JP2003065625A - Absorption type air conditioning equipment - Google Patents

Absorption type air conditioning equipment

Info

Publication number
JP2003065625A
JP2003065625A JP2001252733A JP2001252733A JP2003065625A JP 2003065625 A JP2003065625 A JP 2003065625A JP 2001252733 A JP2001252733 A JP 2001252733A JP 2001252733 A JP2001252733 A JP 2001252733A JP 2003065625 A JP2003065625 A JP 2003065625A
Authority
JP
Japan
Prior art keywords
regenerator
absorption
heating
operating state
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001252733A
Other languages
Japanese (ja)
Inventor
Shinji Kuroda
紳司 黒田
Mikio Shimizu
幹男 清水
Toru Fukuchi
徹 福知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP2001252733A priority Critical patent/JP2003065625A/en
Publication of JP2003065625A publication Critical patent/JP2003065625A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of a usual indiscriminate diluting operation for a cooling operation conducted after recovery of power when the cooling operation is executed on the occasion of a power failure, considering that there are various cases in the state of the operation at the power failure and therefore the indiscriminate dilution causes waste. SOLUTION: When power recovers in the case of the power failure in the course of the cooling operation, a means for the diluting operation mounted on a controller executes a simple diluting operation when the temperature of a high-temperature regenerator 15 which is stored at the power failure is below 60 deg.C. When this temperature is 60 deg.C or above, simulated cooling is executed according to the condition and the diluting operation is conducted. A useless diluting operation is held down consequently and crystallization can surely be prevented. Since the dilution is conducted by executing the simulated cooling operation according to the condition, an absorbing solution in an absorption type refrigerating cycle 7 can be circulated efficiently and, as the result, a dilution time can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷凍サイク
ルを用いた吸収式空調装置に関するもので、特に、運転
中に停電が発生した場合における復帰時の希釈運転に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption air conditioner using an absorption refrigeration cycle, and more particularly to a dilution operation at the time of restoration when a power failure occurs during operation.

【0002】[0002]

【従来の技術】吸収式空調装置では、例えば冷房運転
中、吸収式冷凍サイクルの内部には、濃度の低い低濃度
吸収液(例えば、吸収器から再生器へ送られる吸収液稀
液)や、冷媒が蒸発して濃度の高い高濃度吸収液(例え
ば、再生器から吸収器へ送られる吸収液)が存在する。
濃度の高い吸収液は、濃度の低い吸収液に比較して高い
温度で晶析する。
2. Description of the Related Art In an absorption type air conditioner, for example, during cooling operation, inside the absorption type refrigeration cycle, a low-concentration absorption liquid having a low concentration (for example, a dilute absorption liquid sent from an absorber to a regenerator), There is a high-concentration absorption liquid (for example, the absorption liquid sent from the regenerator to the absorber) having a high concentration as the refrigerant evaporates.
The high-concentration absorption liquid crystallizes at a higher temperature than the low-concentration absorption liquid.

【0003】吸収式冷凍サイクルの内部で吸収液が晶析
すると、晶析部分で吸収液が流れなくなり、吸収式冷凍
サイクルが作動できなくなるとともに、吸収式冷凍サイ
クルの作動を継続させると器具類が破損する可能性があ
る。このため、冷房運転を停止する際は、吸収液を加熱
する加熱手段の作動を停止した状態で溶液ポンプを作動
させて、吸収液の濃度を均一にする周知の希釈運転を行
う必要がある。また、暖房運転を停止する際、吸収液は
均一の濃度に希釈されているが、そのまま停止させると
高温部の余熱によって吸収液の一部が濃縮されてしまう
とともに、冬季で温度低下することもある。このため、
暖房運転を停止させる際にも周知の希釈運転を行ってい
る。
When the absorption liquid crystallizes inside the absorption refrigeration cycle, the absorption liquid stops flowing at the crystallization portion, and the absorption refrigeration cycle cannot operate. It may be damaged. Therefore, when the cooling operation is stopped, it is necessary to perform the well-known dilution operation in which the concentration of the absorbing liquid is made uniform by operating the solution pump while the operation of the heating means for heating the absorbing liquid is stopped. In addition, when the heating operation is stopped, the absorption liquid is diluted to a uniform concentration, but if it is stopped as it is, a part of the absorption liquid will be concentrated due to residual heat in the high temperature part, and the temperature may decrease in winter. is there. For this reason,
The well-known dilution operation is performed even when the heating operation is stopped.

【0004】一方、吸収式空調装置の各作動部は商用電
源から供給される電力によって駆動される。このため、
予期せぬ停電によって吸収式空調装置が突然停止する可
能性がある。停電前に濃度の高かった吸収液が、停電中
の余熱でさらに濃度が高まり、晶析し易い状態になるこ
とが考えられる。このため、停電からの復帰後、停電前
に引き続いて例えば冷房運転を行うと、さらに濃度の高
い吸収液の濃度が高まり、吸収式冷凍サイクル内で晶析
が発生する可能性がある。暖房運転中の停電でも、上述
したように停電中に余熱によって吸収液の一部の濃度が
高まり、再運転で加熱すると晶析する可能性がある。
On the other hand, each operating part of the absorption air conditioner is driven by electric power supplied from a commercial power source. For this reason,
Absorption air conditioners may suddenly shut down due to an unexpected power outage. It is conceivable that the absorbing liquid, which had a high concentration before the power outage, was further concentrated by the residual heat during the power outage and was in a state where it was easily crystallized. For this reason, if, for example, the cooling operation is performed after the recovery from the power failure and before the power failure, the concentration of the absorbent having a higher concentration may increase, and crystallization may occur in the absorption refrigeration cycle. Even during a power failure during the heating operation, the concentration of a part of the absorbing liquid increases due to the residual heat during the power failure as described above, and crystallization may occur when heated in the restart.

【0005】そこで、従来では、停電が発生した場合
に、コンデンサ等によるバックアップ電源によって不揮
発性の記憶手段(例えば、EEP−ROM)に運転状態
が冷房運転であったか、暖房運転であったかを記憶して
おき、冷房運転中の停電であれば電力復帰後に冷房運転
に適した希釈を行い、暖房運転中の停電であれば電力復
帰後に暖房運転に適した希釈を行っていた。
Therefore, conventionally, when a power failure occurs, a backup power source such as a capacitor stores in a nonvolatile storage means (for example, EEP-ROM) whether the operating state is cooling operation or heating operation. Every other time, if there is a power failure during cooling operation, dilution suitable for cooling operation is performed after power is restored, and if power failure during heating operation is performed, dilution suitable for heating operation is performed after restoration of power.

【0006】[0006]

【発明が解決しようとする課題】吸収式冷凍サイクルの
能力を上げるには、吸収式冷凍サイクルの機器を大型化
する必要があるが、大型化することなく能力を上げる要
求がある。そこで、吸収液の濃度を上げ、高濃度吸収液
の濃度差と低濃度吸収液の濃度差を高めることで、吸収
式冷凍サイクルの能力を上げている。
In order to increase the capacity of the absorption refrigeration cycle, it is necessary to upsize the equipment of the absorption refrigeration cycle, but there is a demand for increasing the capacity without increasing the size. Therefore, the capacity of the absorption refrigeration cycle is increased by increasing the concentration of the absorption liquid and increasing the concentration difference between the high concentration absorption liquid and the low concentration absorption liquid.

【0007】このように吸収液の濃度を上げたことによ
って、吸収液の晶析温度が上がる。このため、従来と同
様の短時間での希釈運転では、十分な希釈ができなくな
る場合があり、条件によっては晶析する場合もある。そ
こで、電力復帰後に入念に希釈運転を行って晶析を確実
に防ぐことが考えられる。しかし、例えば冷房運転中に
停電になった場合、停電が復帰したら直ぐ冷房運転を開
始する要求があるため、電力復帰後に入念に希釈運転を
行うと電力復帰してからしばらく冷房を開始できず、使
い勝手が悪い。また、電力復帰後に入念に希釈運転を行
う場合では、無駄に希釈運転する場合も生じるため、無
駄な電力消費を生じてしまう。もちろん、暖房運転中で
あっても冷房運転と同様の不具合が生じてしまう。
By increasing the concentration of the absorbing solution in this way, the crystallization temperature of the absorbing solution rises. Therefore, in the same short-time dilution operation as in the conventional case, sufficient dilution may not be possible, and crystallization may occur depending on the conditions. Therefore, it can be considered to carefully prevent the crystallization by carefully performing the dilution operation after the power is restored. However, for example, if a power failure occurs during cooling operation, there is a request to start the cooling operation immediately after the power failure is restored, so if you carefully perform the dilution operation after power restoration, you cannot start cooling for a while after power restoration, It is not easy to use. Further, when the diluting operation is carefully performed after the power is restored, the diluting operation may be unnecessarily performed, resulting in unnecessary power consumption. Of course, even during the heating operation, the same problem as in the cooling operation occurs.

【0008】[0008]

【発明の目的】本発明は、上記の事情に鑑みてなされた
もので、その目的は、停電前の運転状態に応じた希釈運
転を電力復帰後に実施することで、無駄な希釈がなく、
且つできるだけ短時間に再運転のできる吸収式空調装置
の提供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to carry out a dilution operation according to an operating state before a power failure after power is restored, thereby eliminating wasteful dilution.
Moreover, it is to provide an absorption air conditioner that can be restarted in the shortest possible time.

【0009】[0009]

【課題を解決するための手段】本発明の吸収式空調装置
は、上記の目的を達成するために、次の技術的手段を採
用した。 〔請求項1の手段〕吸収式空調装置は、吸収液を加熱さ
せる加熱手段と、この加熱手段で吸収液を加熱すること
によって吸収液の一部を気化させる再生器、この再生器
で発生した気化冷媒を冷却して凝縮する凝縮器、この凝
縮器で液化した液化冷媒を低圧下で蒸発させる蒸発器、
この蒸発器で蒸発した気化冷媒を吸収液に吸収させる吸
収器、この吸収器内の吸収液を前記再生器へ圧送する溶
液ポンプを具備する吸収式冷凍サイクルと、前記加熱手
段および前記吸収式冷凍サイクルを作動させる商用電源
の電力供給状態を監視する電源監視手段と、前記商用電
源の停電時に、前記吸収式冷凍サイクルの運転状況を記
憶する運転状態記憶手段と、前記商用電源の電力供給の
復帰時に、前記運転状態記憶手段に記憶された運転状態
が暖房運転の場合、前記再生器の温度に応じた希釈運転
を行う希釈運転手段とを備える。
The absorption type air conditioner of the present invention employs the following technical means in order to achieve the above object. [Means for Claim 1] The absorption type air conditioner has a heating means for heating the absorbing liquid, a regenerator for vaporizing a part of the absorbing liquid by heating the absorbing liquid by the heating means, and a regenerator. A condenser that cools and condenses the vaporized refrigerant, an evaporator that evaporates the liquefied refrigerant liquefied by this condenser under low pressure,
An absorption type refrigeration cycle equipped with an absorber that absorbs the vaporized refrigerant evaporated in this evaporator into an absorption liquid, a solution pump that pumps the absorption liquid in this absorber to the regenerator, the heating means and the absorption type refrigeration Power source monitoring means for monitoring the power supply state of the commercial power source for operating the cycle, operating state storage means for storing the operating state of the absorption refrigeration cycle when the commercial power source fails, and restoration of the power supply of the commercial power source. At times, when the operating state stored in the operating state storage means is heating operation, there is provided dilution operating means for performing a dilution operation according to the temperature of the regenerator.

【0010】〔請求項2の手段〕吸収式空調装置は、吸
収液を加熱させる加熱手段と、この加熱手段で吸収液を
加熱することによって吸収液の一部を気化させる再生
器、この再生器で発生した気化冷媒を冷却して凝縮する
凝縮器、この凝縮器で液化した液化冷媒を低圧下で蒸発
させる蒸発器、この蒸発器で蒸発した気化冷媒を吸収液
に吸収させる吸収器、この吸収器内の吸収液を前記再生
器へ圧送する溶液ポンプを具備する吸収式冷凍サイクル
と、前記加熱手段および前記吸収式冷凍サイクルを作動
させる商用電源の電力供給状態を監視する電源監視手段
と、前記商用電源の停電時に、前記吸収式冷凍サイクル
の運転状況を記憶する運転状態記憶手段と、前記商用電
源の電力供給の復帰時に、前記運転状態記憶手段に記憶
された運転状態が冷房運転の場合、前記再生器の温度に
応じた希釈運転を行う希釈運転手段とを備える。
[Means for Claim 2] The absorption type air conditioner comprises a heating means for heating the absorbing liquid, a regenerator for heating a portion of the absorbing liquid by the heating means, and a regenerator. A condenser that cools and condenses the vaporized refrigerant generated in 1., an evaporator that evaporates the liquefied refrigerant liquefied in this condenser under low pressure, an absorber that absorbs the vaporized refrigerant evaporated in this evaporator into an absorption liquid, this absorption An absorption type refrigeration cycle including a solution pump that pressure-feeds the absorption liquid in the container to the regenerator; a power supply monitoring unit that monitors a power supply state of a commercial power supply that operates the heating unit and the absorption refrigeration cycle; When the commercial power source fails, the operating state storage unit that stores the operating state of the absorption refrigeration cycle and the operating state stored in the operating state storage unit when the commercial power supply is restored For operation, and a dilution operation means for performing a dilution operation according to the temperature of the regenerator.

【0011】〔請求項3の手段〕請求項2の吸収式空調
装置において、前記商用電源の電力供給の復帰時に、前
記運転状態記憶手段に記憶された運転状態が冷房運転の
場合、前記希釈運転手段は、前記再生器の温度が所定温
度以上の場合、前記運転状態記憶手段に記憶された前記
再生器の温度と、電力復帰時の前記再生器の温度の温度
差に基づいて停電時間を想定し、この想定時間が長いと
想定された場合、電力復帰時の前記再生器の温度が所定
温度より低い場合で、且つ外気温度が所定温度以上の場
合に、室内機のファンを停止した状態で冷房運転を実施
する疑似冷房運転を一時的に実施して希釈運転を行うこ
とを特徴とする。
[Means for Claim 3] In the absorption type air conditioner according to Claim 2, when the operating state stored in the operating state storage means is the cooling operation at the time of returning the power supply of the commercial power source, the dilution operation is performed. When the temperature of the regenerator is equal to or higher than a predetermined temperature, the means estimates a power failure time based on a temperature difference between the temperature of the regenerator stored in the operating state storage means and the temperature of the regenerator at the time of power restoration. However, if it is assumed that this estimated time is long, if the temperature of the regenerator at the time of power restoration is lower than a predetermined temperature, and if the outside air temperature is equal to or higher than a predetermined temperature, the indoor unit fan is stopped. It is characterized in that the pseudo cooling operation for performing the cooling operation is temporarily performed and the dilution operation is performed.

【0012】〔請求項4の手段〕吸収式空調装置は、吸
収液を加熱させる加熱手段と、この加熱手段で吸収液を
加熱することによって吸収液の一部を気化させる再生
器、この再生器で発生した気化冷媒を冷却して凝縮する
凝縮器、この凝縮器で液化した液化冷媒を低圧下で蒸発
させる蒸発器、この蒸発器で蒸発した気化冷媒を吸収液
に吸収させる吸収器、この吸収器内の吸収液を前記再生
器へ圧送する溶液ポンプを具備する吸収式冷凍サイクル
と、前記加熱手段および前記吸収式冷凍サイクルを作動
させる商用電源の電力供給状態を監視する電源監視手段
と、前記商用電源の停電時に、前記吸収式冷凍サイクル
の運転状況を記憶する運転状態記憶手段と、前記商用電
源の電力供給の復帰時に、前記運転状態記憶手段に記憶
された運転状態が冷房運転の停止処理中または中止処理
中の場合、前記再生器の温度に応じた希釈運転を行う希
釈運転手段とを備える。
[Means for Claim 4] The absorption type air conditioner comprises a heating means for heating the absorbing liquid, a regenerator for heating a portion of the absorbing liquid by the heating means, and a regenerator. A condenser that cools and condenses the vaporized refrigerant generated in 1., an evaporator that evaporates the liquefied refrigerant liquefied in this condenser under low pressure, an absorber that absorbs the vaporized refrigerant evaporated in this evaporator into an absorption liquid, this absorption An absorption type refrigeration cycle including a solution pump that pressure-feeds the absorption liquid in the container to the regenerator; a power supply monitoring unit that monitors a power supply state of a commercial power supply that operates the heating unit and the absorption refrigeration cycle; When the commercial power source fails, the operating state storage unit that stores the operating state of the absorption refrigeration cycle and the operating state stored in the operating state storage unit when the commercial power supply is restored For stopping the processing or during stop processing operation, and a dilution operation means for performing a dilution operation according to the temperature of the regenerator.

【0013】[0013]

【作用および発明の効果】〔請求項1の作用および効
果〕請求項1の手段では、停電からの電力復帰時に、運
転状態記憶手段の記憶する運転状態が暖房運転の時、再
生器の温度に応じた希釈運転を行う。この結果、電力復
帰時に、停電発生時の暖房運転状態に適した希釈運転を
実行できるため、無駄な希釈運転が抑えられ、且つ晶析
の発生を防ぐことができる。
[Operation and effect of the invention] [Operation and effect of claim 1] According to the means of claim 1, when the power is restored from the power failure, the operating state stored in the operating state storage means is the temperature of the regenerator when the heating operation is performed. Perform the appropriate dilution operation. As a result, since the dilution operation suitable for the heating operation state at the time of power failure can be executed at the time of power restoration, useless dilution operation can be suppressed and crystallization can be prevented.

【0014】〔請求項2の作用および効果〕請求項2の
手段では、停電からの電力復帰時に、運転状態記憶手段
の記憶する運転状態が冷房運転の時、再生器の温度に応
じた希釈運転を行う。この結果、電力復帰時に、停電発
生時の冷房運転状態に適した希釈運転を実行できるた
め、無駄な希釈運転が抑えられ、且つ晶析の発生を防ぐ
ことができる。
[Operation and Effect of Claim 2] According to the means of claim 2, when the operating state stored in the operating state storage means is the cooling operation at the time of power recovery from the power failure, the dilution operation according to the temperature of the regenerator is performed. I do. As a result, since the dilution operation suitable for the cooling operation state at the time of power failure can be executed at the time of power restoration, useless dilution operation can be suppressed and crystallization can be prevented.

【0015】〔請求項3の作用および効果〕請求項3の
手段を採用し、停電からの電力復帰時に、運転状態記憶
手段の記憶する運転状態が冷房運転で、停電発生時の再
生器の温度が高く、停電時間が長く、電力復帰時の再生
器の温度が低い時は、冷房運転可能な外気温度の場合
に、疑似冷房運転を実施する。これにより、吸収式冷凍
サイクル内の吸収液を効率よく循環させることが可能に
なるため、結果的に希釈時間を短縮できる。
[Operation and effect of claim 3] By adopting the means of claim 3, when the power is restored from the power failure, the operation state stored in the operation state storage means is the cooling operation, and the temperature of the regenerator at the time of the power failure occurs. Is high, the power outage time is long, and the temperature of the regenerator at the time of power restoration is low, the pseudo cooling operation is performed when the outside air temperature is such that the cooling operation can be performed. As a result, the absorption liquid in the absorption refrigeration cycle can be efficiently circulated, and as a result, the dilution time can be shortened.

【0016】〔請求項4の作用および効果〕請求項4の
手段では、停電からの電力復帰時に、運転状態記憶手段
の記憶する運転状態が冷房運転の停止処理中または中止
処理中の時は、再生器の温度に応じた希釈運転を行う。
この結果、電力復帰時に、停電発生時の処理状態に適し
た希釈運転を実行できるため、無駄な希釈運転が抑えら
れ、且つ晶析の発生を防ぐことができる。
[Operation and effect of claim 4] According to the means of claim 4, when the operation state stored in the operation state storage means is during the cooling operation stop processing or the stop processing at the time of power recovery from a power failure, Perform the dilution operation according to the temperature of the regenerator.
As a result, when power is restored, the dilution operation suitable for the processing state at the time of power failure can be executed, so that useless dilution operation can be suppressed and crystallization can be prevented.

【0017】[0017]

【発明の実施の形態】次に、本発明の実施の形態を、実
施例と変形例に基づいて説明する。 〔第1実施例〕図1、図2は実施例を説明するための図
面であり、図1は吸収式空調装置における室外機の概略
図、図2は室外機および室内機の接続図である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described based on examples and modifications. [First Embodiment] FIGS. 1 and 2 are drawings for explaining an embodiment, FIG. 1 is a schematic view of an outdoor unit in an absorption air conditioner, and FIG. 2 is a connection diagram of an outdoor unit and an indoor unit. .

【0018】(吸収式空調装置の概略説明)吸収式空調
装置は、室外機1と室内機2とからなり、室外機1は冷
凍機本体3と冷却塔4とから構成され、室内機2を除く
各電気機能部品はコントローラ5によって制御される。
冷凍機本体3は、主にステンレスによって形成され、冷
媒および吸収液として臭化リチウム水溶液を用いて吸収
サイクルを形成するものであり、吸収液を加熱する加熱
手段6と、2重効用型の吸収式冷凍サイクル7とから構
成される。
(Schematic Description of Absorption Air Conditioner) The absorption air conditioner comprises an outdoor unit 1 and an indoor unit 2, and the outdoor unit 1 is composed of a refrigerator main body 3 and a cooling tower 4 and an indoor unit 2 Each of the electric functional parts except the one is controlled by the controller 5.
The refrigerator main body 3 is mainly made of stainless steel and forms an absorption cycle by using an aqueous solution of lithium bromide as a refrigerant and an absorbing liquid, and has a heating means 6 for heating the absorbing liquid and a double-effect absorption type. And a refrigeration cycle 7.

【0019】(加熱手段6の説明)本実施例の加熱手段
6は、燃料であるガスを燃焼して熱を発生させ、発生し
た熱によって吸収液を加熱するガス燃焼装置を用いてい
る。この加熱手段6は、ガスの燃焼を行うガスバーナ1
1、このガスバーナ11へガスの供給を行うガス供給手
段12、ガスバーナ11へ燃焼用の空気を供給する燃焼
ファン13などから構成される。ガス供給手段12は、
ガス配管12a、このガス配管12aを開閉するガス元
電磁弁12b、ガスの燃料量を調整するガス比例弁12
cから構成される。そして、ガスバーナ11のガス燃焼
で得られた熱で、吸収式冷凍サイクル7の沸騰器14を
加熱し、沸騰器14内に供給された低濃度吸収液(以
下、稀液)を加熱するように設けられている。
(Explanation of Heating Means 6) The heating means 6 of this embodiment uses a gas combustion device that combusts a gas which is a fuel to generate heat and heats the absorbing liquid by the generated heat. The heating means 6 is a gas burner 1 that burns gas.
1, a gas supply means 12 for supplying gas to the gas burner 11, a combustion fan 13 for supplying combustion air to the gas burner 11, and the like. The gas supply means 12 is
Gas pipe 12a, gas source solenoid valve 12b for opening and closing this gas pipe 12a, gas proportional valve 12 for adjusting the amount of gas fuel
It is composed of c. Then, the heat obtained by the gas combustion of the gas burner 11 heats the boiling device 14 of the absorption refrigeration cycle 7 so as to heat the low-concentration absorbing liquid (hereinafter, dilute liquid) supplied into the boiling device 14. It is provided.

【0020】(吸収式冷凍サイクル7の説明)吸収式冷
凍サイクル7は、加熱手段6によって加熱される沸騰器
14を備え、この沸騰器14内に供給された稀液が加熱
されることによって稀液に含まれる冷媒(水)を気化
(蒸発)させて中濃度吸収液(以下、中液)にする高温
再生器15と、この高温再生器15内の気化冷媒の凝縮
熱を利用して、高温再生器15側から圧力差を利用して
供給される中液を加熱し、中液に含まれる冷媒を気化さ
せて中液を高濃度吸収液(以下、濃液)にする低温再生
器16と、高温再生器15および低温再生器16からの
気化冷媒(水蒸気)を冷却して液化する凝縮器17と、
この凝縮器17で液化した液化冷媒(水)を真空に近い
圧力下で蒸発させる蒸発器18と、この蒸発器18で蒸
発した気化冷媒を低温再生器16で得られた濃液に吸収
させる吸収器19とから構成される。
(Explanation of Absorption Refrigeration Cycle 7) The absorption refrigeration cycle 7 is equipped with a boiling device 14 which is heated by the heating means 6, and the rare liquid supplied to the boiling device 14 is heated to dilute it. Utilizing the high temperature regenerator 15 that vaporizes (evaporates) the refrigerant (water) contained in the liquid into a medium-concentration absorption liquid (hereinafter, medium liquid) and the condensation heat of the vaporized refrigerant in the high temperature regenerator 15, The low temperature regenerator 16 that heats the medium liquid supplied from the high temperature regenerator 15 side by utilizing the pressure difference and vaporizes the refrigerant contained in the medium liquid to turn the medium liquid into a highly concentrated absorbing liquid (hereinafter, concentrated liquid) 16. And a condenser 17 for cooling and liquefying the vaporized refrigerant (steam) from the high temperature regenerator 15 and the low temperature regenerator 16,
An evaporator 18 for evaporating the liquefied refrigerant (water) liquefied by the condenser 17 under a pressure close to a vacuum, and an absorption for absorbing the vaporized refrigerant evaporated by the evaporator 18 into a concentrated liquid obtained by the low temperature regenerator 16. And a container 19.

【0021】(高温再生器15の説明)高温再生器15
は、加熱手段6によって稀液を加熱する上述の沸騰器1
4、およびこの沸騰器14から上方へ延びる沸騰筒21
を備える。この沸騰器14および沸騰筒21で沸騰して
稀液から気化した気化冷媒は、沸騰筒21から円筒容器
形状の高温再生ケース22内に吹き出る。この高温再生
ケース22内に吹き出た高温の気化冷媒は、高温再生ケ
ース22の壁によって、低温再生器16内の中液の蒸発
時の気化熱として熱が奪われて冷却されて液化冷媒
(水)になる。
(Description of High Temperature Regenerator 15) High Temperature Regenerator 15
Is the above-mentioned boiling device 1 for heating the dilute liquid by the heating means 6.
4, and a boiling cylinder 21 extending upward from the boiling device 14
Equipped with. The vaporized refrigerant that has boiled in the boiling device 14 and the boiling tube 21 and is vaporized from the dilute liquid is blown out from the boiling tube 21 into the high temperature regeneration case 22 having a cylindrical container shape. The high temperature vaporized refrigerant blown into the high temperature regeneration case 22 is deprived of heat by the wall of the high temperature regeneration case 22 as vaporization heat at the time of evaporation of the middle liquid in the low temperature regenerator 16 to be cooled to be a liquefied refrigerant (water). )become.

【0022】この実施例の沸騰筒21の内部には、沸騰
筒21内に吹き出て冷媒が気化した後の中液を蓄える容
器21aが配置されており、その内部に溜められた中液
が中液管23を通って低温再生器16に供給される。こ
の中液管23には、オリフィスなどの絞り手段(図示し
ない)が設けられている。この絞り手段は、後述する冷
暖房切替弁52aが閉じられると、高温再生器15と低
温再生器16との圧力差を保った状態で中液を流し、冷
暖房切替弁52aが開かれると中液を殆ど流さないため
に設けられたものである。なお、高温再生ケース22で
液化し、沸騰筒21の外側に分離された液化冷媒(水)
は、下部に接続された液冷媒管25を通って凝縮器17
に導かれる。
Inside the boiling cylinder 21 of this embodiment, there is arranged a container 21a for storing the medium liquid after the refrigerant is blown into the boiling cylinder 21 and the refrigerant is vaporized. It is supplied to the low temperature regenerator 16 through the liquid pipe 23. The middle liquid pipe 23 is provided with a throttle means (not shown) such as an orifice. When the cooling / heating switching valve 52a, which will be described later, is closed, this throttling means causes the medium liquid to flow while maintaining the pressure difference between the high temperature regenerator 15 and the low temperature regenerator 16, and when the cooling / heating switching valve 52a is opened, the medium liquid is discharged. It is provided so that it hardly flows. The liquefied refrigerant (water) liquefied in the high temperature regeneration case 22 and separated outside the boiling cylinder 21
Passes through the liquid refrigerant pipe 25 connected to the lower part of the condenser 17
Be led to.

【0023】(低温再生器16の説明)低温再生器16
は、高温再生ケース22を覆う筒状容器形状の低温再生
ケース31を備える。この低温再生器16は、中液管2
3を通って供給される中液を高温再生ケース22の天井
部分に向けて注入する。低温再生ケース31内の温度
は、高温再生ケース22内の温度に比較して低いため、
低温再生ケース31内の圧力は高温再生ケース22内の
圧力に比較して低い。このため、中液管23から低温再
生ケース31内に供給された中液は蒸発し易い。そし
て、中液が高温再生ケース22の天井部分に注入される
と、高温再生ケース22の壁によって中液が加熱され、
中液に含まれる冷媒の一部が蒸発して気化冷媒になり、
残りが濃液になる。
(Description of Low Temperature Regenerator 16) Low Temperature Regenerator 16
Is provided with a low temperature regeneration case 31 in the shape of a tubular container that covers the high temperature regeneration case 22. This low temperature regenerator 16 is a medium liquid pipe 2
The medium liquid supplied through the No. 3 is injected toward the ceiling portion of the high temperature regeneration case 22. Since the temperature in the low temperature regeneration case 31 is lower than the temperature in the high temperature regeneration case 22,
The pressure in the low temperature regeneration case 31 is lower than the pressure in the high temperature regeneration case 22. Therefore, the medium liquid supplied from the medium liquid pipe 23 into the low temperature regeneration case 31 is easily evaporated. Then, when the middle liquid is poured into the ceiling portion of the high temperature regeneration case 22, the middle liquid is heated by the wall of the high temperature regeneration case 22,
Part of the refrigerant contained in the medium liquid evaporates and becomes a vaporized refrigerant,
The rest becomes thick liquid.

【0024】ここで、低温再生ケース31の上方は、環
状容器形状の凝縮ケース32の上側と、連通部33を介
して連通している。このため、低温再生ケース31内で
蒸発した気化冷媒は、連通部33を通って凝縮ケース3
2内に供給される。一方、濃液は、低温再生ケース31
の下部に落下し、低温再生ケース31の下部に接続され
た濃液管34を通って吸収器19に供給される。なお、
低温再生ケース31内の上側には、天井板35が設けら
れ、この天井板35の外周端と低温再生ケース31との
間には、気化冷媒が通過する隙間36が設けられてい
る。
Here, the upper side of the low temperature regeneration case 31 communicates with the upper side of the annular case-shaped condensing case 32 via a communication portion 33. Therefore, the vaporized refrigerant evaporated in the low temperature regeneration case 31 passes through the communicating portion 33 and is condensed in the condensing case 3
2 is supplied. On the other hand, the concentrated liquid is the low temperature regeneration case 31.
And is supplied to the absorber 19 through the concentrated liquid pipe 34 connected to the lower portion of the low temperature regeneration case 31. In addition,
A ceiling plate 35 is provided on the upper side in the low temperature regeneration case 31, and a gap 36 through which vaporized refrigerant passes is provided between the outer peripheral end of the ceiling plate 35 and the low temperature regeneration case 31.

【0025】(凝縮器17の説明)凝縮器17は、環状
容器形状の凝縮ケース32によって覆われている。この
凝縮ケース32の内部には、凝縮ケース32内の気化冷
媒を冷却して液化させる凝縮用熱交換器37が配置され
ている。この凝縮用熱交換器37は、環状のコイルで、
内部には冷却水が流れる。そして、低温再生器16から
凝縮ケース32内に供給された液化冷媒は、凝縮用熱交
換器37によって冷却されて液化する。この液化冷媒
は、トレー37aによって受けられ、そのトレー37a
から第1液冷媒供給管38aを介して蒸発器18に導か
れる。
(Description of Condenser 17) The condenser 17 is covered with a condensing case 32 in the shape of an annular container. Inside the condensing case 32, a condensing heat exchanger 37 that cools and liquefies the vaporized refrigerant in the condensing case 32 is arranged. This condensing heat exchanger 37 is an annular coil,
Cooling water flows inside. Then, the liquefied refrigerant supplied from the low temperature regenerator 16 into the condensing case 32 is cooled and liquefied by the condensing heat exchanger 37. The liquefied refrigerant is received by the tray 37a, and the tray 37a receives the liquefied refrigerant.
Is guided to the evaporator 18 via the first liquid refrigerant supply pipe 38a.

【0026】一方、凝縮ケース32の下側に、上述の高
温再生器15から液冷媒管25を通って冷媒が供給され
る。この供給冷媒は、凝縮ケース32内に供給される際
に、圧力の違い(凝縮ケース32内は約70mmHgの
低圧)から、再沸騰し、気化冷媒と液化冷媒とが混合し
た状態で供給される。なお、凝縮ケース32の下部に蓄
えられた液化冷媒は、電磁開閉弁である冷媒弁38bが
設けられた第2液冷媒供給管38cを介して蒸発器18
に導かれる。
On the other hand, below the condensing case 32, the refrigerant is supplied from the above-mentioned high temperature regenerator 15 through the liquid refrigerant pipe 25. When supplied to the condensing case 32, the supplied refrigerant reboils due to the difference in pressure (a low pressure of about 70 mmHg in the condensing case 32) and is supplied in a state where the vaporized refrigerant and the liquefied refrigerant are mixed. . The liquefied refrigerant stored in the lower portion of the condensing case 32 is passed through the second liquid refrigerant supply pipe 38c provided with the refrigerant valve 38b, which is an electromagnetic opening / closing valve, and then the evaporator 18 is supplied.
Be led to.

【0027】(蒸発器18の説明)蒸発器18は、吸収
器19とともに、凝縮ケース32の下部に設けられるも
のであり、低温再生ケース31の周囲に設けられた環状
容器形状の蒸発・吸収ケース41によって覆われてい
る。この蒸発・吸収ケース41の内部の外側には、凝縮
器17から供給される液化冷媒を蒸発させる蒸発用熱交
換器42が配置されている。この蒸発用熱交換器42
は、環状のコイルで、内部には室内機2に供給される冷
温水(冷暖房用熱媒体として用いられる水)が流れる。
そして、凝縮器17から第1、第2液冷媒供給管38
a、38cを介して供給された液化冷媒は、蒸発用熱交
換器42の上部に配置された冷媒沸騰器43aを介して
冷媒散布具43に供給され、その冷媒散布具43から蒸
発用熱交換器42の上に散布される。
(Description of Evaporator 18) The evaporator 18 is provided below the condensing case 32 together with the absorber 19, and is an annular container-shaped evaporation / absorption case provided around the low temperature regeneration case 31. It is covered by 41. An evaporation heat exchanger 42 that evaporates the liquefied refrigerant supplied from the condenser 17 is arranged outside the evaporation / absorption case 41. This evaporation heat exchanger 42
Is an annular coil through which cold / hot water (water used as a heating / cooling heat medium) supplied to the indoor unit 2 flows.
Then, from the condenser 17 to the first and second liquid refrigerant supply pipes 38
The liquefied refrigerant supplied via a and 38c is supplied to the refrigerant spraying tool 43 via a refrigerant boiling device 43a arranged above the evaporation heat exchanger 42, and the refrigerant spraying tool 43 evaporates heat exchange. It is sprinkled on the container 42.

【0028】蒸発・吸収ケース41内は、ほぼ真空(例
えば6.5mmHg)に保たれるため、沸点が低く、蒸
発用熱交換器42に散布された液化冷媒は、大変蒸発し
易い。そして、蒸発用熱交換器42に散布された液化冷
媒は、蒸発用熱交換器42内を流れる冷温水から気化熱
を奪って蒸発する。この結果、蒸発用熱交換器42内を
流れる冷温水が冷却される。そして、冷却された冷温水
は、室内機2に導かれ、室内を冷房する。
Since the inside of the evaporation / absorption case 41 is maintained in a substantially vacuum (for example, 6.5 mmHg), the boiling point is low, and the liquefied refrigerant dispersed in the evaporation heat exchanger 42 is very likely to evaporate. Then, the liquefied refrigerant sprayed on the evaporation heat exchanger 42 removes heat of vaporization from the cold and warm water flowing in the evaporation heat exchanger 42 to evaporate. As a result, the cold / hot water flowing through the evaporation heat exchanger 42 is cooled. Then, the cooled cold / hot water is guided to the indoor unit 2 to cool the room.

【0029】(吸収器19の説明)吸収器19は、上述
のように、蒸発・吸収ケース41に覆われる。そして、
吸収器19は、蒸発・吸収ケース41の内部の内側に、
濃液管34から供給される濃液を冷却する吸収用熱交換
器44が配置されている。この吸収用熱交換器44は、
環状のコイルで、内部には、コイル上に散布された濃液
を冷却する冷却水が流れる。なお、吸収用熱交換器44
を通過した冷却水は、凝縮器17の凝縮用熱交換器37
を通過した後、冷却塔4に導かれて冷却される。そして
冷却塔4で冷却された冷却水は、再び吸収用熱交換器4
4に導かれる。
(Description of Absorber 19) The absorber 19 is covered with the evaporation / absorption case 41 as described above. And
The absorber 19 is provided inside the evaporation / absorption case 41,
An absorption heat exchanger 44 for cooling the concentrated liquid supplied from the concentrated liquid pipe 34 is arranged. This absorption heat exchanger 44 is
Cooling water that cools the concentrated liquid sprinkled on the coil flows inside the annular coil. In addition, the absorption heat exchanger 44
The cooling water that has passed through the condenser 17 is condensed by the heat exchanger 37 for condensation of the condenser 17.
After passing through, it is guided to the cooling tower 4 and cooled. The cooling water cooled in the cooling tower 4 is again absorbed by the heat exchanger 4 for absorption.
Guided to 4.

【0030】一方、吸収用熱交換器44の上部には、濃
液管34から供給される濃液を吸収用熱交換器44に散
布する吸収液散布具45が配置される。吸収用熱交換器
44に散布された濃液は、吸収用熱交換器44のコイル
表面を伝わって上方から下方へ落下する間に、蒸発用熱
交換器42において蒸発により生成された気化冷媒を吸
収する。この結果、蒸発・吸収ケース41の底に落下し
た吸収液は、濃度が薄くなった稀液となる。
On the other hand, above the absorption heat exchanger 44, there is arranged an absorbent dispersion device 45 for distributing the concentrated liquid supplied from the concentrated liquid pipe 34 to the absorption heat exchanger 44. The concentrated liquid sprinkled on the absorption heat exchanger 44 travels along the coil surface of the absorption heat exchanger 44 and falls from the upper side to the lower side, while removing the vaporized refrigerant generated by evaporation in the evaporation heat exchanger 42. Absorb. As a result, the absorbing liquid that has dropped to the bottom of the evaporation / absorption case 41 becomes a dilute liquid having a low concentration.

【0031】蒸発・吸収ケース41の内部には、蒸発用
熱交換器42と吸収用熱交換器44との間に、筒状仕切
壁46が配置されている。この筒状仕切壁46は、上方
において蒸発・吸収ケース41の内部を連通するもの
で、蒸発器18で生成された気化冷媒が筒状仕切壁46
の上部を介して吸収器19内に導かれる。
Inside the evaporation / absorption case 41, a cylindrical partition wall 46 is arranged between the evaporation heat exchanger 42 and the absorption heat exchanger 44. The cylindrical partition wall 46 communicates with the inside of the evaporation / absorption case 41 at the upper side, and the vaporized refrigerant generated in the evaporator 18 is connected to the cylindrical partition wall 46.
Is guided into the absorber 19 via the upper part of the.

【0032】また、蒸発・吸収ケース41の底には、蒸
発・吸収ケース41の底の稀液を沸騰器14に供給する
ための稀液管47が接続されている。この稀液管47に
は、ほぼ真空状態の蒸発・吸収ケース41内から沸騰器
14に向けて稀液を流すために、溶液ポンプ48が設け
られている。
A dilute liquid pipe 47 for supplying the dilute liquid at the bottom of the evaporation / absorption case 41 to the evaporator 14 is connected to the bottom of the evaporation / absorption case 41. The rare liquid pipe 47 is provided with a solution pump 48 for flowing the rare liquid from the inside of the evaporation / absorption case 41 in a substantially vacuum state toward the boiling device 14.

【0033】(吸収式冷凍サイクル7における上記以外
の構成部品の説明)図1に示す符号51は、沸騰筒21
内から低温再生器16へ流れる中液と吸収器19から沸
騰器14へ流れる稀液とを熱交換する高温熱交換器51
aと、低温再生器16から吸収器19へ流れる濃液と吸
収器19から沸騰器14へ流れる稀液とを熱交換する低
温熱交換器51bとを一体化した熱交換器である。な
お、高温熱交換器51aは、沸騰筒21から低温再生器
16へ流れる中液を冷却し、逆に吸収器19から沸騰器
14へ流れる稀液を加熱するものである。また、低温熱
交換器51bは、低温再生器16から吸収器19へ流れ
る濃液を冷却し、逆に吸収器19から沸騰器14へ流れ
る稀液を加熱するものである。
(Explanation of Other Components in Absorption Refrigeration Cycle 7) The reference numeral 51 shown in FIG.
A high temperature heat exchanger 51 for exchanging heat between the medium liquid flowing from the inside to the low temperature regenerator 16 and the dilute liquid flowing from the absorber 19 to the boiling device 14.
and a low temperature heat exchanger 51b for exchanging heat between the concentrated liquid flowing from the low temperature regenerator 16 to the absorber 19 and the dilute liquid flowing from the absorber 19 to the boiling device 14 are integrated. The high temperature heat exchanger 51a cools the medium liquid flowing from the boiling cylinder 21 to the low temperature regenerator 16 and conversely heats the dilute liquid flowing from the absorber 19 to the boiling device 14. Further, the low temperature heat exchanger 51b cools the concentrated liquid flowing from the low temperature regenerator 16 to the absorber 19, and conversely heats the dilute liquid flowing from the absorber 19 to the boiling device 14.

【0034】また、本実施例の吸収式冷凍サイクル7に
は、上述の作動による冷房運転の他に、暖房運転を行う
ための暖房運転手段が設けられている。暖房運転手段
は、沸騰筒21の下部から、温度の高い吸収液を蒸発・
吸収ケース41の下部へ導く暖房管52と、この暖房管
52を開閉する冷暖房切替弁52aとから構成される。
この冷暖房切替弁52aは、暖房運転時に開弁して高温
の吸収液を蒸発・吸収ケース41内へ導き、蒸発器18
の蒸発用熱交換器42内を流れる冷温水を加熱するもの
である。
Further, the absorption refrigeration cycle 7 of this embodiment is provided with heating operation means for performing heating operation in addition to the cooling operation by the above-described operation. The heating operation means evaporates and absorbs the high temperature absorbing liquid from the lower portion of the boiling cylinder 21.
It is composed of a heating pipe 52 that leads to the lower part of the absorption case 41, and a cooling / heating switching valve 52a that opens and closes the heating pipe 52.
This heating / cooling switching valve 52a is opened during heating operation to guide the high temperature absorbing liquid into the evaporation / absorption case 41, and the evaporator 18
The cold and warm water flowing in the heat exchanger 42 for evaporation is heated.

【0035】(室内機2の説明)室内機2は、蒸発器1
8の蒸発用熱交換器42内を流れて冷却あるいは加熱さ
れた冷温水と室内空気とを強制的に熱交換して、室内を
冷房あるいは暖房するものであり、冷温水と室内空気と
を熱交換するための室内熱交換器(図示しない)と、室
内ファン(図示しない)とを備える。なお、室内機2の
内部には、図示しない端末制御回路が組み込まれてお
り、室内温度と設定温度との差に応じて室内ファンの回
転速度を制御するとともに、後述する流量調整弁60の
開度制御を行う。また、端末制御回路は、信号線2aを
介して室外機1のコントローラ5に接続されており、室
外機1に対して運転指示等を出力する。
(Explanation of Indoor Unit 2) The indoor unit 2 includes an evaporator 1
The hot and cold water that has flowed in the heat exchanger 42 for evaporation of 8 and is cooled or heated is forcibly exchanged with the room air to cool or heat the room. An indoor heat exchanger (not shown) for exchanging and an indoor fan (not shown) are provided. A terminal control circuit (not shown) is incorporated inside the indoor unit 2 to control the rotation speed of the indoor fan according to the difference between the indoor temperature and the set temperature, and to open the flow rate adjusting valve 60 described later. Degree control. Further, the terminal control circuit is connected to the controller 5 of the outdoor unit 1 via the signal line 2a and outputs a driving instruction or the like to the outdoor unit 1.

【0036】室内機2の室内熱交換器には、蒸発用熱交
換器42内を流れて冷却あるいは加熱された冷温水を室
内熱交換器に導くとともに、この室内熱交換器で熱交換
した熱交換後の冷温水を再び蒸発用熱交換器42へ戻す
冷温水配管53が接続されている。この冷温水配管53
には、冷温水を循環させる冷温水ポンプ54が設けられ
ている。
In the indoor heat exchanger of the indoor unit 2, cold / hot water that has flowed in the evaporation heat exchanger 42 and is cooled or heated is introduced to the indoor heat exchanger, and the heat exchanged by the indoor heat exchanger is conducted. A cold / hot water pipe 53 is connected to return the cold / hot water after replacement to the evaporation heat exchanger 42 again. This hot and cold water piping 53
Is provided with a cold / hot water pump 54 for circulating cold / hot water.

【0037】冷温水配管53には、蒸発用熱交換器42
に流れる冷温水の流量を調整するための流量調整弁60
が設けられている。この流量調整弁60は、室内機2が
複数設けられる場合、各室内機2に供給される冷温水の
流量を個別に調整するように、各室内機2に応じて設け
られる。
The hot and cold water pipe 53 has a heat exchanger 42 for evaporation.
Flow control valve 60 for adjusting the flow rate of cold and hot water flowing through
Is provided. When a plurality of indoor units 2 are provided, the flow rate adjusting valve 60 is provided for each indoor unit 2 so as to individually adjust the flow rate of the cold / hot water supplied to each indoor unit 2.

【0038】(冷却塔4の説明)冷却塔4は、吸収器1
9および凝縮器17を通過して昇温した冷却水を、上方
から下方へ流し、流れている間に外気と熱交換して放熱
するとともに、流れている間に一部蒸発させて気化熱を
奪って冷却水を冷却するもので、冷却水の蒸発および冷
却を促進する冷却塔ファン61を備える。この冷却塔4
には、冷却水を循環させる冷却水配管62(循環経路に
相当する)が接続されており、冷却水配管62の冷却水
は冷却水ポンプ63によって循環される。
(Explanation of Cooling Tower 4) The cooling tower 4 includes the absorber 1
9 and the condenser 17, the temperature of the cooling water is raised from the upper side to the lower side, while exchanging heat with the outside air to dissipate heat while flowing, and at the same time to partially evaporate heat of vaporization. The cooling tower fan 61 is provided to take the cooling water and cool the cooling water, and to promote evaporation and cooling of the cooling water. This cooling tower 4
Is connected to a cooling water pipe 62 (corresponding to a circulation path) for circulating cooling water, and the cooling water in the cooling water pipe 62 is circulated by a cooling water pump 63.

【0039】(不凝縮ガス収集手段の説明)一方、室外
機1の内部には、吸収式冷凍サイクル7内の腐食などに
より発生した水素などの不凝縮ガスを吸収式冷凍サイク
ル7の外部へ集めて蓄える不凝縮ガス収集手段が設けら
れている。この不凝縮ガス収集手段は、吸収式冷凍サイ
クル7の不凝縮ガスを外部へ抽出する抽気手段70と、
この抽気手段70によって外部へ抽出された不凝縮ガス
を蓄える不凝縮ガスタンク71とを備える。
(Explanation of Noncondensable Gas Collecting Means) On the other hand, inside the outdoor unit 1, noncondensable gas such as hydrogen generated by corrosion in the absorption refrigeration cycle 7 is collected outside the absorption refrigeration cycle 7. A non-condensable gas collecting means for storing is stored. This non-condensable gas collecting means is a bleeding means 70 for extracting the non-condensing gas of the absorption refrigeration cycle 7 to the outside,
A non-condensable gas tank 71 for storing the non-condensable gas extracted to the outside by the extraction means 70 is provided.

【0040】(吸収式冷凍サイクル7の作動による冷房
運転の作動)吸収式冷凍サイクル7は、加熱手段6が沸
騰器14を加熱することにより、高温再生器15で、稀
液から気化冷媒が取り出されるとともに、低温再生器1
6で、中液から濃液が取り出される。高温再生器15お
よび低温再生器16で取り出された気化冷媒は、凝縮器
17で凝縮されて液化した後、蒸発器18の蒸発用熱交
換器42に散布され、蒸発用熱交換器42内の冷温水か
ら気化熱を奪って蒸発する。このため、蒸発用熱交換器
42を通過し、冷却された冷温水は、室内機2の室内熱
交換器に供給されて室内を冷房する。
(Operation of Cooling Operation by Operation of Absorption Refrigeration Cycle 7) In the absorption refrigeration cycle 7, the heating means 6 heats the boiling device 14, whereby the high temperature regenerator 15 extracts vaporized refrigerant from the dilute liquid. And low temperature regenerator 1
At 6, the concentrated solution is removed from the medium solution. The vaporized refrigerant taken out by the high-temperature regenerator 15 and the low-temperature regenerator 16 is condensed in the condenser 17 and liquefied, and then sprayed on the evaporation heat exchanger 42 of the evaporator 18, and the vaporized refrigerant inside the evaporation heat exchanger 42 is condensed. The heat of vaporization is taken from cold and warm water to evaporate. Therefore, the cold / hot water that has passed through the evaporation heat exchanger 42 and is cooled is supplied to the indoor heat exchanger of the indoor unit 2 to cool the room.

【0041】蒸発器18内で蒸発した気化冷媒は、筒状
仕切壁46の上方を通過して吸収器19内に流入する。
一方、吸収器19内では、低温再生器16で取り出され
た濃液が吸収用熱交換器44に散布されており、この濃
液に蒸発器18から流入した気化冷媒が吸収される。な
お、気化冷媒が濃液に吸収される際に発生する吸収熱
は、吸収用熱交換器44によって吸収されて吸収能力の
低下が防止される。なお、吸収器19で気化冷媒を吸収
した濃液は、稀液となって溶液ポンプ48で吸い込ま
れ、再び沸騰器14内に戻され、上記のサイクルを繰り
返す。
The vaporized refrigerant evaporated in the evaporator 18 passes above the cylindrical partition wall 46 and flows into the absorber 19.
On the other hand, in the absorber 19, the concentrated liquid taken out by the low-temperature regenerator 16 is scattered on the absorption heat exchanger 44, and the vaporized refrigerant flowing from the evaporator 18 is absorbed in this concentrated liquid. It should be noted that the absorption heat generated when the vaporized refrigerant is absorbed by the concentrated liquid is absorbed by the absorption heat exchanger 44 to prevent the absorption capacity from lowering. The concentrated liquid that has absorbed the vaporized refrigerant in the absorber 19 becomes a dilute liquid, is sucked by the solution pump 48, is returned to the boiling device 14 again, and the above cycle is repeated.

【0042】(停電復帰後の希釈運転の説明)吸収式空
調装置の電気機能部品を制御するコントローラ5には、
吸収式空調装置の運転中に停電が発生し、その後に停電
状態から電力が復帰した時に、停電発生時における吸収
式空調装置の運転状態に応じた希釈運転を実施する電力
復帰時の希釈運転機能が搭載されている。
(Explanation of Diluting Operation after Recovery from Power Failure) The controller 5 for controlling the electric functional parts of the absorption type air conditioner includes:
When a power failure occurs during the operation of an absorption air conditioner and then the power is restored from the power failure state, a dilution operation function is performed when the power is restored, which performs a dilution operation according to the operating status of the absorption air conditioner Is installed.

【0043】この希釈運転機能を実現するために、吸収
式空調装置のコントローラ5には、吸収式空調装置を作
動させる商用電源(電力会社から供給される100Vや
200V等の交流電源)の電力供給状態を監視する電源
監視手段と、停電発生時における運転状態(サイクルス
テップ)や高温再生器15の温度等を記憶する運転状態
記憶手段(例えば、EEP−ROM)と、上述した電源
監視手段によって停電を検出した場合に、その停電発生
時のデータ(運転状態、サイクルステップ、高温再生器
15の温度等)を運転状態記憶手段に記憶するまでの
間、コントローラ5のマイコンおよびメモリ類を正常に
作動させるためのバックアップ電源(例えば、コンデン
サ)と、停電状態から電力が復帰した時に運転状態記憶
手段に記憶された運転状態に応じた希釈運転を行う希釈
運転手段とを備える。なお、高温再生器15の温度は、
沸騰筒21に取り付けられた温度センサ80によって検
出されるものである。
In order to realize this dilution operation function, the controller 5 of the absorption air conditioner is supplied with electric power from a commercial power supply (100 V or 200 V AC power supply supplied from a power company) for operating the absorption air conditioner. A power supply monitoring means for monitoring the status, an operation status storage means (for example, EEP-ROM) for storing the operation status (cycle step) and the temperature of the high temperature regenerator 15 at the time of the power failure, and the power supply monitoring means for the power failure. When the power failure is detected, the microcomputer and the memory of the controller 5 are normally operated until the data (operation status, cycle step, temperature of the high temperature regenerator 15, etc.) at the time of the power failure is stored in the operation status storage means. A backup power supply (for example, a capacitor) for controlling the operation and the operation stored in the operation state storage means when the power is restored from the power failure state. And a dilution operation means for performing a dilution operation according to the state. The temperature of the high temperature regenerator 15 is
It is detected by the temperature sensor 80 attached to the boiling cylinder 21.

【0044】希釈運転手段は、コントローラ5のマイコ
ン内に書き込まれた制御プログラムであり、暖房運転中
に停電した場合、電力復帰時に高温再生器15の温度に
応じた希釈運転を行うととももに、冷房運転中に停電し
た場合、停電時のサイクルステップ(冷房運転における
サイクル制御中での実行ステップ)と高温再生器15の
温度に応じた希釈運転を行う。
The dilution operation means is a control program written in the microcomputer of the controller 5, and when a power failure occurs during the heating operation, the dilution operation is performed according to the temperature of the high temperature regenerator 15 when the power is restored. When a power failure occurs during the cooling operation, the cycle step at the time of the power failure (execution step during the cycle control in the cooling operation) and the dilution operation according to the temperature of the high temperature regenerator 15 are performed.

【0045】(暖房運転中に停電した場合の希釈運転手
段の作動説明)停電からの電力復帰時に、運転状態記憶
手段に記憶された運転状態が暖房運転で、且つ運転状態
記憶手段に記憶された高温再生器15の温度が70℃未
満の時は、暖房運転が開始された直後の停電時か、ある
いは暖房運転の停止処理終了間際の停電であったことが
わかる。その場合は、冷媒弁38bおよび冷暖房切替弁
52aを開いた状態で溶液ポンプ48を作動させる希釈
運転を60秒間に亘って実施し、その後、高温再生器1
5の温度が90℃以下に冷えていることを確認する。そ
して、冷媒弁38bおよび冷暖房切替弁52aを開いた
ままの状態で溶液ポンプ48を停止させて、吸収式冷凍
サイクル7内における液面調整を10秒間行い、希釈運
転を停止する。
(Explanation of Operation of Diluting Operation Means When Power Failure Occurs During Heating Operation) When the power is restored from the power failure, the operation state stored in the operation state storage means is the heating operation and is stored in the operation state storage means. When the temperature of the high-temperature regenerator 15 is less than 70 ° C., it can be seen that there was a power failure immediately after the heating operation was started, or a power failure was just before the termination of the heating operation. In that case, the dilution operation of operating the solution pump 48 with the refrigerant valve 38b and the heating / cooling switching valve 52a open is performed for 60 seconds, and then the high temperature regenerator 1 is operated.
Confirm that the temperature of 5 is below 90 ° C. Then, the solution pump 48 is stopped while the refrigerant valve 38b and the cooling / heating switching valve 52a are kept open, the liquid level in the absorption refrigeration cycle 7 is adjusted for 10 seconds, and the dilution operation is stopped.

【0046】停電からの電力復帰時に、運転状態記憶手
段に記憶された運転状態が暖房運転で、且つ運転状態記
憶手段に記憶された高温再生器15の温度が70℃以上
あった時は、暖房運転が定常運転されていた時の停電
か、あるいは暖房運転の停止処理中の停電であったこと
がわかる。その場合は、冷媒弁38bおよび冷暖房切替
弁52aを開いた状態で溶液ポンプ48を作動させる希
釈運転を180秒間に亘って実施し、その後、高温再生
器15の温度が90℃以下に冷えていることを確認す
る。そして、冷媒弁38bおよび冷暖房切替弁52aを
開いたままの状態で溶液ポンプ48を停止させて、吸収
式冷凍サイクル7内における液面調整を10秒間行っ
て、希釈運転を停止する。
When the operating state stored in the operating state storage means is the heating operation and the temperature of the high temperature regenerator 15 stored in the operating state storage means is 70 ° C. or more when the power is restored from the power failure, the heating is performed. It can be seen that there was a power outage when the operation was in steady operation, or during a heating operation stop process. In that case, the dilution operation of operating the solution pump 48 with the refrigerant valve 38b and the heating / cooling switching valve 52a open is performed for 180 seconds, and then the temperature of the high temperature regenerator 15 is cooled to 90 ° C. or lower. Make sure that. Then, the solution pump 48 is stopped while the refrigerant valve 38b and the cooling / heating switching valve 52a are kept open, the liquid level in the absorption refrigeration cycle 7 is adjusted for 10 seconds, and the dilution operation is stopped.

【0047】(冷房運転の定常運転中に停電した場合の
希釈運転手段の作動説明)停電からの電力復帰時に、運
転状態記憶手段に記憶されたサイクルステップが冷房運
転の定常運転中(加熱手段6によるガス燃焼が実施され
ている運転中)で、且つ運転状態記憶手段に記憶された
高温再生器15の温度が60℃未満の時は、冷房運転を
開始した直後の停電であったことがわかる。その場合
は、冷媒弁38bを開いた状態で溶液ポンプ48を作動
させる希釈運転を実施する。そして、この希釈運転が6
0秒間に亘って実施され、且つ高温再生器15の温度が
90℃以下に低下した場合は、冷媒弁38bおよび冷暖
房切替弁52aを開いた状態で溶液ポンプ48を作動さ
せる希釈運転を実施する。そして、この希釈運転が60
秒間に亘って実施され、且つ高温再生器15の温度が7
5℃以下に低下した場合は、冷媒弁38bおよび冷暖房
切替弁52aを開いたままの状態で溶液ポンプ48を停
止させて、吸収式冷凍サイクル7内における液面調整を
10秒間行い、希釈運転を停止する。
(Explanation of Operation of Diluting Operation Means When Power Failure Occurs During Steady Cooling Operation) When the power is restored from the power failure, the cycle steps stored in the operation state storage means are in the steady operation of cooling operation (heating means 6). It is understood that there was a power failure immediately after the start of the cooling operation when the temperature of the high temperature regenerator 15 stored in the operating state storage means is less than 60 ° C.) . In that case, a dilution operation is performed in which the solution pump 48 is operated with the refrigerant valve 38b open. And this dilution operation is 6
When the temperature of the high temperature regenerator 15 is lowered to 90 ° C. or lower for 0 seconds, the dilution operation is performed in which the solution pump 48 is operated with the refrigerant valve 38b and the cooling / heating switching valve 52a open. And this dilution operation is 60
The temperature of the high temperature regenerator 15 is 7 seconds.
When the temperature drops to 5 ° C. or lower, the solution pump 48 is stopped while the refrigerant valve 38b and the cooling / heating switching valve 52a are kept open, the liquid level in the absorption refrigeration cycle 7 is adjusted for 10 seconds, and the dilution operation is performed. Stop.

【0048】停電からの電力復帰時に、運転状態記憶手
段に記憶されたサイクルステップが冷房運転の定常運転
中で、且つ運転状態記憶手段に記憶された高温再生器1
5の温度が60℃以上の時は、冷房運転が定常運転され
ていた時の停電であったことがわかる。その場合は、先
ず冷媒弁38bを開いた状態で溶液ポンプ48を低速作
動(例えば60Hz運転)させる希釈運転を6秒間実施す
る。次に、冷媒弁38bを開いたままで溶液ポンプ48
の回転速度を高温再生器15で検出される温度に応じた
速度に変更する。
When the power is restored from the power failure, the high temperature regenerator 1 in which the cycle steps stored in the operating state storage means are in the steady operation of the cooling operation and stored in the operating state storage means
It can be seen that when the temperature of 5 was 60 ° C. or higher, there was a power failure when the cooling operation was in steady operation. In that case, first, the dilution operation is performed for 6 seconds by operating the solution pump 48 at a low speed (for example, 60 Hz operation) with the refrigerant valve 38b open. Next, with the refrigerant valve 38b kept open, the solution pump 48
The rotation speed of is changed to a speed according to the temperature detected by the high temperature regenerator 15.

【0049】この状態で、停電時間を想定する。具体的
にこの実施例では、下記A式が成立する時は、停電時間
が所定時間以上経過していると判断し、上記A式が成立
しない時は、停電時間が所定時間に満たないと判断す
る。 (運転状態記憶手段に記憶された停電時の高温再生器15の温度−復電時の高 温再生器15の温度)>(0.8×運転状態記憶手段に記憶された停電時の高温 再生器15の温度−90)……A式
In this state, the power failure time is assumed. Specifically, in this embodiment, it is determined that the power failure time has passed a predetermined time or longer when the following expression A is satisfied, and it is determined that the power failure time is less than the predetermined time when the above expression A is not satisfied. To do. (Temperature of high temperature regenerator 15 at the time of power failure stored in operating state storage means-temperature of high temperature regenerator 15 at power recovery)> (0.8 × high temperature regenerator at power failure stored in operating state storage means 15 temperature-90) ... A type

【0050】そして、上記A式が成立しない場合は、冷
媒弁38bを開いた状態で溶液ポンプ48を作動させる
希釈運転を実施する。そして、この希釈運転が60秒間
に亘って実施され、且つ高温再生器15の温度が90℃
以下に低下した場合は、冷媒弁38bおよび冷暖房切替
弁52aを開いた状態で溶液ポンプ48を作動させる希
釈運転を実施する。そして、この希釈運転が60秒間に
亘って実施され、且つ高温再生器15の温度が75℃以
下に低下した場合は、冷媒弁38bおよび冷暖房切替弁
52aを開いたままの状態で溶液ポンプ48を停止させ
て、吸収式冷凍サイクル7内における液面調整を10秒
間行い、希釈運転を停止する。
If the above equation A is not satisfied, the dilution operation is performed in which the solution pump 48 is operated with the refrigerant valve 38b open. Then, this dilution operation is performed for 60 seconds, and the temperature of the high temperature regenerator 15 is 90 ° C.
If the temperature drops below, the dilution operation is performed in which the solution pump 48 is operated with the refrigerant valve 38b and the cooling / heating switching valve 52a open. When the dilution operation is performed for 60 seconds and the temperature of the high temperature regenerator 15 drops to 75 ° C. or lower, the solution pump 48 is operated with the refrigerant valve 38b and the heating / cooling switching valve 52a kept open. After stopping, the liquid level in the absorption refrigeration cycle 7 is adjusted for 10 seconds, and the dilution operation is stopped.

【0051】上記A式が成立する場合は、電力復帰時に
おける高温再生器15の温度が125℃以上で、且つ高
温再生器15の吸収液の入口温度が45℃以上であるか
否かによって、希釈処理選択を行う。この条件を満たす
場合は、冷媒弁38bを開いた状態で溶液ポンプ48を
作動させる希釈運転を実施する。そして、この希釈運転
が60秒間に亘って実施され、且つ高温再生器15の温
度が90℃以下に低下した場合は、冷媒弁38bおよび
冷暖房切替弁52aを開いた状態で溶液ポンプ48を作
動させる希釈運転を実施する。そして、この希釈運転が
60秒間に亘って実施され、且つ高温再生器15の温度
が75℃以下に低下した場合は、冷媒弁38bおよび冷
暖房切替弁52aを開いたままの状態で溶液ポンプ48
を停止させて、吸収式冷凍サイクル7内における液面調
整を10秒間行い、希釈運転を停止する。
When the above expression A is satisfied, it depends on whether or not the temperature of the high temperature regenerator 15 is 125 ° C. or higher when the power is restored and the inlet temperature of the absorbing liquid of the high temperature regenerator 15 is 45 ° C. or higher. Select the dilution treatment. When this condition is satisfied, a dilution operation is performed in which the solution pump 48 is operated with the refrigerant valve 38b open. Then, when this dilution operation is performed for 60 seconds and the temperature of the high temperature regenerator 15 drops to 90 ° C. or lower, the solution pump 48 is operated with the refrigerant valve 38b and the heating / cooling switching valve 52a open. Carry out a dilution operation. Then, when this dilution operation is performed for 60 seconds and the temperature of the high temperature regenerator 15 drops to 75 ° C. or lower, the solution pump 48 with the refrigerant valve 38b and the cooling / heating switching valve 52a kept open.
Is stopped, the liquid level in the absorption refrigeration cycle 7 is adjusted for 10 seconds, and the dilution operation is stopped.

【0052】上記A式が成立する場合で、さらに高温再
生器15の温度が125℃以上で、且つ高温再生器15
の吸収液の入口温度が45℃以上であるという条件を満
たさない場合、先ず冷媒弁38bを開いた状態で溶液ポ
ンプ48を低速作動(例えば60Hz運転)させる希釈運
転を6秒間実施する。次に、外気温度が冷房運転可能な
温度(例えば15℃)以上か否かの判断を行う。
When the above expression A is satisfied, the temperature of the high temperature regenerator 15 is 125 ° C. or higher, and the high temperature regenerator 15 is higher.
If the condition that the inlet temperature of the absorbing liquid is 45 ° C. or higher is not satisfied, first, the dilution operation in which the solution pump 48 is operated at a low speed (for example, 60 Hz operation) is performed for 6 seconds with the refrigerant valve 38b open. Next, it is determined whether or not the outside air temperature is equal to or higher than the temperature at which the cooling operation can be performed (for example, 15 ° C.).

【0053】外気温度が15℃未満の場合、冷媒弁38
bを開いた状態で溶液ポンプ48を作動させる希釈運転
を実施する。そして、この希釈運転が60秒間に亘って
実施され、且つ高温再生器15の温度が90℃以下に低
下した場合は、冷媒弁38bおよび冷暖房切替弁52a
を開いた状態で溶液ポンプ48を作動させる希釈運転を
実施する。そして、この希釈運転が60秒間に亘って実
施され、且つ高温再生器15の温度が75℃以下に低下
した場合は、冷媒弁38bおよび冷暖房切替弁52aを
開いたままの状態で溶液ポンプ48を停止させて、吸収
式冷凍サイクル7内における液面調整を10秒間行い、
希釈運転を停止する。
When the outside air temperature is lower than 15 ° C., the refrigerant valve 38
A dilution operation is carried out in which the solution pump 48 is operated with b open. Then, when the dilution operation is performed for 60 seconds and the temperature of the high temperature regenerator 15 drops to 90 ° C. or lower, the refrigerant valve 38b and the cooling / heating switching valve 52a.
A diluting operation is performed in which the solution pump 48 is operated with the valve open. When the dilution operation is performed for 60 seconds and the temperature of the high temperature regenerator 15 drops to 75 ° C. or lower, the solution pump 48 is operated with the refrigerant valve 38b and the heating / cooling switching valve 52a kept open. Stop the liquid level adjustment in the absorption type refrigeration cycle 7 for 10 seconds,
Stop the dilution operation.

【0054】外気温度が15℃以上の場合、冷媒弁38
bおよび冷暖房切替弁52aを開いた状態で溶液ポンプ
48を作動させる希釈運転を実施する。冷却塔4の給水
が完了すると、冷媒弁38bおよび冷暖房切替弁52a
を開いたままの状態で溶液ポンプ48を10秒間停止さ
せ、稀液の圧送を一時停止する。次に、冷媒弁38bを
開いた状態で溶液ポンプ48を作動させるとともに、加
熱手段のガスバーナ11に点火を行い、ガスバーナ11
にて所定燃料量(例えば6400kcal/h)の燃焼
を行う。高温再生器15の温度が80℃以上に達する
と、冷却塔4を作動させる。
When the outside air temperature is 15 ° C. or higher, the refrigerant valve 38
A dilution operation is performed in which the solution pump 48 is operated with b and the heating / cooling switching valve 52a open. When the water supply to the cooling tower 4 is completed, the refrigerant valve 38b and the cooling / heating switching valve 52a
The solution pump 48 is stopped for 10 seconds while keeping the open state, and the pressure feeding of the dilute solution is temporarily stopped. Next, the solution pump 48 is operated with the refrigerant valve 38b open, and the gas burner 11 of the heating means is ignited, so that the gas burner 11
At a predetermined fuel amount (for example, 6400 kcal / h) is burned. When the temperature of the high temperature regenerator 15 reaches 80 ° C. or higher, the cooling tower 4 is operated.

【0055】そして、高温再生器15の温度が100℃
以上に達すると、溶液ポンプ48を低速運転させる希釈
判定を行う。この希釈判定が6秒間行われると、疑似冷
房運転(室内機2を作動させない冷房運転)を実施す
る。高温再生器15の温度が135℃以上に達すると、
燃焼を停止し、冷却塔4を作動させたまま、冷媒弁38
bを開いた状態で溶液ポンプ48を作動させる希釈運転
を行う。高温再生器15の温度が90℃以下に低下する
と、冷却塔4も停止し、冷媒弁38bおよび冷暖房切替
弁52aを開いた状態で溶液ポンプ48を低速作動させ
る希釈運転を行う。この希釈運転が25秒間に亘って実
施されると、冷媒弁38bおよび冷暖房切替弁52aを
開いたままの状態で溶液ポンプ48を停止させて、吸収
式冷凍サイクル7内における液面調整を10秒間行い、
希釈運転を停止する。
The temperature of the high temperature regenerator 15 is 100 ° C.
When the above is reached, the dilution determination for operating the solution pump 48 at a low speed is performed. If this dilution determination is performed for 6 seconds, the pseudo cooling operation (cooling operation in which the indoor unit 2 is not operated) is performed. When the temperature of the high temperature regenerator 15 reaches 135 ° C or higher,
Combustion is stopped, while the cooling tower 4 is operated, the refrigerant valve 38
A dilution operation is performed in which the solution pump 48 is operated with b open. When the temperature of the high temperature regenerator 15 drops to 90 ° C. or lower, the cooling tower 4 also stops, and the dilution operation is performed in which the solution pump 48 is operated at a low speed with the refrigerant valve 38b and the cooling / heating switching valve 52a open. When this dilution operation is performed for 25 seconds, the solution pump 48 is stopped while the refrigerant valve 38b and the cooling / heating switching valve 52a are kept open, and liquid level adjustment in the absorption refrigeration cycle 7 is performed for 10 seconds. Done,
Stop the dilution operation.

【0056】(冷房運転の停止処理中または中止処理中
に停電した場合の希釈運転手段の作動説明)停電からの
電力復帰時に、運転状態記憶手段に記憶されたサイクル
ステップが冷房運転の停止処理中または中止処理中のス
テップで、且つ運転状態記憶手段に記憶された高温再生
器15の温度が60℃未満の時は、冷媒弁38bを開い
た状態で溶液ポンプ48を作動させる希釈運転を実施す
る。そして、この希釈運転が60秒間に亘って実施さ
れ、且つ高温再生器15の温度が90℃以下に低下した
場合は、冷媒弁38bおよび冷暖房切替弁52aを開い
た状態で溶液ポンプ48を作動させる希釈運転を実施す
る。そして、この希釈運転が60秒間に亘って実施さ
れ、且つ高温再生器15の温度が75℃以下に低下した
場合は、冷媒弁38bおよび冷暖房切替弁52aを開い
たままの状態で溶液ポンプ48を停止させて、吸収式冷
凍サイクル7内における液面調整を10秒間行い、希釈
運転を停止する。
(Explanation of the operation of the dilution operation means in case of a power failure during the cooling operation stop processing or the stop operation) When the power is restored from the power failure, the cycle step stored in the operation state storage means is the cooling operation stop processing. Alternatively, when the temperature of the high temperature regenerator 15 stored in the operation state storage means is lower than 60 ° C. in the step of the suspension process, the dilution operation is performed to operate the solution pump 48 with the refrigerant valve 38b open. . Then, when this dilution operation is performed for 60 seconds and the temperature of the high temperature regenerator 15 drops to 90 ° C. or lower, the solution pump 48 is operated with the refrigerant valve 38b and the heating / cooling switching valve 52a open. Carry out a dilution operation. When the dilution operation is performed for 60 seconds and the temperature of the high temperature regenerator 15 drops to 75 ° C. or lower, the solution pump 48 is operated with the refrigerant valve 38b and the heating / cooling switching valve 52a kept open. After stopping, the liquid level in the absorption refrigeration cycle 7 is adjusted for 10 seconds, and the dilution operation is stopped.

【0057】停電からの電力復帰時に、運転状態記憶手
段に記憶されたサイクルステップが冷房運転の停止処理
中または中止処理中のステップで、且つ運転状態記憶手
段に記憶された高温再生器15の温度が60℃以上の時
は、冷媒弁38bを開いた状態で溶液ポンプ48を低速
作動(例えば60Hz運転)させる希釈運転を6秒間実施
する。次に、外気温度が冷房運転可能な温度(例えば1
5℃)以上か否かの判断を行う。
When the power is restored from the power failure, the cycle step stored in the operating state storage means is the step during the stop processing or the stop processing of the cooling operation, and the temperature of the high temperature regenerator 15 stored in the operating state storage means. When the temperature is 60 ° C. or higher, the dilution operation in which the solution pump 48 is operated at a low speed (for example, 60 Hz operation) with the refrigerant valve 38b open is performed for 6 seconds. Next, the outside air temperature is a temperature (for example, 1
(5 ° C) or higher is judged.

【0058】外気温度が15℃未満の場合、冷媒弁38
bを開いた状態で溶液ポンプ48を作動させる希釈運転
を実施する。そして、この希釈運転が60秒間に亘って
実施され、且つ高温再生器15の温度が90℃以下に低
下した場合は、冷媒弁38bおよび冷暖房切替弁52a
を開いた状態で溶液ポンプ48を作動させる希釈運転を
実施する。そして、この希釈運転が60秒間に亘って実
施され、且つ高温再生器15の温度が75℃以下に低下
した場合は、冷媒弁38bおよび冷暖房切替弁52aを
開いたままの状態で溶液ポンプ48を停止させて、吸収
式冷凍サイクル7内における液面調整を10秒間行い、
希釈運転を停止する。
When the outside air temperature is less than 15 ° C., the refrigerant valve 38
A dilution operation is carried out in which the solution pump 48 is operated with b open. Then, when the dilution operation is performed for 60 seconds and the temperature of the high temperature regenerator 15 drops to 90 ° C. or lower, the refrigerant valve 38b and the cooling / heating switching valve 52a.
A diluting operation is performed in which the solution pump 48 is operated with the valve open. When the dilution operation is performed for 60 seconds and the temperature of the high temperature regenerator 15 drops to 75 ° C. or lower, the solution pump 48 is operated with the refrigerant valve 38b and the heating / cooling switching valve 52a kept open. Stop the liquid level adjustment in the absorption type refrigeration cycle 7 for 10 seconds,
Stop the dilution operation.

【0059】外気温度が15℃以上の場合、冷媒弁38
bおよび冷暖房切替弁52aを開いた状態で溶液ポンプ
48を作動させる希釈運転を実施する。冷却塔4の給水
が完了すると、冷媒弁38bおよび冷暖房切替弁52a
を開いたままの状態で溶液ポンプ48を10秒間停止さ
せ、稀液の圧送を一時停止する。次に、冷媒弁38bを
開いた状態で溶液ポンプ48を作動させるとともに、加
熱手段のガスバーナ11に点火を行い、ガスバーナ11
にて所定燃料量(例えば6400kcal/h)の燃焼
を行う。高温再生器15の温度が80℃以上に達する
と、冷却塔4を作動させる。
When the outside air temperature is 15 ° C. or higher, the refrigerant valve 38
A dilution operation is performed in which the solution pump 48 is operated with b and the heating / cooling switching valve 52a open. When the water supply to the cooling tower 4 is completed, the refrigerant valve 38b and the cooling / heating switching valve 52a
The solution pump 48 is stopped for 10 seconds while keeping the open state, and the pressure feeding of the dilute solution is temporarily stopped. Next, the solution pump 48 is operated with the refrigerant valve 38b open, and the gas burner 11 of the heating means is ignited, so that the gas burner 11
At a predetermined fuel amount (for example, 6400 kcal / h) is burned. When the temperature of the high temperature regenerator 15 reaches 80 ° C. or higher, the cooling tower 4 is operated.

【0060】そして、高温再生器15の温度が100℃
以上に達すると、溶液ポンプ48を低速運転させる希釈
判定を行う。この希釈判定が6秒間行われると、疑似冷
房運転(室内機2を作動させない冷房運転)を実施す
る。高温再生器15の温度が135℃以上に達すると、
燃焼を停止し、冷却塔4を作動させたまま、冷媒弁38
bを開いた状態で溶液ポンプ48を作動させる希釈運転
を行う。高温再生器15の温度が90℃以下に低下する
と、冷却塔4も停止し、冷媒弁38bおよび冷暖房切替
弁52aを開いた状態で溶液ポンプ48を低速作動させ
る希釈運転を行う。この希釈運転が25秒間に亘って実
施されると、冷媒弁38bおよび冷暖房切替弁52aを
開いたままの状態で溶液ポンプ48を停止させて、吸収
式冷凍サイクル7内における液面調整を10秒間行い、
希釈運転を停止する。
The temperature of the high temperature regenerator 15 is 100 ° C.
When the above is reached, the dilution determination for operating the solution pump 48 at a low speed is performed. If this dilution determination is performed for 6 seconds, the pseudo cooling operation (cooling operation in which the indoor unit 2 is not operated) is performed. When the temperature of the high temperature regenerator 15 reaches 135 ° C or higher,
Combustion is stopped, while the cooling tower 4 is operated, the refrigerant valve 38
A dilution operation is performed in which the solution pump 48 is operated with b open. When the temperature of the high-temperature regenerator 15 drops to 90 ° C. or lower, the cooling tower 4 is also stopped, and the solution pump 48 is operated at a low speed while the refrigerant valve 38b and the cooling / heating switching valve 52a are opened to perform the dilution operation. When this dilution operation is performed for 25 seconds, the solution pump 48 is stopped while the refrigerant valve 38b and the cooling / heating switching valve 52a are kept open, and liquid level adjustment in the absorption refrigeration cycle 7 is performed for 10 seconds. Done,
Stop the dilution operation.

【0061】さらに、この実施例の希釈運転手段は、停
電からの電力復帰時に、運転状態記憶手段に記憶された
サイクルステップが電力復帰時における希釈モードのサ
イクルステップの場合は、そのサイクルステップに対応
した希釈運転がなされるように設けられている。
Further, the diluting operation means of this embodiment corresponds to the cycle step stored in the operation state storage means when the power is restored from the power failure when the cycle step is the dilution mode cycle step at the time of restoration of the power. It is provided so that the diluted operation is performed.

【0062】〔実施例の効果〕上記で示したように、本
実施例に示した吸収式空調装置では、停電からの電力復
帰時に、運転状態記憶手段の記憶する運転状態が暖房運
転の時は、高温再生器15の温度に応じた希釈運転を行
うため、無駄な希釈運転が抑えられ、且つ晶析の発生を
確実に防ぐことができる。
[Effects of the Embodiment] As described above, in the absorption air conditioner according to the present embodiment, when the operating state stored in the operating state storage means is the heating operation when the power is restored from the power failure. Since the dilution operation is performed according to the temperature of the high temperature regenerator 15, useless dilution operation can be suppressed and crystallization can be reliably prevented.

【0063】また、停電からの電力復帰時に、運転状態
記憶手段の記憶する運転状態が冷房運転の時は、高温再
生器15の温度に応じた希釈運転を行うため、無駄な希
釈運転が抑えられ、且つ晶析の発生を確実に防ぐことが
できる。なお、停電発生時の高温再生器15の温度が高
く、停電時間が長く、電力復帰時の高温再生器15の温
度が低い時は、冷房運転可能な外気温度の場合に、疑似
冷房運転を実施するため、吸収式冷凍サイクル7内の吸
収液を効率よく循環させることが可能になり、結果的に
希釈時間を短縮できる。
When the operating state stored in the operating state storage means is the cooling operation when the power is restored from the power failure, the dilution operation is performed according to the temperature of the high temperature regenerator 15, so that the useless dilution operation is suppressed. In addition, the occurrence of crystallization can be reliably prevented. In addition, when the temperature of the high temperature regenerator 15 at the time of power failure is high, the power failure time is long, and the temperature of the high temperature regenerator 15 at the time of power restoration is low, the pseudo cooling operation is performed in the case of the outside air temperature at which the cooling operation is possible Therefore, the absorption liquid in the absorption refrigeration cycle 7 can be efficiently circulated, and as a result, the dilution time can be shortened.

【0064】さらに、停電からの電力復帰時に、運転状
態記憶手段の記憶する運転状態が冷房運転の停止処理中
または中止処理中の時も、高温再生器15の温度に応じ
た希釈運転を行うため、無駄な希釈運転が抑えられ、且
つ晶析の発生を確実に防ぐことができる。
Further, when the power is restored from the power failure, the dilution operation according to the temperature of the high temperature regenerator 15 is performed even when the operation state stored in the operation state storage means is in the process of stopping or stopping the cooling operation. In addition, wasteful dilution operation can be suppressed, and crystallization can be reliably prevented.

【0065】〔変形例〕上記の実施例では、冷却水冷却
手段の一例として冷却水の一部を大気に蒸発させる大気
開放型の冷却塔4を例に示したが、熱交換器内を流れる
冷却水と大気とを熱交換させる密閉型の冷却水冷却手段
を用いても良い。上記の実施例では、室内機2の一例と
して、熱交換器とファンを有する空調用室内機2を例に
示したが、床暖房など他の室内機2を室外機1に接続し
ても良い。上記の実施例では、吸収式冷凍サイクル7の
一例として2重効用型を例に示したが、1重効用型でも
良いし、3重以上の多重効用型でも良い。また、低温再
生器16内に中液を注入する際、低温再生器16の上方
から注入する例を示したが、下方から注入しても良い。
[Modification] In the above embodiment, the open air type cooling tower 4 for evaporating a part of the cooling water to the atmosphere is shown as an example of the cooling water cooling means, but the cooling water flows in the heat exchanger. A closed cooling water cooling means for exchanging heat between the cooling water and the atmosphere may be used. In the above embodiment, the air conditioning indoor unit 2 having a heat exchanger and a fan is shown as an example of the indoor unit 2, but another indoor unit 2 such as floor heating may be connected to the outdoor unit 1. . In the above embodiment, the double refrigeration type is shown as an example of the absorption refrigeration cycle 7, but the single refrigeration type may be used, or the multi-effect type with three or more layers may be used. Further, when the medium liquid is injected into the low temperature regenerator 16, an example of injecting it from above the low temperature regenerator 16 is shown, but it may be injected from below.

【0066】加熱手段6の加熱源としてガスバーナ11
を用いたが、石油バーナや電気ヒータを用いたり、他の
装置(例えば内燃機関など)の排熱を利用しても良い。
凝縮用熱交換器37、蒸発用熱交換器42、吸収用熱交
換器44をコイル状に設けた例を示したが、チューブア
ンドフィンや、積層型熱交換器など他の形式の熱交換器
を用いても良い。吸収液の一例として臭化リチウム水溶
液を例に示したが、冷媒にアンモニア、吸収液に水を利
用したアンモニア水溶液など他の吸収液を用いても良
い。
As a heating source of the heating means 6, a gas burner 11
However, an oil burner or an electric heater may be used, or exhaust heat of another device (for example, an internal combustion engine) may be used.
An example in which the condensing heat exchanger 37, the evaporating heat exchanger 42, and the absorbing heat exchanger 44 are provided in a coil shape is shown, but other types of heat exchangers such as a tube-and-fin or a laminated heat exchanger are shown. May be used. Although an aqueous lithium bromide solution is shown as an example of the absorbing liquid, other absorbing liquids such as ammonia as the refrigerant and an aqueous ammonia solution using water as the absorbing liquid may be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸収式空調装置における室外機の概略図であ
る。
FIG. 1 is a schematic diagram of an outdoor unit in an absorption air conditioner.

【図2】室外機および室内機の接続図である。FIG. 2 is a connection diagram of an outdoor unit and an indoor unit.

【符号の説明】[Explanation of symbols]

2 室内機 5 コントローラ(希釈運転機能が搭載される) 6 加熱手段 7 吸収式冷凍サイクル 15 高温再生器 16 低温再生器 17 凝縮器 18 蒸発器 19 吸収器 48 溶液ポンプ 2 Indoor unit 5 controller (equipped with a dilution operation function) 6 heating means 7 absorption refrigeration cycle 15 High temperature regenerator 16 low temperature regenerator 17 condenser 18 Evaporator 19 absorber 48 solution pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 幹男 名古屋市中川区福住町2番26号 リンナイ 株式会社内 (72)発明者 福知 徹 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 Fターム(参考) 3L093 AA04 BB11 BB29 CC01 DD02 DD05 EE00 EE24 GG00 GG02 HH01 HH11 JJ01 KK01 KK03   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mikio Shimizu             Rinnai 2-26, Fukuzumi-cho, Nakagawa-ku, Nagoya-shi             Within the corporation (72) Inventor Toru Fukuchi             4-1-2 Hirano-cho, Chuo-ku, Osaka City, Osaka             Gas Co., Ltd. F term (reference) 3L093 AA04 BB11 BB29 CC01 DD02                       DD05 EE00 EE24 GG00 GG02                       HH01 HH11 JJ01 KK01 KK03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】吸収液を加熱させる加熱手段と、 この加熱手段で吸収液を加熱することによって吸収液の
一部を気化させる再生器、この再生器で発生した気化冷
媒を冷却して凝縮する凝縮器、この凝縮器で液化した液
化冷媒を低圧下で蒸発させる蒸発器、この蒸発器で蒸発
した気化冷媒を吸収液に吸収させる吸収器、この吸収器
内の吸収液を前記再生器へ圧送する溶液ポンプを具備す
る吸収式冷凍サイクルと、 前記加熱手段および前記吸収式冷凍サイクルを作動させ
る商用電源の電力供給状態を監視する電源監視手段と、 前記商用電源の停電時に、前記吸収式冷凍サイクルの運
転状況を記憶する運転状態記憶手段と、 前記商用電源の電力供給の復帰時に、前記運転状態記憶
手段に記憶された運転状態が暖房運転の場合、前記再生
器の温度に応じた希釈運転を行う希釈運転手段と、を備
える吸収式空調装置。
1. A heating means for heating an absorbing liquid, a regenerator for vaporizing a part of the absorbing liquid by heating the absorbing liquid by the heating means, and a vaporized refrigerant generated in the regenerator for cooling and condensation. Condenser, evaporator for evaporating the liquefied refrigerant liquefied by this condenser under low pressure, absorber for absorbing the vaporized refrigerant evaporated by this evaporator into absorption liquid, pumping the absorption liquid in this absorber to the regenerator An absorption refrigeration cycle including a solution pump, a power supply monitoring unit that monitors a power supply state of a commercial power supply that operates the heating unit and the absorption refrigeration cycle, and the absorption refrigeration cycle when the commercial power supply fails. When the operating state stored in the operating state storage means is heating operation, the operating state storage means for storing the operating state of the regenerator is stored. An absorption type air conditioner comprising: a dilution operation means for performing the same dilution operation.
【請求項2】吸収液を加熱させる加熱手段と、 この加熱手段で吸収液を加熱することによって吸収液の
一部を気化させる再生器、この再生器で発生した気化冷
媒を冷却して凝縮する凝縮器、この凝縮器で液化した液
化冷媒を低圧下で蒸発させる蒸発器、この蒸発器で蒸発
した気化冷媒を吸収液に吸収させる吸収器、この吸収器
内の吸収液を前記再生器へ圧送する溶液ポンプを具備す
る吸収式冷凍サイクルと、 前記加熱手段および前記吸収式冷凍サイクルを作動させ
る商用電源の電力供給状態を監視する電源監視手段と、 前記商用電源の停電時に、前記吸収式冷凍サイクルの運
転状況を記憶する運転状態記憶手段と、 前記商用電源の電力供給の復帰時に、前記運転状態記憶
手段に記憶された運転状態が冷房運転の場合、前記再生
器の温度に応じた希釈運転を行う希釈運転手段と、を備
える吸収式空調装置。
2. A heating means for heating the absorbing liquid, a regenerator for vaporizing a part of the absorbing liquid by heating the absorbing liquid by the heating means, and cooling and condensing the vaporized refrigerant generated in the regenerator. Condenser, evaporator for evaporating the liquefied refrigerant liquefied by this condenser under low pressure, absorber for absorbing the vaporized refrigerant evaporated by this evaporator into absorption liquid, pumping the absorption liquid in this absorber to the regenerator An absorption refrigeration cycle including a solution pump, a power supply monitoring unit that monitors a power supply state of a commercial power supply that operates the heating unit and the absorption refrigeration cycle, and the absorption refrigeration cycle when the commercial power supply fails. When the operating state stored in the operating state storage means is the cooling operation when the commercial power supply returns to the power supply state, the operating state storage means stores the operating state of the regenerator. An absorption type air conditioner comprising: a dilution operation means for performing the same dilution operation.
【請求項3】請求項2の吸収式空調装置において、 前記商用電源の電力供給の復帰時に、前記運転状態記憶
手段に記憶された運転状態が冷房運転の場合、前記希釈
運転手段は、 前記再生器の温度が所定温度以上の場合、前記運転状態
記憶手段に記憶された前記再生器の温度と、電力復帰時
の前記再生器の温度の温度差に基づいて停電時間を想定
し、 この想定時間が長いと想定された場合、電力復帰時の前
記再生器の温度が所定温度より低い場合で、且つ外気温
度が所定温度以上の場合に、室内機のファンを停止した
状態で冷房運転を実施する疑似冷房運転を一時的に実施
して希釈運転を行うことを特徴とする吸収式空調装置。
3. The absorption type air conditioner according to claim 2, wherein when the operating state stored in said operating state storing means is a cooling operation when the power supply of the commercial power source is restored, said dilution operating means causes said regenerating When the temperature of the regenerator is equal to or higher than a predetermined temperature, the power failure time is assumed based on the temperature difference between the temperature of the regenerator stored in the operating state storage means and the temperature of the regenerator at the time of power restoration, and this estimated time Is assumed to be long, when the temperature of the regenerator at the time of power restoration is lower than a predetermined temperature, and when the outside air temperature is equal to or higher than the predetermined temperature, the cooling operation is performed with the fan of the indoor unit stopped. An absorption type air conditioner characterized by performing a pseudo cooling operation temporarily and performing a dilution operation.
【請求項4】吸収液を加熱させる加熱手段と、 この加熱手段で吸収液を加熱することによって吸収液の
一部を気化させる再生器、この再生器で発生した気化冷
媒を冷却して凝縮する凝縮器、この凝縮器で液化した液
化冷媒を低圧下で蒸発させる蒸発器、この蒸発器で蒸発
した気化冷媒を吸収液に吸収させる吸収器、この吸収器
内の吸収液を前記再生器へ圧送する溶液ポンプを具備す
る吸収式冷凍サイクルと、 前記加熱手段および前記吸収式冷凍サイクルを作動させ
る商用電源の電力供給状態を監視する電源監視手段と、 前記商用電源の停電時に、前記吸収式冷凍サイクルの運
転状況を記憶する運転状態記憶手段と、 前記商用電源の電力供給の復帰時に、前記運転状態記憶
手段に記憶された運転状態が冷房運転の停止処理中また
は中止処理中の場合、前記再生器の温度に応じた希釈運
転を行う希釈運転手段と、 を備える吸収式空調装置。
4. A heating means for heating the absorption liquid, a regenerator for vaporizing a part of the absorption liquid by heating the absorption liquid by the heating means, and cooling and condensing the vaporized refrigerant generated in the regenerator. Condenser, evaporator for evaporating the liquefied refrigerant liquefied by this condenser under low pressure, absorber for absorbing the vaporized refrigerant evaporated by this evaporator into absorption liquid, pumping the absorption liquid in this absorber to the regenerator An absorption refrigeration cycle including a solution pump, a power supply monitoring unit that monitors a power supply state of a commercial power supply that operates the heating unit and the absorption refrigeration cycle, and the absorption refrigeration cycle when the commercial power supply fails. And an operating state storage unit that stores the operating state of the commercial power supply, and the operating state stored in the operating state storage unit is in the process of stopping or stopping the cooling operation when the power supply of the commercial power source is restored. In the case of, an absorption type air conditioner comprising: a dilution operation means for performing a dilution operation according to the temperature of the regenerator.
JP2001252733A 2001-08-23 2001-08-23 Absorption type air conditioning equipment Pending JP2003065625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001252733A JP2003065625A (en) 2001-08-23 2001-08-23 Absorption type air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001252733A JP2003065625A (en) 2001-08-23 2001-08-23 Absorption type air conditioning equipment

Publications (1)

Publication Number Publication Date
JP2003065625A true JP2003065625A (en) 2003-03-05

Family

ID=19081158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001252733A Pending JP2003065625A (en) 2001-08-23 2001-08-23 Absorption type air conditioning equipment

Country Status (1)

Country Link
JP (1) JP2003065625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255839A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Low-water cut off control method for direct fired absorption refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255839A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Low-water cut off control method for direct fired absorption refrigerating machine

Similar Documents

Publication Publication Date Title
JP2003343940A (en) Absorption water cooler/heater
JP2018169075A (en) Absorption type refrigerating machine
JP2003065625A (en) Absorption type air conditioning equipment
JP2650654B2 (en) Absorption refrigeration cycle device
JP2001099474A (en) Air conditioner
JP3283780B2 (en) Absorption cooling device
JP2902305B2 (en) Absorption air conditioner
JP3281564B2 (en) Absorption air conditioner
JP2000186868A (en) Controller for absorption air conditioning apparatus
JP3322994B2 (en) Absorption air conditioner
JP2839442B2 (en) Absorption refrigeration cycle device
JP7054855B2 (en) Absorption chiller
JP2003014258A (en) Absorption air conditioner
JP3660493B2 (en) Absorption refrigeration system controller
JP4301747B2 (en) Absorption refrigerator vacuum holding device
JPH11304398A (en) Air conditioner
JP2846582B2 (en) Absorption air conditioner
JP2618192B2 (en) Absorption refrigeration cycle device
JP2918665B2 (en) Operation stop method and stop control device for absorption chiller / chiller / heater
JP2000274861A (en) Method for operating exhaust heat utilizing absorption chilled and warm water generator
JP3735744B2 (en) Cooling operation control method for absorption air conditioner
JP4115020B2 (en) Control method of absorption refrigerator
JP2003042588A (en) Absorption type cooling and heating machine
JP2001147053A (en) Two-stage double-effect absorption refrigerating machine
JP2746323B2 (en) Absorption air conditioner