸収液の一部を気化させ
る再生器、この再生器で発生した気化冷媒を冷却して液
化する凝縮器、この凝縮器で液化した液化冷媒を低圧下
で蒸発させる蒸発器、この蒸発器で蒸発した気化冷媒を
吸収液に吸収させる吸収器、この吸収器内の吸収液を前
記再生器へ圧送する溶液ポンプを具備する吸収式冷凍サ
イクルと、 c)前記吸収器で吸収熱を奪うとともに、前記凝縮器で
気化冷媒を冷却する冷却水を循環させる冷却水回路と、 d)この冷却水回路に設けられ、冷却水を室外空気によ
って冷却する冷却手段と、 e)前記吸収器および前記凝縮器に供給される冷却水の
温度が上昇して、前記吸収式冷凍サイクルに異常をきた
す冷却水高温異常が発生したか否かの判断を行う判断手
段を備える制御手段と、を備える。
Means for Solving the Problems The absorption type air conditioner of the present invention employs the following technical means to achieve the above object. (Means of Claim 1) The absorption type air conditioner includes: a) heating means for heating the absorption liquid; b) a regenerator for evaporating a part of the absorption liquid heated by the heating means; A condenser that cools and liquefies the vaporized refrigerant, an evaporator that evaporates the liquefied refrigerant liquefied by the condenser under a low pressure, an absorber that absorbs the vaporized refrigerant evaporated by the evaporator into an absorbing liquid, An absorption refrigeration cycle including a solution pump for pumping an absorption liquid to the regenerator; c) a cooling water circuit for removing heat of absorption in the absorber and circulating cooling water for cooling the vaporized refrigerant in the condenser. D) cooling means provided in the cooling water circuit for cooling the cooling water by outdoor air; and e) a temperature of the cooling water supplied to the absorber and the condenser increases, and the absorption refrigeration cycle increases. Water causing abnormalities And a control means comprising determining means for performing determination whether the temperature abnormality occurs.

【0010】前記制御手段は、前記再生器内の吸収液の
温度を検出する吸収液温度センサ、および前記吸収器お
よび前記凝縮器に供給される冷却水の温度を検出する冷
却水温度センサを備え、前記判断手段は、前記吸収液温
度センサの検出する吸収液の温度が所定温度以上で、且
つ前記冷却水温度センサの検出する冷却水の温度が所定
温度以上の時に、冷却水高温異常の発生を判断し、前記
制御手段は、前記判断手段が冷却水高温異常の発生を判
断した際に前記加熱手段による吸収液の加熱作動を停止
させることを特徴とする。
The control means includes an absorbent temperature sensor for detecting the temperature of the absorbent in the regenerator and a coolant temperature sensor for detecting the temperature of the coolant supplied to the absorber and the condenser. The judging means is configured to detect the occurrence of a high temperature abnormality of the cooling water when the temperature of the absorbing liquid detected by the absorbing liquid temperature sensor is equal to or higher than a predetermined temperature and the temperature of the cooling water detected by the cooling water temperature sensor is equal to or higher than the predetermined temperature. The control means stops the operation of heating the absorbing liquid by the heating means when the determination means determines that the cooling water high temperature abnormality has occurred.

【0011】[0011]

【0012】[0012]

【0013】[0013]

【発明の作用および効果】吸収式冷凍サイクルを用いて
冷房運転を行う際、吸収液温度センサの検出する再生器
内における吸収液の温度が所定温度以上を満足しない場
合には、停止直後の冷房再起動運転初期と判断して、例
え、吸収器や凝縮器に供給される冷却水の温度が高くて
も、判断手段は冷却水高温異常が発生したと判断せず、
制御手段が加熱手段を作動させて吸収式冷凍サイクルを
作動させる。
In the cooling operation using the absorption refrigeration cycle, if the temperature of the absorbent in the regenerator detected by the absorbent temperature sensor does not satisfy the predetermined temperature or more, the cooling immediately after the stop is performed. Judging that the restart operation is early, even if the temperature of the cooling water supplied to the absorber or the condenser is high, the judging means does not judge that the cooling water high temperature abnormality has occurred,
The control means operates the heating means to operate the absorption refrigeration cycle.

【0014】冷凍サイクルが作動すると、作動開始直後
は冷却水の温度が上昇しているため、吸収器で吸収熱を
奪う能力、および凝縮器で気化冷媒を冷却する能力が低
下するが、再生器内の吸収液の温度が所定温度より低い
場合では、再生器の内圧が低く、吸収器との圧力差は小
さい。従って、溶液ポンプが作動不良を起こしたり、腐
蝕が飛躍的に進むなど、吸収式冷凍サイクルは異常をき
たさない。
When the refrigeration cycle is activated, the temperature of the cooling water is increased immediately after the start of the operation. Therefore, the ability to remove heat of absorption in the absorber and the ability to cool the vaporized refrigerant in the condenser are reduced. When the temperature of the absorbing liquid inside is lower than the predetermined temperature, the internal pressure of the regenerator is low, and the pressure difference with the absorber is small. Therefore, the absorption refrigeration cycle does not cause any abnormality such as malfunction of the solution pump or drastic corrosion.

【0015】このように、従来であれば、運転停止する
ような場合(例えば、冷房運転の停止直後に冷房を再起
動させた場合や、室内の冷房負荷が小さく、室内温度が
低下して一時的に冷房運転が停止した後に再起動した場
合に、冷却水温度センサの取付部分が外気の熱を受ける
影響や、吸収式冷凍サイクルから伝わった熱による影
響、および前回の運転停止時の冷却水ポンプ停止後の残
存反応熱の影響によって、冷却水温度センサの検出温度
が所定温度以上に上昇した場合)であっても、吸収式冷
凍サイクルが作動して冷房運転を行うため、従来に比較
して冷房の作動範囲が広がり、使い勝手が向上する。
As described above, conventionally, when the operation is stopped (for example, when the cooling is restarted immediately after the cooling operation is stopped, or when the indoor cooling load is small and the indoor temperature decreases, If the cooling operation is restarted after the cooling operation is stopped, the cooling water temperature sensor is affected by the heat of the outside air, the heat transmitted from the absorption refrigeration cycle, and the cooling water at the previous operation stop. Even if the temperature detected by the cooling water temperature sensor rises to a predetermined temperature or higher due to the effect of the residual reaction heat after the pump stops), the absorption refrigeration cycle operates and performs the cooling operation. As a result, the operating range of the air conditioner is expanded and the usability is improved.

【0016】[0016]

【発明の実施の形態】次に、本発明の実施の形態を、実
施例および変形例に基づき説明する。 〔実施例の構成〕この実施例を図1および図2を用いて
説明する。図1は室内の空調を行う吸収式空調装置の概
略構成図、図2は制御装置に含まれる制御の一部を示す
フローチャートである。
Next, embodiments of the present invention will be described based on examples and modifications. [Structure of Embodiment] This embodiment will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of an absorption type air conditioner that performs indoor air conditioning, and FIG. 2 is a flowchart showing a part of control included in a control device.

【0017】吸収式空調装置1の概略構成を説明する。
なお、この実施例では吸収式冷凍サイクル2の一例とし
て2重効用型を用いた。本実施例の適用される吸収式空
調装置1は、大別して、吸収液(本実施例では臭化リチ
ウム水溶液)を加熱する燃焼装置3(本発明の加熱手段
に相当する)を用いた2重効用型の吸収式冷凍サイクル
2と、吸収式冷凍サイクル2で冷却または加熱された冷
温水(室内を冷暖房するための熱媒体、本実施例では
水)で室内を空調する室内空調手段4と、吸収式冷凍サ
イクル2内で気化冷媒(本実施例では水蒸気)を冷却し
て液化する等のために用いられる冷却水を冷却する冷却
水冷却手段5と、搭載された各電気機能部品を制御する
制御装置6(本発明の制御手段に相当する)とから構成
される。
A schematic configuration of the absorption type air conditioner 1 will be described.
In this example, a double effect type was used as an example of the absorption refrigeration cycle 2. The absorption type air conditioner 1 to which the present embodiment is applied is roughly divided into a double type using a combustion device 3 (corresponding to a heating means of the present invention) for heating an absorbing liquid (a lithium bromide aqueous solution in this embodiment). An absorption type refrigeration cycle 2 of a utility type, and indoor air conditioning means 4 for air conditioning the room with cold and hot water (a heat medium for cooling and heating the room, water in this embodiment) cooled or heated by the absorption type refrigeration cycle 2; Cooling water cooling means 5 for cooling cooling water used for cooling and liquefying a vaporized refrigerant (steam in this embodiment) in the absorption refrigeration cycle 2, and controls each mounted electric functional component. And a control device 6 (corresponding to control means of the present invention).

【0018】(吸収式冷凍サイクル2の説明)本実施例
の燃焼装置3は、燃料であるガスを燃焼して熱を発生さ
せ、発生した熱によって吸収液を加熱するガス燃焼装置
を用いたもので、ガスの燃焼を行うガスバーナ11、こ
のガスバーナ11へガスの供給を行うガス供給手段1
2、ガスバーナ11へ燃焼用の空気を供給する燃焼ファ
ン13等から構成される。そして、ガスバーナ11のガ
ス燃焼で得られた熱で、吸収式冷凍サイクル2の沸騰器
14を加熱し、沸騰器14内に供給された低濃度吸収液
(以下、低液)を加熱するように設けられている。
(Description of Absorption Refrigeration Cycle 2) The combustion apparatus 3 of this embodiment uses a gas combustion apparatus that generates heat by burning gas as a fuel and heats the absorbing liquid by the generated heat. A gas burner 11 for burning gas, and a gas supply means 1 for supplying gas to the gas burner 11
2. It comprises a combustion fan 13 for supplying air for combustion to the gas burner 11, and the like. Then, the heat obtained by the gas combustion of the gas burner 11 heats the boiler 14 of the absorption refrigeration cycle 2 to heat the low-concentration absorption liquid (hereinafter, low liquid) supplied into the boiler 14. Is provided.

【0019】また、吸収式冷凍サイクル2は、上記の沸
騰器14を備え、この沸騰器14内に供給された低液が
加熱されることによって低液に含まれる冷媒(水)を気
化(蒸発)させて中濃度吸収液(以下、中液)にする高
温再生器15と、この高温再生器15内の気化冷媒の凝
縮熱を利用して、高温再生器15側から圧力差を利用し
て供給される中液を加熱し、中液に含まれる冷媒を気化
させて中液を高濃度吸収液(以下、高液)にする低温再
生器16と、高温再生器15および低温再生器16から
の気化冷媒(水蒸気)を冷却して液化する凝縮器17
と、この凝縮器17で液化した液化冷媒(水)を真空に
近い圧力下で蒸発させる蒸発器18と、この蒸発器18
で蒸発した気化冷媒を低温再生器16で得られた高液に
吸収させる吸収器19とから構成される。
The absorption refrigeration cycle 2 includes the above-mentioned boiler 14, and the low liquid supplied into the boiler 14 is heated to vaporize (evaporate) the refrigerant (water) contained in the low liquid. ) By using a high-temperature regenerator 15 to be converted into a medium-concentration absorbing liquid (hereinafter referred to as “medium liquid”), and a pressure difference from the high-temperature regenerator 15 using the heat of condensation of the vaporized refrigerant in the high-temperature regenerator 15. The low-temperature regenerator 16 that heats the supplied middle liquid and vaporizes the refrigerant contained in the middle liquid to turn the middle liquid into a high-concentration absorbing liquid (hereinafter, high liquid), and the high-temperature regenerator 15 and the low-temperature regenerator 16 Condenser 17 that cools and liquefies the vaporized refrigerant (steam)
And an evaporator 18 for evaporating the liquefied refrigerant (water) liquefied in the condenser 17 under a pressure close to vacuum, and an evaporator 18
And an absorber 19 for absorbing the vaporized refrigerant evaporated in the high-temperature liquid obtained by the low-temperature regenerator 16.

【0020】(高温再生器15の説明)高温再生器15
の沸騰器14は、燃焼装置3内に配置されたもので、高
温再生器は、この沸騰器14の他に、沸騰器14から上
方へ延びる沸騰筒21を備える。この沸騰器14および
沸騰筒21で沸騰して低液から気化した気化冷媒は、沸
騰筒21から円筒容器形状の高温再生容器22内に吹き
出る。この高温再生容器22内に吹き出た高温の気化冷
媒は、高温再生容器22の壁を介して、低温再生器16
内の中液の蒸発時の気化熱として熱が奪われて冷却され
て液化冷媒(水)になる。
(Explanation of the high temperature regenerator 15)
The boiler 14 is disposed in the combustion device 3, and the high-temperature regenerator includes, in addition to the boiler 14, a boiling cylinder 21 extending upward from the boiler 14. The vaporized refrigerant that has been boiled in the boiler 14 and the boiling cylinder 21 and vaporized from the low liquid is blown out from the boiling cylinder 21 into the cylindrical high-temperature regeneration container 22. The high-temperature vaporized refrigerant blown into the high-temperature regeneration container 22 passes through the wall of the high-temperature regeneration container 22 and passes through the low-temperature regeneration device 16.
Heat is taken away as heat of vaporization when the middle liquid in the liquid evaporates, and is cooled to become a liquefied refrigerant (water).

【0021】高温再生容器22内には、沸騰器14で加
熱されて低液内の冷媒が気化した後の沸騰筒21内の中
液と、その周囲に溜められる液化冷媒(水)とを断熱す
るために、沸騰筒21の周囲に断熱仕切筒24を設けて
いる。この断熱仕切筒24は、上端が沸騰筒21の上端
と接合され、下端が沸騰筒21と隙間を隔てて設けら
れ、沸騰筒21と断熱仕切筒24との間に、断熱のため
に空気が侵入するように設けられている。なお、高温再
生容器22で液化し、断熱仕切筒24の外側に分離され
た液化冷媒(水)は、下部に接続された液冷媒管25を
通って凝縮器17に導かれる。
In the high-temperature regenerating vessel 22, the medium liquid in the boiling cylinder 21 after the refrigerant in the low liquid is vaporized by being heated by the evaporator 14 and the liquefied refrigerant (water) stored around the heat insulating vessel are insulated. For this purpose, a heat insulating partition tube 24 is provided around the boiling tube 21. The heat insulating partition tube 24 has an upper end joined to the upper end of the boiling tube 21, a lower end provided with a gap from the boiling tube 21, and air for heat insulation between the boiling tube 21 and the heat insulating partition tube 24. Provided to penetrate. The liquefied refrigerant (water) liquefied in the high-temperature regeneration container 22 and separated outside the heat insulating partition tube 24 is guided to the condenser 17 through a liquid refrigerant pipe 25 connected to a lower portion.

【0022】(低温再生器16の説明)低温再生器16
は、高温再生容器22を覆う筒状容器形状の低温再生容
器31を備える。一方、沸騰筒21内の中液は、沸騰筒
21の下部に接続された中液管26を通って低温再生器
16に供給される。なお、中液管26には、オリフィス
等の絞り手段27が設けられている。この絞り手段27
は、後述する冷暖切替弁53が閉じられると、高温再生
器15と低温再生器16との圧力差を保った状態で中液
を流し、後述する冷暖切替弁53が開かれると中液を殆
ど流さない。
(Explanation of the low-temperature regenerator 16)
Includes a cylindrical low-temperature regeneration container 31 covering the high-temperature regeneration container 22. On the other hand, the middle liquid in the boiling cylinder 21 is supplied to the low-temperature regenerator 16 through a middle liquid pipe 26 connected to a lower part of the boiling cylinder 21. The middle liquid pipe 26 is provided with a throttle means 27 such as an orifice. This aperture means 27
When the cooling / heating switching valve 53 described later is closed, the medium flows while maintaining the pressure difference between the high-temperature regenerator 15 and the low-temperature regenerator 16. Do not shed.

【0023】低温再生器16は、中液管26を通って供
給される中液が高温再生容器22の天井部分に向けて注
入される。低温再生容器31内の温度は、高温再生容器
22の温度に比較して低いため、低温再生容器31内の
圧力は高温再生容器22の圧力に比較して低い。このた
め、中液管26から低温再生容器31内に供給された中
液は蒸発し易い。そして、中液が高温再生容器22の天
井部分に注入されると、高温再生容器22の壁によって
中液が加熱され、中液に含まれる冷媒の一部が蒸発して
気化冷媒になり、残りが高液になる。
In the low-temperature regenerator 16, the middle liquid supplied through the middle liquid pipe 26 is injected toward the ceiling of the high-temperature regeneration container 22. Since the temperature in the low-temperature regeneration container 31 is lower than the temperature of the high-temperature regeneration container 22, the pressure in the low-temperature regeneration container 31 is lower than the pressure in the high-temperature regeneration container 22. Therefore, the middle liquid supplied from the middle liquid pipe 26 into the low-temperature regeneration container 31 is easily evaporated. Then, when the middle liquid is injected into the ceiling of the high temperature regeneration container 22, the middle liquid is heated by the wall of the high temperature regeneration container 22, and a part of the refrigerant contained in the middle liquid evaporates to become a vaporized refrigerant, Becomes high liquid.

【0024】低温再生容器31の上方は、環状容器形状
の凝縮容器32の上側と、連通部33により連通してい
る。このため、低温再生容器31内で蒸発した気化冷媒
は、連通部33を通って凝縮容器32内に供給される。
一方、高液は、低温再生容器31の下部に落下し、低温
再生容器31の下部に接続された高液管34を通って吸
収器19に供給される。なお、低温再生容器31内の上
側には、天井板35が設けられ、この天井板35の外周
端と低温再生容器31との間には、気化冷媒が通過する
隙間36が設けられている。
The upper part of the low-temperature regeneration vessel 31 communicates with the upper side of the condensing vessel 32 in the shape of an annular vessel through a communicating part 33. Therefore, the vaporized refrigerant evaporated in the low-temperature regeneration container 31 is supplied into the condensation container 32 through the communication portion 33.
On the other hand, the high liquid falls to the lower part of the low temperature regeneration container 31 and is supplied to the absorber 19 through the high liquid pipe 34 connected to the lower part of the low temperature regeneration container 31. A ceiling plate 35 is provided above the low-temperature regeneration container 31, and a gap 36 through which the vaporized refrigerant passes is provided between the outer peripheral end of the ceiling plate 35 and the low-temperature regeneration container 31.

【0025】(凝縮器17の説明)凝縮器17は、環状
容器形状の凝縮容器32によって覆われている。この凝
縮容器32は、低温再生容器31の上側の周囲を覆って
設けられたもので、その内部には、凝縮容器32内の気
化冷媒を冷却して液化させる凝縮用熱交換器37が配置
されている。この凝縮用熱交換器37は、環状のコイル
で、内部には冷却水が流れる。そして、低温再生器16
から凝縮容器32内に供給された気化冷媒は、凝縮用熱
交換器37によって冷却されて液化し、凝縮用熱交換器
37の下方へ滴下する。
(Explanation of the Condenser 17) The condenser 17 is covered by an annular container-shaped condensing container 32. The condensing container 32 is provided so as to cover the periphery of the upper side of the low-temperature regenerating container 31. Inside the condensing container 32, a condensing heat exchanger 37 for cooling and liquefying the vaporized refrigerant in the condensing container 32 is arranged. ing. The condensing heat exchanger 37 is an annular coil through which cooling water flows. And the low-temperature regenerator 16
The vaporized refrigerant supplied into the condensing container 32 is cooled and liquefied by the condensing heat exchanger 37, and drops below the condensing heat exchanger 37.

【0026】一方、凝縮容器32の下側には、上述の高
温再生器15から液冷媒管25を通って冷媒が供給され
る。なお、この供給冷媒は、凝縮容器32内に供給され
る際に、圧力の違い(凝縮容器32内は約70mmHg
の低圧)から、再沸騰し、気化冷媒と液化冷媒とが混合
した状態で供給される。また、凝縮容器32には、液化
冷媒を蒸発器18に導く液冷媒供給管38が接続されて
いる。この液冷媒供給管38には、凝縮容器32から蒸
発器18に供給される液化冷媒の供給量を調節する冷媒
弁39が設けられている。
On the other hand, a refrigerant is supplied to the lower side of the condensing container 32 from the high-temperature regenerator 15 through the liquid refrigerant pipe 25. When the supplied refrigerant is supplied into the condensing container 32, the pressure difference (the pressure inside the condensing container 32 is about 70 mmHg).
From low pressure), the mixture is reboiled, and supplied in a state where the vaporized refrigerant and the liquefied refrigerant are mixed. Further, a liquid refrigerant supply pipe 38 for guiding the liquefied refrigerant to the evaporator 18 is connected to the condensation container 32. The liquid refrigerant supply pipe 38 is provided with a refrigerant valve 39 for adjusting the supply amount of the liquefied refrigerant supplied from the condensation container 32 to the evaporator 18.

【0027】(蒸発器18の説明)蒸発器18は、吸収
器19とともに、凝縮容器32の下部、つまり低温再生
容器31の下側の周囲を覆って設けられたもので、低温
再生容器31の周囲を環状容器形状の蒸発吸収容器41
に覆われている。この蒸発吸収容器41の内部の外側に
は、凝縮器17から供給される液化冷媒を蒸発させる蒸
発用熱交換器42が配置されている。この蒸発用熱交換
器42は、環状のコイルで、内部には室内空調手段4に
供給される冷温水(熱媒体)が流れる。そして、凝縮器
17から液冷媒供給管38を介して供給された液化冷媒
は、蒸発用熱交換器42の上部に配置されるとともに、
多数の散布管を備えた環状の冷媒散布具43から蒸発用
熱交換器42の上に散布される。
(Explanation of the evaporator 18) The evaporator 18 is provided together with the absorber 19 so as to cover the lower part of the condensing container 32, that is, the lower periphery of the low-temperature regenerating container 31. Evaporation absorption container 41 with annular shape around the periphery
Covered in. An evaporation heat exchanger 42 for evaporating the liquefied refrigerant supplied from the condenser 17 is disposed outside the inside of the evaporation absorption container 41. The evaporating heat exchanger 42 is an annular coil through which cold and hot water (heat medium) supplied to the indoor air conditioner 4 flows. The liquefied refrigerant supplied from the condenser 17 via the liquid refrigerant supply pipe 38 is arranged above the evaporating heat exchanger 42,
It is sprayed onto the evaporating heat exchanger 42 from an annular refrigerant spraying tool 43 having a large number of spraying tubes.

【0028】蒸発吸収容器41内は、ほぼ真空(例えば
6.5mmHg)に保たれるため、沸点が低く、蒸発用
熱交換器42に散布された液化冷媒は、大変蒸発しやす
い。そして、蒸発用熱交換器42に散布された液化冷媒
は、蒸発用熱交換器42内を流れる冷温水から気化熱を
奪って蒸発する。この結果、蒸発用熱交換器42内を流
れる冷温水が冷却される。そして、冷却された冷温水
は、室内空調手段4に導かれ、室内を冷房する。
Since the inside of the evaporative absorption container 41 is maintained at a substantially vacuum (for example, 6.5 mmHg), the boiling point is low, and the liquefied refrigerant sprayed to the evaporating heat exchanger 42 is very likely to evaporate. The liquefied refrigerant sprayed to the evaporating heat exchanger 42 evaporates by taking vaporization heat from the cold and hot water flowing in the evaporating heat exchanger 42. As a result, the cold / hot water flowing in the evaporating heat exchanger 42 is cooled. Then, the cooled cold / hot water is guided to the indoor air-conditioning means 4 to cool the room.

【0029】(吸収器19の説明)吸収器19は、上述
のように、蒸発吸収容器41に覆われる。そして、吸収
器19は、蒸発吸収容器41の内部の内側に、高液管3
4から供給される高液を冷却する吸収用熱交換器44を
備える。この吸収用熱交換器44は、環状のコイルで、
内部には、コイル上に散布された高液を冷却する冷却水
が供給される。なお、吸収用熱交換器44を通過した冷
却水は、凝縮器17の凝縮用熱交換器37を通過した
後、冷却水冷却手段5に導かれ、冷却される。そして冷
却水冷却手段5で冷却された冷却水は、再び吸収用熱交
換器44に導かれる。
(Explanation of the Absorber 19) The absorber 19 is covered with the evaporation absorption container 41 as described above. The absorber 19 is provided inside the evaporative absorption container 41 with the high liquid pipe 3.
An absorption heat exchanger 44 for cooling the high liquid supplied from 4 is provided. This absorption heat exchanger 44 is an annular coil,
Inside, cooling water for cooling the high liquid sprayed on the coil is supplied. After passing through the heat exchanger 44 for absorption, the cooling water passes through the heat exchanger 37 for condensation of the condenser 17 and is guided to the cooling water cooling means 5 to be cooled. Then, the cooling water cooled by the cooling water cooling means 5 is guided again to the absorption heat exchanger 44.

【0030】一方、吸収用熱交換器44の上部には、高
液管34から供給される高液を吸収用熱交換器44上に
散布する環状の吸収液散布具45が配置される。吸収用
熱交換器44上に散布された高液は、吸収用熱交換器4
4のコイル表面を伝わって上方から下方へ落下する間
に、蒸発用熱交換器42において蒸発により生成された
気化冷媒を吸収する。この結果、蒸発吸収容器41の底
に落下した吸収液は、濃度が薄くなった低液となる。
On the other hand, on the upper part of the absorption heat exchanger 44, there is arranged an annular absorbent dispersion device 45 for dispersing the high liquid supplied from the high liquid pipe 34 onto the absorption heat exchanger 44. The high liquid sprayed on the absorption heat exchanger 44 is supplied to the absorption heat exchanger 4.
While falling along the coil surface of No. 4 from the upper side to the lower side, the evaporating refrigerant generated by evaporation in the evaporating heat exchanger 42 is absorbed. As a result, the absorption liquid that has fallen to the bottom of the evaporative absorption container 41 becomes a low concentration liquid with a low concentration.

【0031】蒸発吸収容器41の内部には、蒸発用熱交
換器42と吸収用熱交換器44との間に、筒状仕切壁4
6が配置されている。この筒状仕切壁46は、蒸発器1
8で生成された気化冷媒を吸収器19内に導くように、
例えば上方が蒸発器18と吸収器19とを連通するよう
に開口して設けられている。
Inside the evaporative absorption container 41, a cylindrical partition wall 4 is provided between the evaporating heat exchanger 42 and the absorbing heat exchanger 44.
6 are arranged. This cylindrical partition wall 46 is used for the evaporator 1.
In order to guide the vaporized refrigerant generated in 8 into the absorber 19,
For example, the upper part is provided with an opening so as to communicate the evaporator 18 and the absorber 19.

【0032】また、蒸発吸収容器41の底には、蒸発吸
収容器41の底の低液を沸騰器14に供給するための低
液管47が接続されている。この低液管47には、ほぼ
真空状態の蒸発吸収容器41内から沸騰器14に向けて
低液を流すために、溶液ポンプ48が設けられている。
A low liquid pipe 47 for supplying the low liquid at the bottom of the evaporative absorption container 41 to the boiler 14 is connected to the bottom of the evaporative absorption container 41. The low liquid pipe 47 is provided with a solution pump 48 for flowing the low liquid from the inside of the evaporation absorption container 41 in a substantially vacuum state toward the boiler 14.

【0033】(吸収式冷凍サイクル2における上記以外
の構成部品の説明)図1に示す符号51は、沸騰筒21
内から低温再生器16へ流れる中液と吸収器19から沸
騰器14へ流れる低液とを熱交換する高温熱交換器51
aと、低温再生器16から吸収器19へ流れる高液と吸
収器19から沸騰器14へ流れる低液とを熱交換する低
温熱交換器51bとを一体化した熱交換器である。な
お、高温熱交換器51aは、沸騰筒21から低温再生器
16へ流れる中液を冷却し、逆に吸収器19から沸騰器
14へ流れる低液を加熱するものである。また、低温熱
交換器51bは、低温再生器16から吸収器19へ流れ
る高液を冷却し、逆に吸収器19から沸騰器14へ流れ
る低液を加熱するものである。
(Description of other components in absorption refrigeration cycle 2) Reference numeral 51 shown in FIG.
A high-temperature heat exchanger 51 for exchanging heat between the medium liquid flowing from inside to the low-temperature regenerator 16 and the low liquid flowing from the absorber 19 to the boiler 14.
a, and a low-temperature heat exchanger 51b for exchanging heat between the high liquid flowing from the low-temperature regenerator 16 to the absorber 19 and the low liquid flowing from the absorber 19 to the boiler 14. The high-temperature heat exchanger 51a cools the middle liquid flowing from the boiling cylinder 21 to the low-temperature regenerator 16 and heats the low liquid flowing from the absorber 19 to the boiler 14. The low-temperature heat exchanger 51b cools the high liquid flowing from the low-temperature regenerator 16 to the absorber 19 and heats the low liquid flowing from the absorber 19 to the boiler 14.

【0034】また、本実施例の吸収式冷凍サイクル2に
は、上述の作動による冷房運転の他に、暖房運転を行う
ための暖房運転手段が設けられている。暖房運転手段
は、沸騰筒21の下部から、温度の高い吸収液を蒸発器
18の下部へ導く暖房管52と、この暖房管52を開閉
する冷暖切替弁53とから構成される。この冷暖切替弁
53は、暖房運転時に開弁して高温の吸収液を蒸発吸収
容器41内へ導き、蒸発器18の蒸発用熱交換器42内
を流れる冷温水を加熱するものである。
The absorption refrigeration cycle 2 of this embodiment is provided with heating operation means for performing a heating operation in addition to the cooling operation by the above-described operation. The heating operation means includes a heating pipe 52 for guiding the high-temperature absorbing liquid from the lower part of the boiling cylinder 21 to a lower part of the evaporator 18, and a cooling / heating switching valve 53 for opening and closing the heating pipe 52. The cooling / heating switching valve 53 opens during the heating operation to guide the high-temperature absorbing liquid into the evaporating / absorbing container 41 and heat the cold / hot water flowing in the evaporating heat exchanger 42 of the evaporator 18.

【0035】(室内空調手段4の説明)室内空調手段4
は、室内に設置された室内熱交換器54、この室内熱交
換器54を流れる蒸発器18を通過した冷温水と室内空
気とを強制的に熱交換し、熱交換後の空気を室内に吹き
出させるための室内ファン55を備える。
(Description of Indoor Air Conditioning Means 4)
Is forcibly exchanging heat between the cold and hot water passing through the indoor heat exchanger 54 installed in the room and the evaporator 18 flowing through the indoor heat exchanger 54 and the room air, and blowing the air after the heat exchange into the room. And an indoor fan 55 for causing the indoor fan 55 to operate.

【0036】室内熱交換器54には、冷温水を循環させ
る冷温水回路56が接続され、この冷温水回路56に
は、冷温水を循環させる冷温水ポンプ57が設けられて
いる。なお、冷温水ポンプ57は、溶液ポンプ48を駆
動する兼用のモータによって駆動される。
A cold / hot water circuit 56 for circulating cold / hot water is connected to the indoor heat exchanger 54, and the cold / hot water circuit 56 is provided with a cold / hot water pump 57 for circulating cold / hot water. The cold / hot water pump 57 is driven by a motor that also drives the solution pump 48.

【0037】冷温水回路56は、蒸発器18を通過した
冷温水を、室内熱交換器54に導き、室内空気と熱交換
した冷温水を再び蒸発器18へ導く水管で、この冷温水
回路56中には、室内熱交換器54と冷温水ポンプ57
の他に、冷温水を蓄えて暖房時の膨張タンクとしての機
能を備えるとともに、冷温水回路56内に冷温水の補充
を行うシスターン58を備える。
The cold / hot water circuit 56 is a water pipe that guides the cold / hot water that has passed through the evaporator 18 to the indoor heat exchanger 54 and guides the cold / hot water that has exchanged heat with the room air to the evaporator 18 again. Inside, the indoor heat exchanger 54 and the cold / hot water pump 57
In addition, a cistern 58 for storing cold / hot water and replenishing cold / hot water in the cold / hot water circuit 56 is provided while functioning as an expansion tank for heating.

【0038】このシスターン58には、内部へ冷温水
(水道水)を供給する給水管59が接続されている。こ
の給水管59には、シスターン58内へ冷温水の供給、
停止を行う給水バルブ60が設けられている。このシス
ターン58は、図示しない水位センサを備え、シスター
ン58内の冷温水の水位が低下すると、給水バルブ60
を開いてシスターン58内に冷温水を補充するように設
けられている。また、シスターン58には、オーバーフ
ローした冷温水を、後述する冷却水タンク65内へ導く
オーバーフロー水供給手段59aが設けられている。
A water supply pipe 59 for supplying cold / hot water (tap water) to the inside is connected to the cistern 58. In this water supply pipe 59, supply of cold and hot water into the cistern 58,
A water supply valve 60 for stopping is provided. The cistern 58 includes a water level sensor (not shown).
To open and refill the cistern 58 with cold and hot water. Further, the cistern 58 is provided with overflow water supply means 59a for guiding the overflowed cold / hot water into a cooling water tank 65 described later.

【0039】(冷却水冷却手段5の説明)冷却水冷却手
段5は、蒸発型の冷却塔61、冷却水を循環させる冷却
水回路62、および冷却水回路62内の冷却水を循環さ
せる冷却水ポンプ63を備える。冷却塔61は、吸収器
19および凝縮器17を通過した冷却水を、上方から下
方へ流し、流れている間に外気と熱交換して放熱すると
ともに、流れている間に一部蒸発させて、蒸発時に流れ
ている冷却水から気化熱を奪い、流れている冷却水を冷
却するものである。また、この冷却塔61は、空気流を
生じさせ、冷却水の蒸発および冷却を促進する冷却水フ
ァン64を備える。
(Description of Cooling Water Cooling Means 5) The cooling water cooling means 5 includes an evaporating cooling tower 61, a cooling water circuit 62 for circulating cooling water, and a cooling water for circulating cooling water in the cooling water circuit 62. A pump 63 is provided. The cooling tower 61 allows the cooling water that has passed through the absorber 19 and the condenser 17 to flow downward from above, exchange heat with the outside air while flowing, and release heat, and partially evaporate while flowing. In this case, heat of vaporization is taken from the cooling water flowing at the time of evaporation to cool the flowing cooling water. The cooling tower 61 includes a cooling water fan 64 that generates an air flow and promotes evaporation and cooling of the cooling water.

【0040】冷却水回路62は、吸収器19および凝縮
器17を通過して、温度の上昇した冷却水を冷却塔61
へ導き、この冷却塔61で冷却された冷却水を再び吸収
器19および凝縮器17へ送る水管で、この冷却水回路
62中には、冷却塔61と冷却水ポンプ63の他に、冷
却水を蓄える冷却水タンク65を備える。
The cooling water circuit 62 passes through the absorber 19 and the condenser 17, and supplies the cooling water whose temperature has risen to the cooling tower 61.
The cooling water cooled by the cooling tower 61 is sent to the absorber 19 and the condenser 17 again. In the cooling water circuit 62, the cooling water is supplied to the cooling tower 61 and the cooling water pump 63. Is provided with a cooling water tank 65 for storing the cooling water.

【0041】この冷却水タンク65は、冷却塔61の下
方で、且つシスターン58の下方に設置され、冷却塔6
1を通過した冷却水が供給されるととともに、シスター
ン58でオーバーフローした水が供給されるように設け
られている。冷却水タンク65には、図示しない水位セ
ンサを備え、冷却水タンク65内の冷却水の水位が低下
すると、給水バルブ60を開いてシスターン58から水
を溢れさせ、溢れた水をオーバーフロー水供給手段59
aから冷却水タンク65内へ導き、冷却水を補充するよ
うに設けられている。
The cooling water tank 65 is installed below the cooling tower 61 and below the cistern 58,
The cooling water passing through 1 is supplied, and the water overflowing in the cistern 58 is supplied. The cooling water tank 65 is provided with a water level sensor (not shown). When the level of the cooling water in the cooling water tank 65 decreases, the water supply valve 60 is opened to overflow the water from the cistern 58, and the overflowed water is supplied to the overflow water supply means. 59
The cooling water is supplied to the inside of the cooling water tank 65 from a.

【0042】(制御装置6の説明)制御装置6は、上述
の冷媒弁39、溶液ポンプ48(冷温水ポンプ57)、
室内ファン55、冷暖切替弁53、給水バルブ60、冷
却水ポンプ63、冷却水ファン64などの電気機能部
品、および燃焼装置3の電気機能部品(燃焼ファン1
3、ガス量調節弁66、ガス開閉弁67、点火装置68
等)を、使用者によって手動設定されるコントローラ
(図示しない)の操作指示や、複数設けられた各センサ
の入力信号に応じて通電制御するものである。
(Explanation of the control device 6) The control device 6 includes the above-described refrigerant valve 39, solution pump 48 (cold and hot water pump 57),
Electrical functional components such as the indoor fan 55, the cooling / heating switching valve 53, the water supply valve 60, the cooling water pump 63, the cooling water fan 64, and the electrical functional components of the combustion device 3 (combustion fan 1)
3. Gas control valve 66, gas on-off valve 67, ignition device 68
) Is controlled in accordance with an operation instruction of a controller (not shown) manually set by a user or an input signal of each of a plurality of sensors.

【0043】この制御装置6は、冷房運転時において、
吸収器19および凝縮器17に供給される冷却水の温度
が上昇して、吸収式冷凍サイクル2に異常をきたす冷却
水高温異常が発生したか否かの判断を行う判断手段6a
を備えており、制御装置6は、判断手段6aの判断結果
に基づいて燃焼装置3等の作動を制御する。この制御を
行うために、制御装置6は、高温再生器15の吸収液の
温度を検出する吸収液温度センサ71を備えており、判
断手段6aによる冷却水高温異常の発生判断は、吸収液
温度センサ71の検出する吸収液の温度が所定温度(例
えば、165℃)以上の条件下で行われる。
The control device 6 operates during the cooling operation.
Judgment means 6a for judging whether or not the temperature of the cooling water supplied to the absorber 19 and the condenser 17 has risen and a cooling water high temperature abnormality that causes an abnormality in the absorption refrigeration cycle 2 has occurred.
The control device 6 controls the operation of the combustion device 3 and the like based on the determination result of the determination means 6a. In order to perform this control, the control device 6 is provided with an absorbent temperature sensor 71 for detecting the temperature of the absorbent in the high temperature regenerator 15. This is performed under the condition that the temperature of the absorbing liquid detected by the sensor 71 is equal to or higher than a predetermined temperature (for example, 165 ° C.).

【0044】判断手段6aを具体的にすると、制御装置
6は、高温再生器15の吸収液の温度を検出する吸収液
温度センサ71の他に、吸収器19および凝縮器17に
供給される冷却水の温度を検出する冷却水温度センサ7
2を備えており、制御装置6に設けられた判断手段6a
は、吸収液温度センサ71の検出する吸収液の温度が所
定温度(例えば、165℃)以上で、且つ冷却水温度セ
ンサ72の検出する冷却水の温度が所定温度(例えば、
38℃)以上の時に、冷却水高温異常の発生を判断する
ように設けられている。
More specifically, the control unit 6 controls the cooling system supplied to the absorber 19 and the condenser 17 in addition to the absorbing solution temperature sensor 71 for detecting the temperature of the absorbing solution of the high temperature regenerator 15. Cooling water temperature sensor 7 for detecting water temperature
2 and a judgment means 6a provided in the control device 6.
Indicates that the temperature of the absorbing liquid detected by the absorbing liquid temperature sensor 71 is equal to or higher than a predetermined temperature (for example, 165 ° C.) and the temperature of the cooling water detected by the cooling water temperature sensor 72 is the predetermined temperature (for example,
38 [deg.] C.) or more, it is provided to determine the occurrence of a cooling water high temperature abnormality.

【0045】そして、制御装置6は、判断手段6aが冷
却水高温異常の発生を判断した際に、燃焼装置3を停止
し、吸収液の加熱作動を停止するように設けられてい
る。なお、この実施例では、判断手段6aが冷却水高温
異常の発生を判断した際に燃焼装置3を停止する例を示
すが、燃焼装置3の燃焼量を最小燃焼にするなど、加熱
量を小さく抑えるように設け、吸収液温度センサ71の
検出する吸収液の温度が上記所定温度(例えば、165
℃)より高い温度(例えば、170℃)以上に上昇した
際に、燃焼装置3を停止するように設けても良い。
The control device 6 is provided so as to stop the combustion device 3 and stop the heating operation of the absorbing liquid when the judging means 6a judges the occurrence of the abnormal high temperature of the cooling water. In this embodiment, an example is shown in which the combustion device 3 is stopped when the judging means 6a judges the occurrence of the abnormal high temperature of the cooling water. However, the heating amount is reduced by, for example, minimizing the combustion amount of the combustion device 3. The temperature of the absorbing solution detected by the absorbing solution temperature sensor 71 is set to the predetermined temperature (for example, 165).
When the temperature rises to a higher temperature (e.g., 170 [deg.] C.) or higher, the combustion device 3 may be stopped.

【0046】この制御装置6の判断手段6aが冷却水高
温異常の判断を行う制御を、図2のフローチャートを用
いて説明する。冷房運転がコントローラによって指示さ
れると(スタート)、吸収液温度センサ71の検出する
吸収液の温度が所定温度(例えば、165℃)以上であ
るか否かの判断を行う(ステップS1 )。この判断結果
がNOの場合は、ステップS2 の冷房運転制御へ進む。な
お、この冷房運転制御は、各種センサの信号データを基
に、燃焼装置3を作動させて吸収式冷凍サイクル2を作
動させるとともに、室内空調手段4および冷却水冷却手
段5を作動させて冷房運転を行うもので、その作動は後
述する。
The control performed by the judging means 6a of the control device 6 for judging the abnormal high temperature of the cooling water will be described with reference to the flowchart of FIG. When the cooling operation is instructed by the controller (start), it is determined whether or not the temperature of the absorbent detected by the absorbent temperature sensor 71 is equal to or higher than a predetermined temperature (for example, 165 ° C.) (step S1). If the result of this determination is NO, the operation proceeds to the cooling operation control in step S2. In this cooling operation control, based on the signal data of various sensors, the combustion device 3 is operated to operate the absorption refrigeration cycle 2, and the indoor air conditioning means 4 and the cooling water cooling means 5 are operated to perform the cooling operation. The operation will be described later.

【0047】吸収液温度センサ71の検出する吸収液の
温度が所定温度(例えば、165℃)以上の場合は、こ
の状態で温度上昇した冷却水が吸収器19および凝縮器
17に供給されると吸収式冷凍サイクル2に異常(高温
再生器15の内圧上昇により吸収器19との圧力差が大
変大きくなって溶液ポンプ48が作動不良を起こした
り、高温再生器15の内圧上昇により腐蝕性の強い吸収
液も高温になり、腐蝕が飛躍的に進む)が生じる可能性
がある。そこで、ステップS1 の判断結果がYESの場合
は、冷却水温度センサ72の検出する冷却水の温度が所
定温度(例えば、38℃)以上であるか否かの判断を行
う(ステップS3 )。この判断結果がNOの場合は、この
状態で冷房運転を継続しても吸収式冷凍サイクル2に異
常が生じる可能性がないと判断して、ステップS2 の冷
凍運転制御へ進む。
When the temperature of the absorbent detected by the absorbent temperature sensor 71 is equal to or higher than a predetermined temperature (for example, 165 ° C.), the cooling water whose temperature has increased in this state is supplied to the absorber 19 and the condenser 17. Abnormality in absorption refrigeration cycle 2 (pressure difference with absorber 19 becomes very large due to increase in internal pressure of high-temperature regenerator 15, causing malfunction of solution pump 48 or corrosive due to increase in internal pressure of high-temperature regenerator 15. The temperature of the absorbing liquid also becomes high, and corrosion progresses dramatically). Therefore, if the determination result of step S1 is YES, it is determined whether the temperature of the cooling water detected by the cooling water temperature sensor 72 is equal to or higher than a predetermined temperature (for example, 38 ° C.) (step S3). If the determination result is NO, it is determined that there is no possibility that an abnormality will occur in the absorption refrigeration cycle 2 even if the cooling operation is continued in this state, and the process proceeds to the refrigeration operation control in step S2.

【0048】しかし、ステップS3 の判断結果がYES の
場合は、このまま冷房運転を継続すると、溶液ポンプ4
8が作動不良を起こしたり、吸収式冷凍サイクル2内の
腐蝕が飛躍的に進むなど、吸収式冷凍サイクル2が異常
をきたす可能性が高いと判断し、冷房運転を中止する
(ステップS4 )。具体的には、コントローラによって
運転停止指示が与えられた場合と同様、燃焼装置3の作
動を停止するとともに、高温再生器15内の吸収液の温
度が所定温度以下に低下するまで溶液ポンプ48を作動
させる希釈運転を行う。また、このように冷却水高温異
常で運転が停止した旨を、コントローラ等に設けられた
表示手段に表示する(エラーモード表示)。
However, if the result of the determination in step S3 is YES, the cooling operation is continued and the solution pump 4
It is determined that there is a high possibility that the absorption refrigeration cycle 2 will cause an abnormality such as malfunction of the suction refrigeration cycle 8 or rapid progress of the corrosion in the absorption refrigeration cycle 2, and the cooling operation is stopped (step S4). Specifically, similarly to the case where the operation stop instruction is given by the controller, the operation of the combustion device 3 is stopped, and the solution pump 48 is turned on until the temperature of the absorbent in the high-temperature regenerator 15 drops below a predetermined temperature. Perform the dilution operation to operate. Further, the fact that the operation has been stopped due to the cooling water high temperature abnormality is displayed on a display means provided in the controller or the like (error mode display).

【0049】(冷房運転の作動説明)次に、冷房運転制
御による冷房運転の作動を説明する。冷房運転がコント
ローラによって指示され、判断手段6aが冷却水高温異
常を判断しない場合は、各電気機能部品の作動により、
燃焼装置3および吸収式冷凍サイクル2が作動する。吸
収式冷凍サイクル2は、燃焼装置3が沸騰器14を加熱
することにより、高温再生器15で、低液から気化冷媒
が取り出されるとともに、低温再生器16で、中液から
高液が取り出される。
(Explanation of the operation of the cooling operation) Next, the operation of the cooling operation by the cooling operation control will be described. When the cooling operation is instructed by the controller and the judging means 6a does not judge the cooling water high temperature abnormality, the operation of each of the electric functional parts causes
The combustion device 3 and the absorption refrigeration cycle 2 operate. In the absorption refrigeration cycle 2, when the combustion device 3 heats the boiler 14, the high-temperature regenerator 15 takes out the vaporized refrigerant from the low liquid and the low-temperature regenerator 16 takes out the high liquid from the middle liquid. .

【0050】高温再生器15および低温再生器16で取
り出された気化冷媒は、凝縮器17で凝縮されて液化し
た後、蒸発器18の蒸発用熱交換器42に散布され、蒸
発用熱交換器42内の冷温水から気化熱を奪って蒸発す
る。このため、蒸発用熱交換器42を通過し、冷却され
た冷温水は、室内空調手段4の室内熱交換器54に供給
されて室内を冷房する。
The vaporized refrigerant taken out by the high-temperature regenerator 15 and the low-temperature regenerator 16 is condensed and liquefied by the condenser 17 and then dispersed to the evaporator heat exchanger 42 of the evaporator 18 to be vaporized. The heat of vaporization is taken from the cold and hot water in 42 to evaporate. Therefore, the cooled hot and cold water that has passed through the evaporating heat exchanger 42 and is cooled is supplied to the indoor heat exchanger 54 of the indoor air conditioner 4 to cool the room.

【0051】蒸発器18内で蒸発した気化冷媒は、筒状
仕切壁46の上方を通過して吸収器19内に流入する。
一方、吸収器19内では、低温再生器16で取り出され
た高液が吸収液散布具45を介して吸収用熱交換器44
に散布されており、この高液に蒸発器18から流入した
気化冷媒が吸収される。なお、気化冷媒が高液に吸収さ
れる際に発生する吸収熱は、吸収用熱交換器44によっ
て吸収されて吸収能力の低下が防止される。なお、吸収
器19で気化冷媒を吸収した高液は、低液となって溶液
ポンプ48で吸い込まれ、再び沸騰器14内に戻され、
上記のサイクルを繰り返す。
The vaporized refrigerant evaporated in the evaporator 18 passes above the cylindrical partition wall 46 and flows into the absorber 19.
On the other hand, in the absorber 19, the high liquid taken out by the low-temperature regenerator 16 is absorbed by the absorbing heat exchanger 44 through the absorbing liquid spraying tool 45.
The vaporized refrigerant flowing from the evaporator 18 is absorbed by the high liquid. Note that the absorption heat generated when the vaporized refrigerant is absorbed by the high liquid is absorbed by the absorption heat exchanger 44, thereby preventing the absorption capacity from lowering. The high liquid that has absorbed the vaporized refrigerant in the absorber 19 becomes a low liquid, is sucked in by the solution pump 48, and is returned to the evaporator 14 again.
Repeat the above cycle.

【0052】(暖房運転の作動説明)暖房運転がコント
ローラによって指示されると、燃焼装置3が作動すると
ともに、溶液ポンプ48(冷温水ポンプ57)、室内フ
ァン55がONし、冷暖切替弁53が開かれる。燃焼装置
3が沸騰器14を加熱することにより、沸騰器14で加
熱された高温の吸収液が、暖房管52を介して蒸発器1
8の下部へ導かれ、蒸発器18の蒸発用熱交換器42内
を流れる冷温水を加熱する。このため、蒸発用熱交換器
42を通過して加熱された冷温水は、室内空調手段4の
室内熱交換器54に供給されて室内を暖房する。
(Explanation of the Heating Operation) When the heating operation is instructed by the controller, the combustion device 3 is operated, the solution pump 48 (cooling / heating water pump 57), the indoor fan 55 are turned on, and the cooling / heating switching valve 53 is turned on. be opened. When the combustion device 3 heats the evaporator 14, the high-temperature absorbing liquid heated by the evaporator 14 is supplied to the evaporator 1 through the heating pipe 52.
8, the cold and hot water flowing in the evaporating heat exchanger 42 of the evaporator 18 is heated. For this reason, the cold and hot water heated by passing through the evaporating heat exchanger 42 is supplied to the indoor heat exchanger 54 of the indoor air-conditioning means 4 to heat the room.

【0053】〔実施例の効果〕上記で示したように、従
来であれば、運転停止するような場合(冷却水温度セン
サ72の検出温度が所定温度以上の場合)であっても、
吸収液温度センサ71の検出する高温再生器15内の吸
収液の温度が所定温度(例えば、165℃)より低い場
合は、冷房運転を行うため、従来に比較して冷房の作動
範囲が広がり、使い勝手が向上する。
[Effects of Embodiment] As described above, in the related art, even when the operation is stopped (when the temperature detected by the cooling water temperature sensor 72 is equal to or higher than a predetermined temperature),
When the temperature of the absorbing liquid in the high-temperature regenerator 15 detected by the absorbing liquid temperature sensor 71 is lower than a predetermined temperature (for example, 165 ° C.), the cooling operation is performed. Usability is improved.

【0054】具体的には、例えば、冷房運転の停止直後
に冷房を再起動させた場合や、室内の冷房負荷が小さ
く、室内温度が低下して一時的に冷房運転が停止した後
に再起動した場合に、冷却水温度センサ72の取付部分
が外気の熱を受ける影響や、吸収式冷凍サイクル2から
伝わった熱による影響、および前回の運転停止時の冷却
水ポンプ停止後の残存反応熱の影響によって、冷却水温
度センサ72の検出温度が所定温度(例えば、38℃)
以上の場合であっても、吸収液温度センサ71の検出す
る高温再生器15内の吸収液の温度が所定温度(例え
ば、165℃)より低い場合は、冷房運転を行う。つま
り、従来では、冷房運転しないような状態であっても、
冷房運転を行うため、使い勝手が向上する。
More specifically, for example, when the cooling is restarted immediately after the cooling operation is stopped, or when the cooling load in the room is small and the room temperature decreases, the cooling operation is temporarily stopped and then restarted. In this case, the cooling water temperature sensor 72 is affected by the heat of the outside air, by the heat transmitted from the absorption refrigeration cycle 2, and by the residual reaction heat after the cooling water pump was stopped during the previous operation stop. As a result, the temperature detected by the cooling water temperature sensor 72 becomes a predetermined temperature (for example, 38 ° C.).
Even in the above case, if the temperature of the absorbent in the high-temperature regenerator 15 detected by the absorbent temperature sensor 71 is lower than a predetermined temperature (for example, 165 ° C.), the cooling operation is performed. In other words, conventionally, even in a state where the cooling operation is not performed,
Since the cooling operation is performed, the usability is improved.

【0055】〔変形例〕上記の実施例では、吸収式冷凍
サイクルの一例として2重効用型の吸収式冷凍サイクル
2を例に示したが、1重効用型の吸収式冷凍サイクルで
も良いし、3重以上の多重効用型の吸収式冷凍サイクル
でも良い。また、低温再生器16内に中液を注入する
際、低温再生器16の上方から注入する例を示したが、
下方から注入しても良い。
[Modification] In the above embodiment, the double-effect absorption refrigeration cycle 2 has been described as an example of the absorption refrigeration cycle. However, a single-effect absorption refrigeration cycle may be used. A triple effect or more multi-effect absorption refrigeration cycle may be used. In addition, when the middle liquid is injected into the low-temperature regenerator 16, an example is shown in which the medium is injected from above the low-temperature regenerator 16.
It may be injected from below.

【0056】加熱手段として、ガスを燃焼するガス燃焼
装置3を用いたが、石油を燃焼する石油燃焼装置など、
他の燃焼装置を用いても良いし、内燃機関の排熱によっ
て吸収液を加熱する加熱手段や、電気ヒータを用いた加
熱手段など、他の加熱手段を用いても良い。凝縮用熱交
換器37、蒸発用熱交換器42、吸収用熱交換器44を
コイル状に設けた例を示したが、チューブアンドフィン
や、積層型熱交換器など他の形式の熱交換器を用いても
良い。
As the heating means, the gas combustion device 3 for burning gas is used.
Another heating device may be used, or another heating device such as a heating device for heating the absorbing liquid by exhaust heat of the internal combustion engine or a heating device using an electric heater may be used. Although the example in which the heat exchanger for condensation 37, the heat exchanger for evaporation 42, and the heat exchanger for absorption 44 are provided in a coil shape has been described, other types of heat exchangers such as a tube and fin or a stacked heat exchanger are used. May be used.

【0057】吸収液の一例として臭化リチウム水溶液を
例に示したが、冷媒にアンモニア、吸収剤に水を利用し
たアンモニア水溶液など他の吸収液を用いても良い。熱
媒体の一例として、水道水を用い、冷却水回路の冷却水
と共用した例を示したが、冷却水回路の冷却水とは異な
る不凍液やオイルなど他の熱媒体を用いても良い。
Although an aqueous solution of lithium bromide has been described as an example of the absorbing solution, other absorbing solutions such as an aqueous ammonia solution using ammonia as a refrigerant and water as an absorbent may be used. As an example of the heat medium, tap water is used and shared with the cooling water in the cooling water circuit. However, other heat medium such as antifreeze or oil different from the cooling water in the cooling water circuit may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】吸収式空調装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an absorption type air conditioner.

【図2】判断手段の作動を示すフローチャートである。FIG. 2 is a flowchart showing the operation of a judging means.

【符号の説明】[Explanation of symbols]

1 吸収式空調装置 2 吸収式冷凍サイクル 3 燃焼装置(加熱手段) 5 冷却水冷却手段 6 制御装置(制御手段) 6a 判断手段 15 高温再生器 16 低温再生器 17 凝縮器 18 蒸発器 19 吸収器 48 溶液ポンプ 62 冷却水回路 71 吸収液温度センサ 72 冷却水温度センサ DESCRIPTION OF SYMBOLS 1 Absorption air conditioner 2 Absorption refrigeration cycle 3 Combustion device (heating means) 5 Cooling water cooling means 6 Control device (control means) 6a Judging means 15 High temperature regenerator 16 Low temperature regenerator 17 Condenser 18 Evaporator 19 Absorber 48 Solution pump 62 Cooling water circuit 71 Absorbent temperature sensor 72 Cooling water temperature sensor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−75865(JP,A) 特開 平7−19651(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-75865 (JP, A) JP-A-7-19651 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 306

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】a)吸収液を加熱させる加熱手段と、 b)この加熱手段で加熱された吸収液の一部を気化させ
る再生器、この再生器で発生した気化冷媒を冷却して液
化する凝縮器、この凝縮器で液化した液化冷媒を低圧下
で蒸発させる蒸発器、この蒸発器で蒸発した気化冷媒を
吸収液に吸収させる吸収器、この吸収器内の吸収液を前
記再生器へ圧送する溶液ポンプを具備する吸収式冷凍サ
イクルと、 c)前記吸収器で吸収熱を奪うとともに、前記凝縮器で
気化冷媒を冷却する冷却水を循環させる冷却水回路と、 d)この冷却水回路に設けられ、冷却水を室外空気によ
って冷却する冷却手段と、 e)前記吸収器および前記凝縮器に供給される冷却水の
温度が上昇して、前記吸収式冷凍サイクルに異常をきた
す冷却水高温異常が発生したか否かの判断を行う判断手
段を備える制御手段と、 を備える吸収式空調装置において、 前記制御手段は、前記再生器内の吸収液の温度を検出す
る吸収液温度センサ、および前記吸収器および前記凝縮
器に供給される冷却水の温度を検出する冷却水温度セン
サを備え、 前記判断手段は、前記吸収液温度センサの検出する吸収
液の温度が所定温度以上で、且つ前記冷却水温度センサ
の検出する冷却水の温度が所定温度以上の時に、冷却水
高温異常の発生を判断し、 前記制御手段は、前記判断手段が冷却水高温異常の発生
を判断した際に前記加熱手段による吸収液の加熱作動を
停止させる ことを特徴とする吸収式空調装置。
A) a heating means for heating the absorbing liquid; b) a regenerator for vaporizing a part of the absorbing liquid heated by the heating means; and a vaporized refrigerant generated in the regenerator is cooled and liquefied. A condenser, an evaporator that evaporates the liquefied refrigerant liquefied by the condenser under low pressure, an absorber that absorbs the vaporized refrigerant evaporated by the evaporator into an absorbent, and pumps the absorbent in the absorber to the regenerator. An absorption refrigeration cycle including a solution pump that performs a cooling operation; c) a cooling water circuit that circulates cooling water that cools vaporized refrigerant with the condenser while absorbing heat absorbed by the absorber; Cooling means for cooling the cooling water with outdoor air, e) a cooling water high temperature abnormality which causes an abnormality in the absorption refrigeration cycle when the temperature of the cooling water supplied to the absorber and the condenser increases. Whether or not Judge who makes judgment
Control means comprising a step , wherein the control means comprises: an absorbent temperature sensor for detecting the temperature of the absorbent in the regenerator ; and the absorber and the condenser.
Cooling water temperature sensor that detects the temperature of cooling water supplied to the
The absorption means detects the absorption liquid detected by the absorption liquid temperature sensor.
The temperature of the liquid is equal to or higher than a predetermined temperature, and the cooling water temperature sensor
When the temperature of the cooling water detected by the
The occurrence of a high temperature abnormality is determined, and the control unit determines that the determination unit has generated
When the heating operation of the absorbing liquid by the heating means is determined,
An absorption type air conditioner characterized by being stopped .
JP02513697A 1997-02-07 1997-02-07 Absorption air conditioner Expired - Fee Related JP3281564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02513697A JP3281564B2 (en) 1997-02-07 1997-02-07 Absorption air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02513697A JP3281564B2 (en) 1997-02-07 1997-02-07 Absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH10220904A JPH10220904A (en) 1998-08-21
JP3281564B2 true JP3281564B2 (en) 2002-05-13

Family

ID=12157563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02513697A Expired - Fee Related JP3281564B2 (en) 1997-02-07 1997-02-07 Absorption air conditioner

Country Status (1)

Country Link
JP (1) JP3281564B2 (en)

Also Published As

Publication number Publication date
JPH10220904A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
JP3281564B2 (en) Absorption air conditioner
JP3283780B2 (en) Absorption cooling device
JP2650654B2 (en) Absorption refrigeration cycle device
JP2902305B2 (en) Absorption air conditioner
JP3322994B2 (en) Absorption air conditioner
JP2846582B2 (en) Absorption air conditioner
JP2839442B2 (en) Absorption refrigeration cycle device
JP2846583B2 (en) Absorption air conditioner
JP3328156B2 (en) Absorption air conditioner
KR0177570B1 (en) Absorption type refrigeration cycle apparatus
JPH11304398A (en) Air conditioner
JP2002195628A (en) Controller for air conditioner
JP2618193B2 (en) Absorption refrigeration cycle device
JP2746323B2 (en) Absorption air conditioner
JP2003065625A (en) Absorption type air conditioning equipment
JP3660493B2 (en) Absorption refrigeration system controller
JP3117631B2 (en) Absorption air conditioner
JP4301747B2 (en) Absorption refrigerator vacuum holding device
JP2954514B2 (en) Absorption air conditioner
JP2988618B2 (en) Absorption air conditioner
JP2003014258A (en) Absorption air conditioner
JP3017060B2 (en) Absorption air conditioner
JP2000018761A (en) Method for operating absorption heat pump
JP3113195B2 (en) Bleeding device for absorption refrigeration system
JP3886641B2 (en) Double-effect absorption refrigeration system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees