JP3003554B2 - Absorption heat pump - Google Patents

Absorption heat pump

Info

Publication number
JP3003554B2
JP3003554B2 JP7249029A JP24902995A JP3003554B2 JP 3003554 B2 JP3003554 B2 JP 3003554B2 JP 7249029 A JP7249029 A JP 7249029A JP 24902995 A JP24902995 A JP 24902995A JP 3003554 B2 JP3003554 B2 JP 3003554B2
Authority
JP
Japan
Prior art keywords
temperature
flow path
rectifier
refrigerant
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7249029A
Other languages
Japanese (ja)
Other versions
JPH0989405A (en
Inventor
隆仁 石井
敬 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP7249029A priority Critical patent/JP3003554B2/en
Publication of JPH0989405A publication Critical patent/JPH0989405A/en
Application granted granted Critical
Publication of JP3003554B2 publication Critical patent/JP3003554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、作動媒体としてアンモ
ニア、水等を用いる家庭用の吸収式ヒートポンプに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a domestic absorption heat pump using ammonia, water or the like as a working medium.

【0002】[0002]

【従来の技術】従来この種の吸収式ヒートポンプは、家
庭用のものはなく業務用であり、図9に示したように、
発生器と精溜器とが一体に構成された発生・精溜器50
と、1次側に冷媒流路51と2次側に冷却水流路52を
備えた凝縮器53と、凝縮器冷媒流路51出口に設けら
れた冷媒タンク54と、過冷却器55と、膨張弁56
と、1次側に冷媒流路57と2次側に冷水流路58を備
えた蒸発器59と、溶液熱交換器60と、減圧弁61
と、1次側に冷媒流路62と2次側に冷却水流路63を
備えた吸収器64と、吸収器冷媒流路62出口に設けら
れた濃溶液タンク65と、溶液ポンプ66と、前記各要
素部品を接続する冷媒配管67と、凝縮器及び吸収器の
2次側冷却水流路を連結してなる冷却水回路68と、蒸
発器の2次側冷水回路を含む冷水回路69とから構成さ
れていた。発生・精溜器50内には、多量のアンモニア
水濃溶液が満たされており、こうした構成は満液式と呼
ばれている。発生・精溜器50は、大口径の筒状塔に、
金属管をコイル状に巻いた構造(一般に、蛇管式熱交換
器と呼ばれる)の分縮器70とその回りに配置された充
填材71とからなる分縮部Dと、充填材が充填された精
溜段部Eと、アンモニア水濃溶液(アンモニア濃度が高
い水溶液。以下、濃溶液と呼ぶ)流入管とアンモニア水
希溶液(アンモニア濃度が低い水溶液。以下、希溶液と
呼ぶ)取り出し管とを備えるとともに多量の濃溶液が保
持された発生部Fと、発生部Fを加熱するガスバーナー
等の加熱源72とから構成されていた。
2. Description of the Related Art Conventionally, this type of absorption heat pump is not for domestic use but for business use, and as shown in FIG.
Generator / rectifier 50 in which generator and rectifier are integrally configured
A condenser 53 having a refrigerant flow path 51 on a primary side and a cooling water flow path 52 on a secondary side, a refrigerant tank 54 provided at an outlet of the condenser refrigerant flow path 51, a supercooler 55, Valve 56
An evaporator 59 having a refrigerant flow path 57 on the primary side and a chilled water flow path 58 on the secondary side; a solution heat exchanger 60;
An absorber 64 having a refrigerant channel 62 on the primary side and a cooling water channel 63 on the secondary side, a concentrated solution tank 65 provided at the outlet of the absorber refrigerant channel 62, a solution pump 66, It is composed of a refrigerant pipe 67 connecting each element, a cooling water circuit 68 connecting the secondary cooling water channels of the condenser and the absorber, and a chilled water circuit 69 including a secondary chilled water circuit of the evaporator. It had been. The generator / rectifier 50 is filled with a large amount of aqueous ammonia solution, and such a configuration is called a full-liquid type. The generator / rectifier 50 is a large-diameter cylindrical tower,
A shrinking part D composed of a shrinking unit 70 having a structure in which a metal tube is wound in a coil shape (generally called a coiled heat exchanger) and a packing material 71 disposed around the shrinking unit D, and the packing material is filled. A rectification step E, an ammonia water concentrated solution (aqueous solution having a high ammonia concentration; hereinafter, referred to as a concentrated solution) inflow tube, and an ammonia water dilute solution (aqueous solution having a low ammonia concentration; hereinafter, referred to as a dilute solution) take-out tube are provided. And a heating unit 72 such as a gas burner for heating the generating unit F.

【0003】以下に、その動作に付いて説明する。溶液
ポンプ66によりアンモニア水濃溶液は、発生・精溜器
50の分縮器Dに送られそこで分縮熱により加熱される
(分縮熱回収)。次に、溶液熱交換器60で精溜器の希
溶液取り出し管より戻ってくる高温の希溶液と熱交換し
昇温する。続いて、濃溶液は、濃溶液流入管より発生・
精溜器50に導入され、加熱源72により発生部Fにあ
る濃溶液は加熱され蒸気を発生する。発生した蒸気は、
圧力・温度に見合う平衡蒸気であり、アンモニアととも
に水蒸気を含んでいる。発生した平衡蒸気は、精溜段部
E、分縮部Dと上昇してゆくが、分縮器70で生じた凝
縮液と精溜段で接触し冷却される。その時、蒸気中の水
蒸気の方が液化し易く、ほとんどの水蒸気と小量のアン
モニア蒸気は凝縮して滴下する。一方、ほとんどのアン
モニア蒸気はそのまま上昇して行く。こうした分縮器7
0の冷却によるアンモニア蒸気の濃縮過程が精溜段部E
の中で繰り返し行われる結果、塔頂部の精溜ガス取り出
し管からは100%に近い高純度のアンモニア蒸気を取
り出す事ができる。一方、高温・低濃度の平衡液体(希
溶液)は、発生・精溜器50の希溶液取り出し管より溶
液熱交換器60に至り、そこで濃溶液と熱交換すること
により冷却される。その後、減圧弁61を経て吸収器6
4に入る。また、低温・高濃度のアンモニア蒸気は、精
溜器の精溜ガス取り出し管より凝縮器53、過冷却器5
5、膨張弁56、蒸発器59、過冷却器55を経て吸収
器64に入る。蒸発器59で冷水を作り出す事ができ
る。吸収器64内では、吸収熱が奪われることにより、
希溶液にアンモニアガスが吸収され濃溶液が再生され
る。
The operation will be described below. The ammonia water concentrated solution is sent by the solution pump 66 to the splitter D of the generating / rectifying unit 50, where it is heated by splitting heat (split heat recovery). Next, the solution heat exchanger 60 exchanges heat with the high-temperature dilute solution returned from the dilute solution take-out tube of the rectifier to raise the temperature. Subsequently, a concentrated solution is generated from the concentrated solution inflow pipe.
The concentrated solution introduced into the rectifier 50 and in the generating section F by the heating source 72 is heated to generate steam. The generated steam is
It is an equilibrium vapor corresponding to pressure and temperature, and contains water vapor along with ammonia. The generated equilibrium vapor rises in the rectification stage E and the decompression unit D, but is brought into contact with the condensate generated in the decomposer 70 in the rectification stage and cooled. At that time, the steam in the steam is easier to liquefy, and most of the steam and a small amount of ammonia vapor are condensed and dropped. On the other hand, most ammonia vapor goes up as it is. Such a decompressor 7
The concentration process of ammonia vapor by cooling to 0
As a result, it is possible to take out nearly 100% high-purity ammonia vapor from the rectified gas take-out pipe at the top of the tower. On the other hand, the equilibrium liquid (dilute solution) of high temperature and low concentration reaches the solution heat exchanger 60 from the dilute solution outlet pipe of the generation / rectification unit 50, and is cooled by exchanging heat with the concentrated solution there. Thereafter, the pressure in the absorber 6 is reduced through the pressure reducing valve 61.
Enter 4. The low-temperature and high-concentration ammonia vapor is supplied to the condenser 53 and the subcooler 5 through the rectification gas outlet pipe of the rectifier.
5. It enters the absorber 64 via the expansion valve 56, the evaporator 59 and the subcooler 55. Cold water can be produced by the evaporator 59. In the absorber 64, the absorption heat is deprived,
Ammonia gas is absorbed into the dilute solution to regenerate the concentrated solution.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
吸収式ヒートポンプでは、業務用でサイズが大きく、か
つ発生・精溜器を満液式としているので、運転立ち上げ
時多量のアンモニア水を所定の温度(蒸気発生温度)ま
で加熱する必要があり、そのため運転立ち上げが遅いと
いう課題を有していた。また、アンモニア水の充填量が
多く、漏洩時には、大きな被害を及ぼす恐れがあった。
However, in the conventional absorption heat pump, the size is large for business use, and the generation and rectification unit is a liquid filling type. Heating to a temperature (steam generation temperature) was required, and therefore, there was a problem that operation start-up was slow. In addition, the amount of the ammonia water charged is large, and there is a possibility of causing serious damage at the time of leakage.

【0005】さらに、発生・精溜器50内で生じた希溶
液は、流入する濃溶液と混合するため、発生・精溜器5
0の希溶液取り出し管より流出する希溶液(吸収液とな
る)の濃度は高くなる。また、溶液熱交換器60に流入
する濃溶液の温度は、精溜器で回収する分縮熱により高
くなるため、精溜器より流出する希溶液(吸収器内でア
ンモニアガスを吸収するための吸収液となる)の温度を
濃溶液の温度以下にすることができない。その結果、溶
液ポンプ66の循環量を多くするとともに、希溶液の温
度を下げる必要があり、吸収熱はもとより多量の熱を系
外に廃棄しなければならず、吸収式システムの成績係数
が低いという課題を有していた。
Further, the dilute solution produced in the generator / rectifier 50 is mixed with the flowing concentrated solution.
The concentration of the dilute solution (which becomes an absorbing solution) flowing out from the dilute solution take-out tube of 0 becomes high. In addition, the temperature of the concentrated solution flowing into the solution heat exchanger 60 becomes higher due to the partial heat of condensation recovered in the rectifier, so that the dilute solution flowing out of the rectifier (for absorbing ammonia gas in the absorber). (Which becomes an absorbing solution) cannot be lower than the temperature of the concentrated solution. As a result, it is necessary to increase the circulation amount of the solution pump 66 and to lower the temperature of the dilute solution, so that a large amount of heat as well as the heat of absorption must be discarded outside the system, and the coefficient of performance of the absorption system is low. There was a problem that.

【0006】また、2次側冷却水回路の放熱状態、これ
は主として外気条件により影響されるが、この外気条件
によりサイクル動作が不安定となったり、成績係数が低
下するといった課題を有していた。
The heat radiation state of the secondary-side cooling water circuit, which is mainly affected by the outside air condition, has a problem that the cycle operation becomes unstable or the coefficient of performance decreases due to the outside air condition. Was.

【0007】本発明は、上記課題を解決するもので、小
型で、運転立ち上げが速く、少ない冷媒充填量でサイク
ル動作が可能で、かつサイクル成績係数を高めることが
できる家庭用の吸収式ヒートポンプを提供することを第
1の目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and is a home-use absorption heat pump which is small in size, has a fast operation start-up, can perform a cycle operation with a small amount of refrigerant charge, and can increase a cycle coefficient of performance. The first object is to provide

【0008】また、外気条件に依らず、高効率でかつ安
定したサイクル動作を行うことができる家庭用の吸収式
ヒートポンプを提供することを第2の目的とする。
It is a second object of the present invention to provide an absorption heat pump for home use which can perform a high-efficiency and stable cycle operation regardless of the outside air condition.

【0009】[0009]

【課題を解決するための手段】本発明の吸収式ヒートポ
ンプは、上記目的を達成するために、分縮部と、精溜段
部と、気液分離部とを有し、精溜器内の温度を検知する
塔内温度検知器と、少なくとも気液分離部に加熱器を備
えた精溜器と、凝縮器と、凝縮器出口に設けられた冷媒
タンクと、過冷却器と、膨張弁と、蒸発器と、溶液熱交
換器と、減圧弁と、吸収器と、吸収器出口に設けられた
濃溶液タンクと、溶液ポンプと、再生器と、各要素部品
を連結する配管と、制御器とを備え、運転開始時、制御
器により、塔内温度検知器が検出する精溜器内の温度が
所定の温度よりも低い場合に、加熱器による加熱を行
い、精溜器内が所定の温度に達した時に運転を開始する
ように構成してある。
In order to achieve the above object, an absorption heat pump according to the present invention has a decompression section, a rectification step section, and a gas-liquid separation section. A tower temperature detector for detecting a temperature, a rectifier provided with a heater at least in a gas-liquid separator, a condenser, a refrigerant tank provided at a condenser outlet, a supercooler, and an expansion valve. , Evaporator, solution heat exchanger, pressure reducing valve, absorber, concentrated solution tank provided at the absorber outlet, solution pump, regenerator, piping connecting each element, and controller At the start of operation, when the temperature in the rectifier detected by the temperature detector in the tower is lower than the predetermined temperature by the controller, heating by the heater is performed, and the inside of the rectifier Operation is started when the temperature is reached.

【0010】また、分縮部と、精溜段部と、気液分離部
とを有し、精溜器内の温度を検知する塔内温度検知器を
備えた精溜器と、精溜器分縮部への濃溶液流入量を調節
する分岐量調節弁と、凝縮器と、凝縮器出口に設けられ
た冷媒タンクと、過冷却器と、膨張弁と、蒸発器と、溶
液熱交換器と、減圧弁と、吸収器と、前記吸収器出口に
設けられた濃溶液タンクと、溶液ポンプと、再生器と、
各要素部品を連結する配管と、制御器とを備え、制御器
により、塔内温度検知器が検出する精溜器内の温度が所
定の温度よりも低い場合に、分岐量調節弁を閉じて運転
を開始し、精溜器内が所定の温度に達した時に分岐量調
節弁を所定の開度に開くように構成してある。
Further, a rectifier having a decompression unit, a rectification step, and a gas-liquid separation unit and having a tower temperature detector for detecting the temperature in the rectifier, and a rectifier A branch amount control valve for controlling the amount of the concentrated solution flowing into the condensing section, a condenser, a refrigerant tank provided at a condenser outlet, a supercooler, an expansion valve, an evaporator, and a solution heat exchanger And, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, and a regenerator,
A pipe that connects each element part, and a controller are provided, and when the temperature in the rectifier detected by the tower temperature detector is lower than a predetermined temperature, the controller closes the branch amount control valve. When the operation is started and the inside of the rectifier reaches a predetermined temperature, the branch amount control valve is opened to a predetermined opening.

【0011】また、分縮部と、精溜段部と、気液分離部
とを有し、精溜器内の温度を検知する塔内温度検知器
と、少なくとも気液分離部に加熱器を備えた精溜器と、
精溜器分縮部への濃溶液流入量を調節する分岐量調節弁
と、凝縮器と、凝縮器出口に設けられた冷媒タンクと、
過冷却器と、膨張弁と、蒸発器と、溶液熱交換器と、減
圧弁と、吸収器と、吸収器出口に設けられた濃溶液タン
クと、溶液ポンプと、再生器と、各要素部品を連結する
配管と、制御器とを備え、制御器により、塔内温度検知
器が検出する精溜器内の温度が所定の温度よりも低い場
合に、分岐量調節弁を閉じるとともに加熱器による加熱
を行って運転を開始し、前記精溜器内が所定の温度に達
した時に分岐量調節弁を所定の開度に開くように構成し
てある。
[0011] Further, a tower temperature detector for detecting the temperature inside the rectifier, which has a decomposing section, a rectifying step section, and a gas-liquid separating section, and a heater is provided at least in the gas-liquid separating section. A rectifier equipped with
A branch amount control valve for controlling the amount of concentrated solution flowing into the rectifier decomposing section, a condenser, and a refrigerant tank provided at the condenser outlet,
Subcooler, expansion valve, evaporator, solution heat exchanger, pressure reducing valve, absorber, concentrated solution tank provided at the absorber outlet, solution pump, regenerator, and each component And a controller, and when the temperature in the rectifier detected by the tower temperature detector is lower than a predetermined temperature, the controller closes the branch amount control valve and operates the heater. The operation is started by performing heating, and when the inside of the rectifier reaches a predetermined temperature, the branch amount control valve is opened to a predetermined opening.

【0012】また、精溜器と、精溜器内の温度を検知す
る塔内温度検知器と、1次側に冷媒流路と2次側に冷却
水流路を有する凝縮器と、凝縮器冷媒流路出口に設けら
れた冷媒タンクと、過冷却器と、膨張弁と、1次側に冷
媒流路と2次側に冷水流路を有する蒸発器と、溶液熱交
換器と、減圧弁と、1次側に冷媒流路と2次側に冷却水
流路を有する吸収器と、吸収器冷媒流路出口に設けられ
た濃溶液タンクと、溶液ポンプと、再生器と、各要素部
品を連結する1次側冷媒配管と2次側水配管と、制御器
とを備え、制御器により、塔内温度検知器が検出する精
溜器内の温度が所定の温度よりも低い場合に、少なくと
も凝縮器の2次側冷却水の循環を停止して運転を開始
し、精溜器内が所定の温度に達した時に凝縮器2次側冷
却水を所定量循環させるように構成してある。
A rectifier, a tower temperature detector for detecting a temperature in the rectifier, a condenser having a refrigerant flow path on a primary side and a cooling water flow path on a secondary side, and a condenser refrigerant. A refrigerant tank provided at the flow path outlet, a supercooler, an expansion valve, an evaporator having a refrigerant flow path on the primary side and a chilled water flow path on the secondary side, a solution heat exchanger, and a pressure reducing valve. , An absorber having a refrigerant flow path on the primary side and a cooling water flow path on the secondary side, a concentrated solution tank provided at the outlet of the absorber refrigerant flow path, a solution pump, a regenerator, and connecting each element part A primary refrigerant pipe, a secondary water pipe, and a controller. When the temperature in the rectifier detected by the temperature detector in the tower is lower than a predetermined temperature, at least the condensation is performed by the controller. The circulation of the cooling water on the secondary side of the condenser is stopped and the operation is started. When the temperature inside the rectifier reaches a predetermined temperature, the cooling water on the secondary side of the condenser is circulated by a predetermined amount. It is configured to so that.

【0013】また、精溜器と、1次側に冷媒流路と2次
側に冷却水流路を有する凝縮器と、凝縮器冷媒流路出口
に設けられた凝縮温度検知器を備えた冷媒タンクと、過
冷却器と、膨張弁と、1次側に冷媒流路と2次側に冷水
流路を有する蒸発器と、溶液熱交換器と、減圧弁と、1
次側に冷媒流路と2次側に冷却水流路を有する吸収器
と、吸収器冷媒流路出口に設けられた濃溶液タンクと、
溶液ポンプと、再生器と、各要素部品を連結する1次側
冷媒配管と2次側水配管と、制御器とを備え、制御器に
より、凝縮温度検知器が検出する凝縮温度が、所定の温
度よりも低い場合に凝縮器の2次側冷却水の循環量を減
少させ、所定の温度よりも高い場合に凝縮器の2次側冷
却水の循環量を増加させて、凝縮温度を常に所定の温度
になるように2次側冷却水量を調節するように構成して
ある。
A rectifier, a condenser having a refrigerant flow path on the primary side and a cooling water flow path on the secondary side, and a refrigerant tank provided with a condensation temperature detector provided at an outlet of the condenser refrigerant flow path A subcooler, an expansion valve, an evaporator having a refrigerant flow path on the primary side and a chilled water flow path on the secondary side, a solution heat exchanger, a pressure reducing valve,
An absorber having a coolant flow path on the secondary side and a cooling water flow path on the secondary side, and a concentrated solution tank provided at an outlet of the absorber refrigerant flow path,
The apparatus includes a solution pump, a regenerator, a primary refrigerant pipe and a secondary water pipe for connecting the respective component parts, and a controller, and the controller controls the condensing temperature detected by the condensing temperature detector to a predetermined value. When the temperature is lower than the temperature, the circulation amount of the secondary cooling water of the condenser is reduced, and when the temperature is higher than the predetermined temperature, the circulation amount of the secondary cooling water of the condenser is increased, so that the condensing temperature is always predetermined. The amount of secondary-side cooling water is adjusted so as to reach the temperature.

【0014】また、精溜器と、1次側に精溜器からの精
溜ガスが流入する冷媒流路と2次側に冷却水流路を有す
る凝縮器と、凝縮器冷媒流路出口に設けられた凝縮温度
検知器を備えた冷媒タンクと、凝縮器の冷媒流路入り口
と出口を連結し、かつバイパス量調節弁を備えたバイパ
ス回路と、過冷却器と、膨張弁と、1次側に冷媒流路と
2次側に冷水流路を有する蒸発器と、溶液熱交換器と、
減圧弁と、1次側に冷媒流路と2次側に冷却水流路を有
する吸収器と、吸収器冷媒流路出口に設けられた濃溶液
タンクと、溶液ポンプと、再生器と、各要素部品を連結
する冷媒配管とからなる冷媒回路と、凝縮器及び吸収器
の2次側冷却水流路を含む冷却水回路と、蒸発器の2次
側冷水流路を含む冷水回路と、制御器とを備え、凝縮温
度検知器が検出する凝縮温度が、所定の温度よりも低い
場合にバイパス量調節弁の開度を開き、所定の温度より
も高い場合にバイパス量調節弁の開度を閉じて、凝縮温
度を常に所定の温度になるように制御器により前記バイ
パス調節弁の開度を調節するように構成してある。
A rectifier, a condenser having a refrigerant flow path on the primary side through which rectified gas flows from the rectifier and a cooling water flow path on the secondary side, and a condenser provided at an outlet of the condenser refrigerant flow path. A refrigerant tank having a condensed temperature detector, a bypass circuit connecting the inlet and outlet of the refrigerant flow path of the condenser, and having a bypass amount control valve, a supercooler, an expansion valve, and a primary side An evaporator having a refrigerant flow path and a cold water flow path on the secondary side, a solution heat exchanger,
A pressure reducing valve, an absorber having a refrigerant flow path on the primary side and a cooling water flow path on the secondary side, a concentrated solution tank provided at an outlet of the absorber refrigerant flow path, a solution pump, a regenerator, A refrigerant circuit including a refrigerant pipe connecting components, a cooling water circuit including a secondary cooling water channel of a condenser and an absorber, a chilled water circuit including a secondary cooling water channel of an evaporator, and a controller. When the condensation temperature detected by the condensation temperature detector is lower than a predetermined temperature, the opening of the bypass amount adjustment valve is opened, and when the condensation temperature is higher than the predetermined temperature, the opening of the bypass amount adjustment valve is closed. The opening degree of the bypass control valve is adjusted by a controller so that the condensing temperature always becomes a predetermined temperature.

【0015】また、精溜器と、凝縮器と、前記凝縮器出
口に設けられた冷媒タンクと、過冷却器と、膨張弁と、
蒸発器と、溶液熱交換器と、減圧弁と、吸収器と、吸収
器出口に設けられた濃溶液タンクと、溶液ポンプと、溶
液ポンプの吸入及び吐出側に設けられた吸入温度検知器
及び吐出温度検知器と、再生器と、各要素部品を連結す
る冷媒配管と、制御器とを備え、吐出温度検知器と吸入
温度検知器の温度差が所定の温度差よりも大きい場合は
溶液ポンプの回転数を減少させて、常に所定の温度差以
内となるように前記制御器により溶液ポンプの回転数を
制御するように構成してある。
A rectifier, a condenser, a refrigerant tank provided at the outlet of the condenser, a supercooler, an expansion valve,
An evaporator, a solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, and a suction temperature detector provided at the suction and discharge sides of the solution pump; A discharge temperature detector, a regenerator, a refrigerant pipe connecting each element part, and a controller, and a solution pump when a temperature difference between the discharge temperature detector and the suction temperature detector is larger than a predetermined temperature difference. The rotation speed of the solution pump is controlled by the controller so that the rotation speed of the solution pump is reduced so as to always be within a predetermined temperature difference.

【0016】また、精溜器と、1次側に精溜器からの精
溜ガスが流入する冷媒流路と2次側に冷却水流路を有す
る凝縮器と、凝縮器冷媒流路出口に設けられた凝縮温度
検知器を備えた冷媒タンクと、凝縮器の冷媒流路入り口
と出口を連結し、かつバイパス量調節弁を備えたバイパ
ス回路と、過冷却器と、膨張弁と、1次側に冷媒流路と
2次側に冷水流路を有する蒸発器と、溶液熱交換器と、
減圧弁と、1次側に冷媒流路と2次側に冷却水流路を有
する吸収器と、吸収器冷媒流路出口に設けられた濃溶液
タンクと、溶液ポンプと、溶液ポンプの吸入及び吐出側
に設けられた吸入温度検知器及び吐出温度検知器と、再
生器と、各要素部品を連結する冷媒配管とからなる冷媒
回路と、凝縮器及び吸収器の2次側冷却水流路に並列に
流す構成としてなる冷却水回路と、蒸発器の2次側冷水
流路を含む冷水回路と、制御器とを備え、制御器によ
り、吸入温度検知器が検出する温度と、吸入温度検知器
と吐出温度検知器とが検出する温度差より、冷却水回路
の流量及び溶液ポンプ回転数を調節すると共に、凝縮温
度検知器が検出する凝縮温度より、バイパス量調節弁の
開度を調節するように構成してある。
Further, a rectifier, a condenser having a refrigerant flow path on the primary side into which rectified gas flows from the rectifier and a cooling water flow path on the secondary side, and a condenser provided at an outlet of the condenser refrigerant flow path. A refrigerant tank having a condensed temperature detector, a bypass circuit connecting the inlet and outlet of the refrigerant flow path of the condenser, and having a bypass amount control valve, a supercooler, an expansion valve, and a primary side An evaporator having a refrigerant flow path and a cold water flow path on the secondary side, a solution heat exchanger,
A pressure reducing valve, an absorber having a refrigerant flow path on the primary side and a cooling water flow path on the secondary side, a concentrated solution tank provided at the outlet of the absorber refrigerant flow path, a solution pump, and suction and discharge of the solution pump A refrigerant circuit composed of a suction temperature detector and a discharge temperature detector provided on the side, a regenerator, and a refrigerant pipe connecting each element part, and a secondary cooling water flow path of a condenser and an absorber in parallel. A cooling water circuit configured to flow, a cooling water circuit including a secondary cooling water flow path of the evaporator, and a controller, wherein the controller detects the temperature detected by the suction temperature detector, The flow rate of the cooling water circuit and the rotation speed of the solution pump are adjusted based on the temperature difference detected by the temperature detector, and the opening of the bypass amount control valve is adjusted based on the condensing temperature detected by the condensing temperature detector. I have.

【0017】また、精溜器は、精溜塔と、精溜塔の上方
より、精溜ガス取り出し管と、下方端に溶液ポンプ吐出
濃溶液の一部を分岐量調節弁により調節して塔内に流出
させる開口部を有する分縮熱交換器と前記分縮熱交換器
の周囲に充填された充填材とならなる分縮部と、空隙
と、充填材が充填された精溜段部と、高温濃溶液流入管
と希溶液取り出し管とを備えた空間より構成された気液
分離部とから構成してある。
The rectifier comprises a rectification tower, a rectification gas outlet pipe from above the rectification tower, and a part of the concentrated solution discharged from the solution pump adjusted at a lower end by a branch amount control valve. A condensing heat exchanger having an opening to be discharged into the inside, a condensing part which becomes a filler filled around the condensing heat exchanger, a void, and a rectifying step filled with the filler. And a gas-liquid separation section formed of a space having a high-temperature concentrated solution inflow tube and a dilute solution take-out tube.

【0018】[0018]

【作用】本発明は、上記した構成によって、運転開始
時、加熱器による加熱により精溜器の気液分離部を温度
検知器の所定の温度まで加熱して、精溜器内が所定の温
度に達したときには、精溜器内をその温度に応じた飽和
圧力(高圧)とする。
According to the present invention, when the operation is started, the gas-liquid separation section of the rectifier is heated to the predetermined temperature of the temperature detector by the heating by the heater at the start of the operation. Is reached, the inside of the rectifier is set to a saturation pressure (high pressure) corresponding to the temperature.

【0019】また、ポンプ吐出濃溶液の一部を精溜器内
に流出させる精溜器を用いて、分岐量調節弁を閉じて低
温の濃溶液を精溜器内に流出させないで運転を開始する
ので、精溜器内の温度を素早く高めるとともに、その温
度に応じた飽和圧力とする。
Further, by using a rectifier that allows a part of the concentrated solution discharged from the pump to flow into the rectifier, the operation is started without closing the branch amount control valve and allowing the low-temperature concentrated solution to flow into the rectifier. Therefore, the temperature inside the rectifier is quickly increased, and the saturation pressure is set according to the temperature.

【0020】また、前述したような加熱器と分岐量調節
弁を併用することにより、より確実に精溜器内の温度を
高めて、その温度に応じた飽和圧力とする。
Further, by using the above-described heater and the branch amount control valve together, the temperature in the rectifier is more reliably raised to a saturation pressure according to the temperature.

【0021】また、2次側冷却水の循環を停止して運転
を開始しても、同様の作用を有する。
The same operation can be obtained even if the operation is started after the circulation of the secondary cooling water is stopped.

【0022】また、サイクル動作の高圧は凝縮温度で決
定されるが、凝縮温度が所定の温度となるように、2次
側冷却水循環量を制御することとしているので、外気条
件に依らず、高圧を一定に保つ。
The high pressure in the cycle operation is determined by the condensing temperature. Since the secondary cooling water circulation amount is controlled so that the condensing temperature becomes a predetermined temperature, the high pressure does not depend on the outside air condition. Is kept constant.

【0023】また、凝縮器にバイパス回路を設けて、凝
縮温度が所定の温度となるように、凝縮器バイパス量を
制御することにより、高圧を一定に保つ。
Further, by providing a bypass circuit in the condenser and controlling the condenser bypass amount so that the condensing temperature becomes a predetermined temperature, the high pressure is kept constant.

【0024】また、溶液ポンプはそれ自体が若干発熱
し、圧縮効果を有するので、溶液ポンプの吸入・吐出に
温度検知器を設けて、その温度差より溶液ポンプの動作
を判定する。そして、キャビテーションのないポンプ運
転を実現する。
Since the solution pump itself generates a little heat and has a compression effect, a temperature detector is provided for the suction and discharge of the solution pump, and the operation of the solution pump is determined based on the temperature difference. And a pump operation without cavitation is realized.

【0025】また、凝縮温度が一定となるように制御す
るとともに、溶液ポンプの吸入・吐出温度より溶液ポン
プ運転を制御することにより、高圧を一定に保つと共
に、キャビテーションのない溶液ポンプ運転をする。
Further, by controlling the condensing temperature to be constant and controlling the solution pump operation based on the suction and discharge temperatures of the solution pump, the high pressure is kept constant and the solution pump is operated without cavitation.

【0026】さらに、分縮熱交換器の下方端開口部より
濃溶液の一部を精溜塔内に流出させることにより、充填
層部では分縮熱交換器を経て流下する濃溶液と、高温濃
溶液流入管を通って塔内に流入し上昇してくる高温濃溶
液の平衡蒸気とを熱交換させて、発生器より流入する高
温濃溶液の平衡蒸気の熱で分縮熱交換器を経て流下する
濃溶液を加熱して、分縮部下付近で高温濃溶液よりも低
い温度でかつアンモニア濃度の高い平衡蒸気を所定量発
生させる。そして、高温でアンモニア濃度の低い平衡蒸
気は、その熱エネルギーを分縮部を経て塔内に流出する
濃溶液から低温でアンモニア濃度の高い蒸気を発生する
ために用いる(熱回収)とともに、自らも低温でアンモ
ニア濃度の高い蒸気となる。その結果、再生器の入力熱
量を低減させることができ、サイクルの成績係数を高め
るという作用を有する。
Further, a part of the concentrated solution is caused to flow out of the opening at the lower end of the splitting heat exchanger into the rectification tower, so that the concentrated solution flowing down through the splitting heat exchanger and the high temperature in the packed bed portion are mixed with each other. The heat is exchanged with the equilibrium vapor of the high-temperature concentrated solution flowing into the tower through the concentrated solution inflow pipe, and the heat of the equilibrium vapor of the high-temperature concentrated solution flowing from the generator passes through the partial heat exchanger. The flowing concentrated solution is heated to generate a predetermined amount of equilibrium vapor having a lower temperature than the high-temperature concentrated solution and a high ammonia concentration near the part under the constriction. The equilibrium vapor having a high temperature and a low ammonia concentration is used to generate a low-temperature and high-ammonia concentration vapor from the concentrated solution flowing out of the concentrated solution through the decomposing section into the tower (heat recovery). At low temperatures, it becomes steam with a high ammonia concentration. As a result, the amount of heat input to the regenerator can be reduced, which has the effect of increasing the coefficient of performance of the cycle.

【0027】[0027]

【実施例】以下、本発明の吸収式ヒートポンプの一実施
例を図1を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the absorption heat pump of the present invention will be described below with reference to FIG.

【0028】図1において、1は精溜器、2は積層式熱
交換器として凝縮器3と吸収器4とを一体構成としてな
る凝縮・吸収器、5は積層式熱交換器として過冷却器6
と蒸発器7とを一体構成としてなる過冷却・蒸発器、8
は溶液熱交換器、9は溶液ポンプ、10は再生器、11
は冷媒タンク、12は濃溶液タンク、13は膨張弁、1
4は減圧弁、15は分岐量調節弁、16は各要素部品を
連結する冷媒配管、17は冷却水回路、18は冷水回
路、19は精溜器1内の温度を検出する塔内温度検知
器、20は例えば電気ヒーターなどの加熱器、21は塔
内温度検知器19の温度信号を元に加熱器20の通電を
制御する制御器である。精溜器1は、上方より精溜ガス
取り出し管1a、溶液ポンプ吐出濃溶液の一部が分岐量
調節弁15により調節されて流入し、塔内に流出する蛇
管式熱交換器1bとその周囲に充填された充填材1cと
からなる分縮部Aと、充填材1cが充填された精溜段部
Bと、高温濃溶液導入管1dと希溶液取り出し管1eと
を備えた空間を有する気液分離部Cである。なお、分縮
部A及び精溜段部Bの充填材1cの保持の目的で実際に
は上下にデミスターを配置している。精溜器1と再生器
10とを分離した構成は貫流式と呼ばれ、再生器10、
精溜器1ともに必要最小限のサイズで設計できるととも
に、希溶液の濃度を確保することが出来る。。そして、
熱交換器を積層式とした構成では、アンモニア水の充填
量を最小限にすることができる。
In FIG. 1, 1 is a rectifier, 2 is a condensing / absorbing unit having a condenser 3 and an absorber 4 as an integrated heat exchanger, and 5 is a supercooling unit as a laminated heat exchanger. 6
A supercooling / evaporator 8 having an integral structure with the evaporator 7
Is a solution heat exchanger, 9 is a solution pump, 10 is a regenerator, 11
Is a refrigerant tank, 12 is a concentrated solution tank, 13 is an expansion valve, 1
4 is a pressure reducing valve, 15 is a branch amount control valve, 16 is a refrigerant pipe connecting each element part, 17 is a cooling water circuit, 18 is a chilled water circuit, and 19 is a tower temperature detection for detecting the temperature inside the rectifier 1. A heater 20 such as an electric heater, for example, and a controller 21 for controlling energization of the heater 20 based on a temperature signal of the tower temperature detector 19 are provided. The rectifier 1 includes a coiled-tube heat exchanger 1b from which the concentrated gas take-out pipe 1a and a part of the concentrated solution discharged from the solution pump are adjusted by the branch amount control valve 15 to flow in and flow out into the tower. Having a space provided with a decompression section A composed of a filling material 1c filled in a space, a rectification step B filled with the filling material 1c, a high-temperature concentrated solution introduction pipe 1d, and a dilute solution take-out pipe 1e. This is the liquid separation section C. It should be noted that demisters are actually arranged above and below for the purpose of holding the filler 1c of the decomposing section A and the rectifying step section B. The configuration in which the rectifier 1 and the regenerator 10 are separated is called a once-through type, and the regenerator 10
The rectifier 1 can be designed with a minimum necessary size, and the concentration of the dilute solution can be ensured. . And
In the configuration in which the heat exchangers are stacked, the amount of ammonia water to be charged can be minimized.

【0029】次に、サイクル動作に付いて説明する。溶
液ポンプ9により、濃溶液の一部は精溜器分縮部Aに送
られ、残りは溶液熱交換器8に送られる。溶液熱交換器
8に送られた濃溶液は精溜器1下部より流出する希溶液
と熱交換し加熱され昇温する。続いて、再生器10に送
られ所定の2相域の温度まで加熱され、精溜器1内に高
温濃溶液導入管1dを通して流入する。一方、分縮部A
に送られた濃溶液は、分縮熱により加熱され蒸気発生温
度まで昇温する。そして、蒸気発生温度で精溜器1内に
導入される。こうした濃溶液の一部を精溜器1内に導入
する方法(以下、分岐方式と呼ぶ)は、基本方式に比べ
て成績係数COPを高くすることができる。
Next, the cycle operation will be described. A part of the concentrated solution is sent to the rectifier decomposing section A by the solution pump 9, and the rest is sent to the solution heat exchanger 8. The concentrated solution sent to the solution heat exchanger 8 exchanges heat with the dilute solution flowing out from the lower part of the rectifier 1 to be heated and heated. Subsequently, it is sent to the regenerator 10 and is heated to a predetermined two-phase temperature, and flows into the rectifier 1 through the high-temperature concentrated solution introducing pipe 1d. On the other hand,
The concentrated solution sent to is heated by the heat of partial contraction and rises to the steam generation temperature. Then, the steam is introduced into the rectifier 1 at the steam generation temperature. Such a method of introducing a part of the concentrated solution into the rectifier 1 (hereinafter referred to as a branching method) can increase the coefficient of performance COP as compared with the basic method.

【0030】その理由は、精溜段部Bにおいて、再生器
10を経て流入する高温濃溶液の蒸気が有する熱の一部
で、分縮部Aより蒸気発生温度で精溜器1内に流入する
濃溶液の一部を加熱して低温のガスを発生させるととも
に、高温蒸気自体は低温の蒸気となる。こうして、所定
量の低温の蒸気を発生させることができる。こうして、
蒸気発生過程における発生器の負担を低減することがで
き、その結果COPを高くすることができる。なお、精
溜段部Bの設計は、分岐して流入する濃溶液の温度(蒸
気発生温度)を還流液温度とすることにより行われる。
精溜器1の塔頂より流出した精溜ガスは、凝縮器3、冷
媒タンク11、過冷却器6、膨張弁13、蒸発器7、過
冷却器6を経て吸収器4に至る。一方、精溜器1下部よ
り流出した希溶液は溶液熱交換器8、減圧弁14を経て
吸収器4に至る。吸収器4では希溶液に精溜ガス(アン
モニア)が吸収されて濃溶液が再生される。
The reason is that part of the heat of the high-temperature concentrated solution flowing through the regenerator 10 in the rectification stage B, and flows into the rectifier 1 at the steam generation temperature from the decompression unit A. A part of the concentrated solution is heated to generate low-temperature gas, and the high-temperature steam itself becomes low-temperature steam. Thus, a predetermined amount of low-temperature steam can be generated. Thus,
The burden on the generator during the steam generation process can be reduced, and as a result, the COP can be increased. The rectification step B is designed by setting the temperature (steam generation temperature) of the concentrated solution that branches and flows in as the reflux liquid temperature.
The rectified gas flowing out from the top of the rectifier 1 reaches the absorber 4 via the condenser 3, the refrigerant tank 11, the subcooler 6, the expansion valve 13, the evaporator 7, and the subcooler 6. On the other hand, the dilute solution flowing out from the lower part of the rectifier 1 reaches the absorber 4 via the solution heat exchanger 8 and the pressure reducing valve 14. In the absorber 4, the rectified gas (ammonia) is absorbed by the dilute solution to regenerate the concentrated solution.

【0031】上述した構成では、満液式と異なり、濃溶
液の主たる貯液は、濃溶液タンク12で行われる。濃溶
液タンク12容量は、家庭用機器を想定するとできるだ
け少なく設計される。我々は鋭意検討の結果、貫流方式
でスムーズな運転立ち上げを行うためには、運転を開始
して濃溶液タンク12内の濃溶液が無くならない内に精
溜器1内がある設定圧力以上になることが必要である事
を見いだした。精溜器1内が高圧となり、吸収器内圧力
(低圧)とある差圧以上になると希溶液を吸収器4に送
る推進力が生じ、濃溶液が濃溶液タンク12に補充され
る。
In the above-described configuration, unlike the liquid-full type, the main storage of the concentrated solution is performed in the concentrated solution tank 12. The volume of the concentrated solution tank 12 is designed to be as small as possible assuming household equipment. As a result of our intensive study, we found that in order to start the operation smoothly with the once-through system, the operation was started and the concentrated solution in the concentrated solution tank 12 did not run out. I found it necessary to be. When the pressure inside the rectifier 1 becomes high and the pressure inside the absorber (low pressure) becomes equal to or higher than a certain differential pressure, a driving force for sending the dilute solution to the absorber 4 is generated, and the concentrated solution is replenished to the concentrated solution tank 12.

【0032】しかしながら、長時間運転停止時、系内に
充填されているアンモニア水は、濃溶液タンク12以外
に、精溜器1内にも分布するとともに、系全体の温度は
低くなっている。その状態から、運転を開始すると、精
溜器1の温度が低く、かつこれ自体が熱容量を持つた
め、再生器10より温度の高い濃溶液が流入しても、な
かなか精溜器1内の圧力を持ち上げるには至らず、その
うち濃溶液タンク12内の濃溶液がなくなってしまい、
溶液ポンプ9による送液が出来ず、再生器10が空焼き
となり、溶液ポンプ9及び再生器10に損傷を与えると
共に、運転立ち上げが出来ないことが時折観察された。
この現象は、充填量を増して行くことで回避できるが、
余り充填量を増すと過負荷運転時に高圧が異常に上昇し
たり、能力低下を起こす。そのために、適正充填量で安
定した運転立ち上げができる手段を検討し、本発明に至
った。
However, when the operation is stopped for a long time, the ammonia water filled in the system is distributed not only in the concentrated solution tank 12 but also in the rectifier 1, and the temperature of the entire system is low. When the operation is started from this state, the temperature of the rectifier 1 is low even when a concentrated solution having a higher temperature than the regenerator 10 flows in because the temperature of the rectifier 1 is low and has a heat capacity of itself. And the concentrated solution in the concentrated solution tank 12 eventually runs out,
It was occasionally observed that the solution pump 9 could not feed the solution and the regenerator 10 was burnt, damaging the solution pump 9 and the regenerator 10 and not being able to start operation.
This phenomenon can be avoided by increasing the filling amount,
If the filling amount is excessively increased, the high pressure abnormally increases during the overload operation or the capacity is reduced. For this purpose, the present inventors have studied means for stably starting the operation with an appropriate filling amount, and have reached the present invention.

【0033】第1の実施例においては、精溜器1の気液
分離部Cの回りに、加熱器20を設けて、塔内温度検知
器19が検出する精溜器1内の温度が低い場合には、制
御器21により加熱器20に通電し、所定の温度(約5
0℃)まで加熱する。そして、所定の温度に精溜器1内
の温度が達したときに運転を開始する。これにより、精
溜器1内の圧力(高圧)は直ちに上昇し、確実にサイク
ル動作に入ることができる。
In the first embodiment, a heater 20 is provided around the gas-liquid separation section C of the rectifier 1 so that the temperature in the rectifier 1 detected by the tower temperature detector 19 is low. In this case, the heater 21 is energized by the controller 21 so that a predetermined temperature (approximately 5
(0 ° C.). Then, the operation is started when the temperature in the rectifier 1 reaches a predetermined temperature. Thereby, the pressure (high pressure) in the rectifier 1 immediately rises, and the cycle operation can be reliably started.

【0034】次に、第2の実施例について、図2を用い
て説明する。第2の実施例において、第1の実施例と相
違する点は、精溜器1内の温度が所定の温度以下の場合
に、制御器22により分岐量調節弁23を閉じて運転を
開始し、所定の温度に達した時に所定の開度にするよう
にした点である。分岐量調節弁23を閉じることによ
り、再生器10より流入する高温濃溶液(2相)を冷却
することがないので、精溜器1内の温度を高めることで
きる。よって、この場合も、第1の実施例と同様の効果
がある。
Next, a second embodiment will be described with reference to FIG. The second embodiment is different from the first embodiment in that when the temperature in the rectifier 1 is lower than a predetermined temperature, the controller 22 closes the branch amount control valve 23 to start the operation. Is that a predetermined opening degree is set when a predetermined temperature is reached. By closing the branch amount control valve 23, the high-temperature concentrated solution (two phases) flowing from the regenerator 10 is not cooled, so that the temperature in the rectifier 1 can be increased. Therefore, also in this case, the same effect as in the first embodiment is obtained.

【0035】次に、第3に実施例について、図3を用い
て説明する。第3の実施例は、第1と第2の実施例を併
用したもので、塔内温度が所定の温度以下の場合に、制
御器24により、分岐量調節弁23を閉じるとともに、
加熱器20の通電を行いながら運転を開始し、塔内の温
度が所定の温度に達した時に分岐量調節弁23を所定の
開度にする。これにより、より確実に精溜器1内の圧力
を高め、サイクル動作に入ることが出来る。また、塔内
温度検知器19を分縮部Aの下に近接して設けた構成に
することにより、塔内流出濃溶液温度を検出できるの
で、塔内流出濃溶液温度を適正に制御することにより精
溜効率を高くすることが出来る。
Next, a third embodiment will be described with reference to FIG. The third embodiment is a combination of the first and second embodiments. When the temperature in the tower is equal to or lower than a predetermined temperature, the controller 24 closes the branch amount control valve 23 by the controller 24.
The operation is started while the heater 20 is energized, and when the temperature in the tower reaches a predetermined temperature, the branch amount control valve 23 is set to a predetermined opening. Thereby, the pressure in the rectifier 1 can be more reliably increased, and the cycle operation can be started. In addition, since the temperature detector 19 in the tower is provided close to and below the decomposing section A, the temperature of the concentrated solution flowing out of the tower can be detected. Thereby, the rectification efficiency can be increased.

【0036】次に、第4の実施例について、図4を用い
て説明する。運転立ち上げ時、塔内温度が所定の温度以
下の場合に、凝縮・吸収器2の2次側冷却水流量を調節
する冷却水調節弁26を制御器25により閉じて運転を
開始し、塔内温度が所定の温度に達した時に冷却水調節
弁26を所定の開度に開くようにしている。冷却水を凝
縮器3と吸収器4に並列に流す構成とした場合には、凝
縮温度を冷却水温度近傍と見ることができる。凝縮温度
が所定の温度、例えば、30℃に達するまでは、冷却水
の循環を停止しているので、運転を開始すると系の高圧
を容易に持ち上げることができて、通常運転に入ること
ができる。なお、実施例においては、冷却水流量の調節
に冷却水調節弁26を用いたが、冷却水循環ポンプの回
転数を制御しても良いことは言うまでもない。
Next, a fourth embodiment will be described with reference to FIG. When the operation is started, if the temperature in the tower is equal to or lower than a predetermined temperature, the cooling water control valve 26 for adjusting the flow rate of the cooling water on the secondary side of the condenser / absorber 2 is closed by the controller 25 to start the operation. When the internal temperature reaches a predetermined temperature, the cooling water control valve 26 is opened to a predetermined opening. When the cooling water is configured to flow in parallel to the condenser 3 and the absorber 4, the condensing temperature can be regarded as near the cooling water temperature. Since the circulation of the cooling water is stopped until the condensing temperature reaches a predetermined temperature, for example, 30 ° C., when the operation is started, the high pressure of the system can be easily lifted, and the normal operation can be started. . In the embodiment, the cooling water control valve 26 is used for adjusting the flow rate of the cooling water. However, it goes without saying that the rotation speed of the cooling water circulation pump may be controlled.

【0037】次に、第5の実施例について、図5を用い
て説明する。第5の実施例が第4に実施例と相違する点
は、凝縮温度検知器27を設けて、凝縮温度を常に一定
温度となるように制御器28により冷却水調節弁26を
制御して、運転立ち上げと、サイクル動作を行う点にあ
る。凝縮温度が所定の温度より低い場合は、冷却水調節
弁26を絞り、高い場合は冷却水調節弁26を開くよう
に制御する。こうして、室外条件に依らず、常に一定の
高圧下での安定動作を実現することができる。凝縮温度
が系の高圧を決定するが、凝縮温度を低くできることは
能力出しの点では好ましいが、あまりこれが低いと高圧
が低下し、低圧との圧力差(精溜器より希溶液を押し出
す推進力)が縮まり、何れ希溶液が精溜器1内に溢れ、
ついには精溜器1上部より噴出し、能力低下を起こす。
本発明により、高圧を確実に保証できて、安定動作とす
ることができる。なお、この場合も第4の実施例同様、
冷却水流量の調節に冷却水調節弁26を用いずに、冷却
水循環ポンプの回転数を制御しても良いことは言うまで
もない。
Next, a fifth embodiment will be described with reference to FIG. The fifth embodiment differs from the fourth embodiment in that a condensing temperature detector 27 is provided, and a cooling water control valve 26 is controlled by a controller 28 so that the condensing temperature always becomes a constant temperature. The point is to start up the operation and perform the cycle operation. When the condensing temperature is lower than the predetermined temperature, the cooling water control valve 26 is throttled, and when the condensing temperature is higher, the cooling water control valve 26 is opened. Thus, a stable operation under a constant high pressure can always be realized irrespective of the outdoor conditions. Although the condensation temperature determines the high pressure of the system, it is preferable in terms of capacity to be able to lower the condensation temperature. ) Shrinks, and eventually the dilute solution overflows into the rectifier 1,
Eventually, it spouts out from the upper part of the rectifier 1 to cause a decrease in performance.
According to the present invention, high pressure can be reliably ensured, and stable operation can be achieved. In this case, as in the fourth embodiment,
It goes without saying that the rotation speed of the cooling water circulation pump may be controlled without using the cooling water control valve 26 for adjusting the cooling water flow rate.

【0038】次に、第6の実施例について、図6を用い
て説明する。精溜器出口(凝縮器入り口)から凝縮器3
出口に至るバイパス量調節弁29を含むバイパス回路3
0を設けて、凝縮器冷媒出口に設けた凝縮温度検知器2
7の温度(凝縮温度)が一定となるように制御器31に
よりバイパス量調節弁29の開度を制御するものであ
る。凝縮温度が低い場合はバイパス量調節弁29を開
き、凝縮温度が高い場合はバイパス量調節弁29を閉じ
るように制御する。ここでは、省略しているが、塔内温
度検知器19を併用して、塔内温度検知器19により精
溜器1内の液面を監視してそれに応じてバイパス量調節
弁29を制御しても良い。
Next, a sixth embodiment will be described with reference to FIG. From condenser outlet (condenser inlet) to condenser 3
Bypass circuit 3 including bypass amount control valve 29 leading to the outlet
0 and a condensation temperature detector 2 provided at the condenser refrigerant outlet.
The controller 31 controls the degree of opening of the bypass amount control valve 29 so that the temperature (condensation temperature) 7 becomes constant. When the condensing temperature is low, control is performed such that the bypass amount adjusting valve 29 is opened, and when the condensing temperature is high, the bypass amount adjusting valve 29 is controlled to be closed. Here, although omitted, the temperature detector 19 in the tower is used together, the liquid level in the rectifier 1 is monitored by the temperature detector 19 in the tower, and the bypass amount adjusting valve 29 is controlled accordingly. May be.

【0039】次に、第7の実施例について、図7を用い
て説明する。溶液ポンプ9の吸入・吐出側にそれぞれ吸
入温度検知器32、吐出温度検知器33を設けてその温
度差により制御器34により、溶液ポンプ9の回転数を
制御する。溶液ポンプ9自体が発熱(モータ部)してい
ることと、溶液ポンプ9により圧縮効果があることによ
り、濃溶液は溶液ポンプ9を通過することにより、その
温度が上昇する。適正な温度差は経験的に2deg以内
であり、4deg以上となる場合には、しばらく経過し
た後、溶液ポンプ9がキャビテーション(ガス咬み)を
おこす。温度差が広がる現象は、冷却水条件が変化し
て、高低圧差が縮まった場合に生じることを確認してい
る。よって、こうした現象が生じた場合は、溶液ポンプ
9の回転数を落とすようにする。これにより、溶液ポン
プ9の信頼性を著しく高めることが出来る。
Next, a seventh embodiment will be described with reference to FIG. A suction temperature detector 32 and a discharge temperature detector 33 are provided on the suction and discharge sides of the solution pump 9, respectively, and the rotation speed of the solution pump 9 is controlled by a controller 34 based on the temperature difference. Since the solution pump 9 itself generates heat (motor portion) and the solution pump 9 has a compression effect, the concentrated solution passes through the solution pump 9 and its temperature rises. The appropriate temperature difference is empirically within 2 deg. If it is 4 deg or more, the solution pump 9 causes cavitation (gas biting) after a while. It has been confirmed that the phenomenon that the temperature difference widens occurs when the cooling water condition changes and the high-low pressure difference decreases. Therefore, when such a phenomenon occurs, the rotation speed of the solution pump 9 is reduced. Thereby, the reliability of the solution pump 9 can be significantly improved.

【0040】次に、第8の実施例について、図8を用い
て説明する。第5、第6、第7の実施例とを併用したも
ので、溶液ポンプ9吸入側に設けられた吸入温度検知器
32の検出する吸入温度より、冷却水条件を推定し、低
い場合は冷却水量調節弁26を絞り所定の温度に吸入温
度を設定する。これは、吸入側温度を下げすぎると再生
器で蒸気を発生するための熱量を多量に必要とし、成績
係数を下げるためである。そして、その状態で、凝縮温
度を凝縮温度検知器27により見てこれが低ければ、制
御器35により凝縮器3のバイパス回路30のバイパス
量調節弁29の開度を開き、高ければバイパス調節弁2
9の開度を閉じて凝縮温度を一定に制御して、高圧を一
定とする事が出来る。さらに、吐出温度検知器33と吸
入温度検知器32が検知する温度の温度差が所定の温度
差以内となるように溶液ポンプ9の回転数を制御する。
こうして、実用的な安定したサイクル動作を実現でき
る。
Next, an eighth embodiment will be described with reference to FIG. The cooling water condition is estimated from the suction temperature detected by the suction temperature detector 32 provided on the solution pump 9 suction side, and the cooling water condition is estimated when the temperature is low, using the fifth, sixth, and seventh embodiments in combination. The water control valve 26 is throttled to set the suction temperature to a predetermined temperature. This is because if the suction side temperature is too low, a large amount of heat is required to generate steam in the regenerator, and the coefficient of performance is lowered. Then, in this state, the condensing temperature is observed by the condensing temperature detector 27, and if the condensing temperature is low, the controller 35 opens the bypass control valve 29 of the bypass circuit 30 of the condenser 3;
By controlling the condensing temperature to be constant by closing the opening degree of No. 9, the high pressure can be kept constant. Further, the rotation speed of the solution pump 9 is controlled such that the temperature difference between the temperatures detected by the discharge temperature detector 33 and the suction temperature detector 32 is within a predetermined temperature difference.
Thus, a practical and stable cycle operation can be realized.

【0041】なお、以上述べた実施例を組み合わせても
良いことは言うまでもない。特に記載しなかったが、通
常の運転制御は、膨張弁後の蒸発温度を一定とするよう
に膨張弁の開度を制御することにより行うが、これと上
記実施例とを組み合わせても良いことは言うまでもな
い。また、精溜器塔内温度を検出する塔内温度検知器を
分縮部の下に設けたが、これに限定するものではない。
熱交換器を積層式としたがこれに限定するものでないこ
とは言うまでもない。さらに、加熱器を冷媒を排出時に
用いることもできる。
It goes without saying that the embodiments described above may be combined. Although not specifically described, normal operation control is performed by controlling the opening degree of the expansion valve so as to keep the evaporation temperature after the expansion valve constant, but this may be combined with the above embodiment. Needless to say. In addition, a tower temperature detector for detecting the temperature inside the rectifier tower is provided below the decomposing unit, but the invention is not limited to this.
Although the heat exchanger is a stacked type, it is needless to say that the present invention is not limited to this. Further, a heater can be used when discharging the refrigerant.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば次
のような効果がある。
As described above, the present invention has the following effects.

【0043】(1)加熱器により精溜器内を所定の温度
に高めて運転を開始するので、運転立ち上げを確実に行
うことができる。
(1) Since the inside of the rectifier is heated to a predetermined temperature by the heater to start the operation, the operation can be started up reliably.

【0044】(2)分岐量調節弁を閉じて運転を開始す
るので、素早く精溜器内を高圧として、運転立ち上げを
確実に行うことができる。
(2) Since the operation is started with the branch amount control valve closed, the pressure in the rectifier can be quickly increased and the operation can be reliably started.

【0045】(3)加熱器と、分岐量調節弁を制御する
ことにより、より確実に運転立ち上げを行うことができ
る。
(3) By controlling the heater and the branch amount control valve, the operation can be started more reliably.

【0046】(4)塔内温度が所定の温度に上昇するま
では2次側冷却水を停止して運転を開始するので確実に
運転立ち上げを行うことができる。
(4) Since the secondary side cooling water is stopped and the operation is started until the temperature in the tower rises to a predetermined temperature, the operation can be reliably started.

【0047】(5)2次側冷却水量調節して、凝縮温度
を一定に制御するので、安定した且つ成績係数の高い吸
収式ヒートポンプを提供できる。
(5) Since the condensing temperature is controlled to be constant by adjusting the amount of cooling water on the secondary side, a stable absorption heat pump having a high coefficient of performance can be provided.

【0048】(6)凝縮器にバイパス回路を設けて外気
条件に依らず凝縮温度を一定に制御するので、安定した
ヒートポンプ運転を行うことができる。
(6) Since the condenser is provided with a bypass circuit to control the condensing temperature constant irrespective of the outside air condition, a stable heat pump operation can be performed.

【0049】(7)溶液ポンプの動作をつねに保証でき
るので、溶液ポンプの信頼性を高めることができる。
(7) Since the operation of the solution pump can always be guaranteed, the reliability of the solution pump can be improved.

【0050】(8)凝縮温度と溶液ポンプ動作を制御し
て、実用的な成績係数が高く、信頼性の高い吸収式ヒー
トポンプを提供できる。
(8) By controlling the condensation temperature and the operation of the solution pump, it is possible to provide a highly reliable absorption heat pump having a high practical coefficient of performance.

【0051】(9)貫流方式とするとともに、濃溶液を
精溜器内に流入させる構成とした精溜器を用いているの
で、小型でサイクル成績係数の高い吸収式ヒートポンプ
を提供できる。
(9) Since a rectifier configured to allow the concentrated solution to flow into the rectifier is used in addition to the flow-through method, a small-sized absorption heat pump having a high cycle performance coefficient can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の吸収式ヒートポンプの第1の実施例を
示す構成断面図
FIG. 1 is a sectional view showing the configuration of a first embodiment of an absorption heat pump according to the present invention.

【図2】本発明の吸収式ヒートポンプの第2の実施例を
示す構成断面図
FIG. 2 is a sectional view showing the configuration of a second embodiment of the absorption heat pump of the present invention.

【図3】本発明の吸収式ヒートポンプの第3の実施例を
示す構成断面図
FIG. 3 is a sectional view showing the configuration of a third embodiment of the absorption heat pump of the present invention.

【図4】本発明の吸収式ヒートポンプの第4の実施例を
示す構成断面図
FIG. 4 is a sectional view showing the configuration of a fourth embodiment of the absorption heat pump of the present invention.

【図5】本発明の吸収式ヒートポンプの第5の実施例を
示す構成断面図
FIG. 5 is a sectional view showing the configuration of a fifth embodiment of the absorption heat pump of the present invention.

【図6】本発明の吸収式ヒートポンプの第6の実施例を
示す構成断面図
FIG. 6 is a sectional view showing the configuration of a sixth embodiment of the absorption heat pump of the present invention.

【図7】本発明の吸収式ヒートポンプの第7の実施例を
示す構成断面図
FIG. 7 is a sectional view showing the configuration of a seventh embodiment of the absorption heat pump of the present invention.

【図8】本発明の吸収式ヒートポンプの第8の実施例を
示す構成断面図
FIG. 8 is a sectional view showing the configuration of an eighth embodiment of the absorption heat pump of the present invention.

【図9】従来の吸収式ヒートポンプの構成断面図FIG. 9 is a sectional view of a configuration of a conventional absorption heat pump.

【符号の説明】[Explanation of symbols]

1 精溜器 2 凝縮・吸収器 5 過冷却・蒸発器 8 溶液熱交換器 9 溶液ポンプ 10 再生器 15・23 分岐量調節弁 19 塔内温度検知器 20 加熱器 21・22・24・25・28・31・34・35 制
御器 26 冷却水温度検知器 27 凝縮温度検知器 29 バイパス量調節弁 30 バイパス回路 32 溶液ポンプ吸入側温度検知器 33 溶液ポンプ吐出側温度検知器 A 分縮部 B 精溜段部 C 気液分離部
DESCRIPTION OF SYMBOLS 1 Rectifier 2 Condenser / absorber 5 Subcooling / evaporator 8 Solution heat exchanger 9 Solution pump 10 Regenerator 15/23 Branch amount control valve 19 Tower temperature detector 20 Heater 21 ・ 22 ・ 24 ・ 25 ・28, 31, 34, 35 Controller 26 Cooling water temperature detector 27 Condensation temperature detector 29 Bypass amount control valve 30 Bypass circuit 32 Solution pump suction side temperature detector 33 Solution pump discharge side temperature detector A Decompression unit B Precision Reservoir section C Gas-liquid separation section

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 F25B 15/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F25B 15/00 306 F25B 15/04

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】分縮部と、精溜段部と、気液分離部とを有
し、精溜器内の温度を検知する塔内温度検知器と、少な
くとも前記気液分離部に加熱器を備えた精溜器と、凝縮
器と、前記凝縮器出口に設けられた冷媒タンクと、過冷
却器と、膨張弁と、蒸発器と、溶液熱交換器と、減圧弁
と、吸収器と、前記吸収器出口に設けられた濃溶液タン
クと、溶液ポンプと、再生器と、前記各要素部品を連結
する配管と、制御器とを備え、運転開始時、前記制御器
により、前記塔内温度検知器が検出する前記精溜器内の
温度が所定の温度よりも低い場合に、前記加熱器による
加熱を行い、前記精溜器内が所定の温度に達した時に運
転を開始することを特徴とする吸収式ヒートポンプ。
1. A tower temperature detector for detecting a temperature in a rectifier, comprising a decompression unit, a rectification step, and a gas-liquid separation unit, and a heater provided at least in the gas-liquid separation unit. A rectifier having a condenser, a condenser, a refrigerant tank provided at the condenser outlet, a supercooler, an expansion valve, an evaporator, a solution heat exchanger, a pressure reducing valve, and an absorber. A concentrated solution tank provided at the outlet of the absorber, a solution pump, a regenerator, a pipe connecting the respective component parts, and a controller. At the start of operation, the controller controls the inside of the tower. When the temperature in the rectifier detected by the temperature detector is lower than a predetermined temperature, heating by the heater is performed, and when the temperature in the rectifier reaches a predetermined temperature, operation is started. Characteristic absorption heat pump.
【請求項2】分縮部と、精溜段部と、気液分離部とを有
する清溜器と、前記精溜器内の温度を検知する塔内温度
検知器と、前記精溜器分縮部への濃溶液流入量を調節す
る分岐量調節弁と、凝縮器と、前記凝縮器出口に設けら
れた冷媒タンクと、過冷却器と、膨張弁と、蒸発器と、
溶液熱交換器と、減圧弁と、吸収器と、前記吸収器出口
に設けられた濃溶液タンクと、溶液ポンプと、再生器
と、前記各要素部品を連結する配管と、制御器とを備
え、前記制御器により、前記塔内温度検知器が検出する
前記精溜器内の温度が所定の温度よりも低い場合に、前
記分岐量調節弁を閉じて運転を開始し、前記精溜器内が
所定の温度に達した時に前記分岐量調節弁を所定の開度
に開くことを特徴とする吸収式ヒートポンプ。
2. A rectifier having a decompression section, a rectification step, and a gas-liquid separation section, a tower temperature detector for detecting a temperature in the rectifier, and a rectifier section. A branch amount control valve for controlling the amount of concentrated solution flowing into the contraction section, a condenser, a refrigerant tank provided at the condenser outlet, a supercooler, an expansion valve, and an evaporator,
A solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, a regenerator, a pipe connecting the respective component parts, and a controller. When the temperature in the rectifier detected by the temperature detector in the tower is lower than a predetermined temperature, the controller closes the branch amount control valve to start operation, and Wherein when the temperature reaches a predetermined temperature, the branch amount control valve is opened to a predetermined opening degree.
【請求項3】分縮部と、精溜段部と、気液分離部と、少
なくとも前記気液分離部に加熱器を備えた精溜器と、前
記精溜器内の温度を検知する塔内温度検知器と、前記精
溜器分縮部への濃溶液流入量を調節する分岐量調節弁
と、凝縮器と、前記凝縮器出口に設けられた冷媒タンク
と、過冷却器と、膨張弁と、蒸発器と、溶液熱交換器
と、減圧弁と、吸収器と、前記吸収器出口に設けられた
濃溶液タンクと、溶液ポンプと、再生器と、前記各要素
部品を連結する配管と、制御器とを備え、前記制御器に
より、前記塔内温度検知器が検出する前記精溜器内の温
度が所定の温度よりも低い場合に、前記分岐量調節弁を
閉じるとともに前記加熱器による加熱を行って運転を開
始し、前記精溜器内が所定の温度に達した時に前記分岐
量調節弁を所定の開度に開くことを特徴とする吸収式ヒ
ートポンプ。
3. A fractionator, a rectifying step, a gas-liquid separator, a rectifier provided with a heater at least in the gas-liquid separator, and a tower for detecting a temperature in the rectifier. An internal temperature detector, a branch amount control valve for adjusting the amount of concentrated solution flowing into the rectifier decomposing unit, a condenser, a refrigerant tank provided at the condenser outlet, a supercooler, and an expansion unit. A valve, an evaporator, a solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, a regenerator, and a pipe connecting the respective component parts. And a controller, wherein when the temperature in the rectifier detected by the temperature detector in the tower is lower than a predetermined temperature, the controller closes the branch amount control valve and the heater When the temperature inside the rectifier reaches a predetermined temperature, the branch amount control valve is opened at a predetermined opening. Absorption heat pump, characterized in that opening.
【請求項4】精溜器と、前記精溜器内の温度を検知する
塔内温度検知器と、1次側に冷媒流路と2次側に冷却水
流路を有する凝縮器と、前記凝縮器冷媒流路出口に設け
られた冷媒タンクと、過冷却器と、膨張弁と、1次側に
冷媒流路と2次側に冷水流路を有する蒸発器と、溶液熱
交換器と、減圧弁と、1次側に冷媒流路と2次側に冷却
水流路を有する吸収器と、前記吸収器冷媒流路出口に設
けられた濃溶液タンクと、溶液ポンプと、再生器と、前
記各要素部品を連結する1次側冷媒配管と2次側水配管
と、制御器とを備え、前記制御器により、前記塔内温度
検知器が検出する前記精溜器内の温度が所定の温度より
も低い場合に、少なくとも前記凝縮器の2次側冷却水の
循環を停止して運転を開始し、前記精溜器内が所定の温
度に達した時に前記凝縮器2次側冷却水を所定量循環さ
せることを特徴とする吸収式ヒートポンプ。
4. A rectifier, a tower temperature detector for detecting a temperature in the rectifier, a condenser having a refrigerant flow path on a primary side and a cooling water flow path on a secondary side, and the condenser A refrigerant tank provided at the outlet of the cooling medium flow path, a subcooler, an expansion valve, an evaporator having a refrigerant flow path on the primary side and a cold water flow path on the secondary side, a solution heat exchanger, A valve, an absorber having a refrigerant flow path on the primary side and a cooling water flow path on the secondary side, a concentrated solution tank provided at the outlet of the absorber refrigerant flow path, a solution pump, a regenerator, A primary-side refrigerant pipe and a secondary-side water pipe for connecting the component parts, and a controller, wherein the controller detects that the temperature in the rectifier detected by the tower temperature detector is lower than a predetermined temperature. Is low, the circulation of the cooling water on the secondary side of the condenser is stopped at least, and the operation is started. Absorption heat pump to the condenser secondary cooling water, characterized in that by a predetermined amount circulated.
【請求項5】精溜器と、1次側に冷媒流路と2次側に冷
却水流路を有する凝縮器と、前記凝縮器冷媒流路出口に
設けられた凝縮温度検知器を備えた冷媒タンクと、過冷
却器と、膨張弁と、1次側に冷媒流路と2次側に冷水流
路を有する蒸発器と、溶液熱交換器と、減圧弁と、1次
側に冷媒流路と2次側に冷却水流路を有する吸収器と、
前記吸収器冷媒流路出口に設けられた濃溶液タンクと、
溶液ポンプと、再生器と、前記各要素部品を連結する1
次側冷媒配管と2次側水配管と、制御器とを備え、前記
制御器により、前記凝縮温度検知器が検出する凝縮温度
が、所定の温度よりも低い場合に前記凝縮器の2次側冷
却水の循環量を減少させ、所定の温度よりも高い場合に
前記凝縮器の2次側冷却水の循環量を増加させて、凝縮
温度を常に所定の温度になるように2次側冷却水量を調
節してなる吸収式ヒートポンプ。
5. A refrigerant having a rectifier, a condenser having a refrigerant flow path on a primary side and a cooling water flow path on a secondary side, and a condensation temperature detector provided at an outlet of the condenser refrigerant flow path. A tank, a subcooler, an expansion valve, an evaporator having a refrigerant flow path on the primary side and a chilled water flow path on the secondary side, a solution heat exchanger, a pressure reducing valve, and a refrigerant flow path on the primary side And an absorber having a cooling water flow path on the secondary side,
A concentrated solution tank provided at the outlet of the absorber refrigerant flow path,
1 for connecting the solution pump, the regenerator, and each of the above component parts
A secondary-side refrigerant pipe, a secondary-side water pipe, and a controller. When the condensing temperature detected by the condensing temperature detector by the controller is lower than a predetermined temperature, a secondary side of the condenser is provided. The amount of circulating cooling water is reduced, and when the temperature is higher than a predetermined temperature, the amount of circulating cooling water on the secondary side of the condenser is increased so that the amount of cooling water on the secondary side is always kept at a predetermined temperature. Absorption heat pump by adjusting the temperature.
【請求項6】精溜器と、1次側に前記精溜器からの精溜
ガスが流入する冷媒流路と2次側に冷却水流路を有する
凝縮器と、前記凝縮器冷媒流路出口に設けられた凝縮温
度検知器を備えた冷媒タンクと、前記凝縮器の冷媒流路
入り口と出口を連結し、かつバイパス量調節弁を備えた
バイパス回路と、過冷却器と、膨張弁と、1次側に冷媒
流路と2次側に冷水流路を有する蒸発器と、溶液熱交換
器と、減圧弁と、1次側に冷媒流路と2次側に冷却水流
路を有する吸収器と、前記吸収器冷媒流路出口に設けら
れた濃溶液タンクと、溶液ポンプと、再生器と、前記各
要素部品を連結する冷媒配管とからなる冷媒回路と、前
記凝縮器及び吸収器の2次側冷却水流路を含む冷却水回
路と、前記蒸発器の2次側冷水流路を含む冷水回路と、
制御器とを備え、前記凝縮温度検知器が検出する凝縮温
度が、所定の温度よりも低い場合に前記バイパス量調節
弁の開度を開き、所定の温度よりも高い場合に前記バイ
パス量調節弁の開度を閉じて、凝縮温度を常に所定の温
度になるように前記制御器により前記バイパス調節弁の
開度を調節してなる吸収式ヒートポンプ。
6. A rectifier, a condenser having a refrigerant flow path on the primary side through which rectified gas flows from the rectifier and a cooling water flow path on the secondary side, and an outlet of the condenser refrigerant flow path A refrigerant tank provided with a condensation temperature detector provided in the, a refrigerant circuit connecting the inlet and outlet of the refrigerant flow path, and a bypass circuit having a bypass amount control valve, a supercooler, an expansion valve, An evaporator having a refrigerant flow path on the primary side and a cold water flow path on the secondary side, a solution heat exchanger, a pressure reducing valve, and an absorber having a refrigerant flow path on the primary side and a cooling water flow path on the secondary side A refrigerant circuit including a concentrated solution tank provided at the outlet of the absorber refrigerant flow path, a solution pump, a regenerator, and a refrigerant pipe connecting the respective component parts; and a condenser circuit and an absorber. A cooling water circuit including a secondary cooling water flow path, a chilled water circuit including a secondary cooling water flow path of the evaporator,
A condensing temperature detected by the condensing temperature detector, the opening degree of the bypass amount adjusting valve is opened when the condensing temperature is lower than a predetermined temperature, and the bypass amount adjusting valve is opened when the condensing temperature is higher than a predetermined temperature. An absorption heat pump wherein the controller adjusts the degree of opening of the bypass control valve so that the condensing temperature always becomes a predetermined temperature by closing the degree of opening.
【請求項7】精溜器と、凝縮器と、前記凝縮器出口に設
けられた冷媒タンクと、過冷却器と、膨張弁と、蒸発器
と、溶液熱交換器と、減圧弁と、吸収器と、前記吸収器
出口に設けられた濃溶液タンクと、溶液ポンプと、前記
溶液ポンプの吸入及び吐出側に設けられた吸入温度検知
器及び吐出温度検知器と、再生器と、前記各要素部品を
連結する冷媒配管と、制御器とを備え、前記吐出温度検
知器と前記吸入温度検知器の温度差が所定の温度差より
も大きい場合は前記溶液ポンプの回転数を減少させて、
常に所定の温度差以内となるように前記制御器により前
記溶液ポンプの回転数を制御してなる吸収式ヒートポン
プ。
7. A rectifier, a condenser, a refrigerant tank provided at an outlet of the condenser, a supercooler, an expansion valve, an evaporator, a solution heat exchanger, a pressure reducing valve, an absorption valve, Device, a concentrated solution tank provided at the outlet of the absorber, a solution pump, a suction temperature detector and a discharge temperature detector provided on the suction and discharge sides of the solution pump, a regenerator, and each of the above elements A refrigerant pipe connecting components, and a controller, when the temperature difference between the discharge temperature detector and the suction temperature detector is larger than a predetermined temperature difference, reducing the rotation speed of the solution pump,
An absorption heat pump in which the controller controls the number of revolutions of the solution pump so that the temperature is always within a predetermined temperature difference.
【請求項8】精溜器と、1次側に前記精溜器からの精溜
ガスが流入する冷媒流路と2次側に冷却水流路を有する
凝縮器と、前記凝縮器冷媒流路出口に設けられた凝縮温
度検知器を備えた冷媒タンクと、前記凝縮器の冷媒流路
入り口と出口を連結し、かつバイパス量調節弁を備えた
バイパス回路と、過冷却器と、膨張弁と、1次側に冷媒
流路と2次側に冷水流路を有する蒸発器と、溶液熱交換
器と、減圧弁と、1次側に冷媒流路と2次側に冷却水流
路を有する吸収器と、前記吸収器冷媒流路出口に設けら
れた濃溶液タンクと、溶液ポンプと、前記溶液ポンプの
吸入及び吐出側に設けられた吸入温度検知器及び吐出温
度検知器と、再生器と、前記各要素部品を連結する冷媒
配管とからなる冷媒回路と、前記凝縮器及び前記吸収器
の2次側冷却水流路に並列に流す構成としてなる冷却水
回路と、前記蒸発器の2次側冷水流路を含む冷水回路
と、制御器とを備え、前記制御器により、前記吸入温度
検知器が検出する温度と、前記吸入温度検知器と前記吐
出温度検知器とが検出する温度差より、前記冷却水回路
の流量及び前記溶液ポンプ回転数を調節すると共に、前
記凝縮温度検知器が検出する凝縮器温度より前記バイパ
ス量調節弁の開度を調節してなる吸収式ヒートポンプ。
8. A condenser having a rectifier, a refrigerant passage on the primary side into which rectified gas from the rectifier flows, and a cooling water passage on the secondary side, and an outlet of the condenser refrigerant passage. A refrigerant tank provided with a condensation temperature detector provided in the, a refrigerant circuit connecting the inlet and outlet of the refrigerant flow path, and a bypass circuit having a bypass amount control valve, a supercooler, an expansion valve, An evaporator having a refrigerant flow path on the primary side and a cold water flow path on the secondary side, a solution heat exchanger, a pressure reducing valve, and an absorber having a refrigerant flow path on the primary side and a cooling water flow path on the secondary side A concentrated solution tank provided at the absorber refrigerant flow path outlet, a solution pump, a suction temperature detector and a discharge temperature detector provided on the suction and discharge sides of the solution pump, a regenerator, A refrigerant circuit composed of refrigerant pipes connecting the respective component parts, and a secondary cooling water flow of the condenser and the absorber. A cooling water circuit configured to flow in parallel to the cooling water circuit including a secondary-side cooling water flow path of the evaporator, and a controller, the controller detects the temperature detected by the suction temperature detector, The flow rate of the cooling water circuit and the rotation speed of the solution pump are adjusted based on the temperature difference detected by the suction temperature detector and the discharge temperature detector, and the bypass temperature is adjusted based on the condenser temperature detected by the condensation temperature detector. An absorption heat pump that controls the opening of the flow control valve.
【請求項9】精溜器は、精溜塔と、前記精溜塔の上方よ
り、精溜ガス取り出し管と、下方端に溶液ポンプ吐出濃
溶液の一部を分岐量調節弁により調節して塔内に流出さ
せる開口部を有する分縮熱交換器と前記分縮熱交換器の
周囲に充填された充填材とならなる分縮部と、空隙と、
充填材が充填された精溜段部と、高温濃溶液流入管と希
溶液取り出し管とを備えた空間より構成された気液分離
部とから構成されてなる請求項1から8のいずれか1項
記載の吸収式ヒートポンプ。
9. A rectifier comprising: a rectification tower; a rectification gas outlet pipe from above the rectification tower; and a part of the concentrated solution discharged from the solution pump adjusted at a lower end by a branch amount control valve. A condensing heat exchanger having an opening to be discharged into the tower, a condensing portion that becomes a filler filled around the condensing heat exchanger, and a void,
9. A gas liquefier comprising a rectifying step filled with a filler, and a gas-liquid separator comprising a space provided with a high-temperature concentrated solution inlet pipe and a dilute solution outlet pipe. The absorption heat pump according to the item.
JP7249029A 1995-09-27 1995-09-27 Absorption heat pump Expired - Fee Related JP3003554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7249029A JP3003554B2 (en) 1995-09-27 1995-09-27 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7249029A JP3003554B2 (en) 1995-09-27 1995-09-27 Absorption heat pump

Publications (2)

Publication Number Publication Date
JPH0989405A JPH0989405A (en) 1997-04-04
JP3003554B2 true JP3003554B2 (en) 2000-01-31

Family

ID=17186952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7249029A Expired - Fee Related JP3003554B2 (en) 1995-09-27 1995-09-27 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP3003554B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190006514A (en) * 2016-05-11 2019-01-18 스톤 마운틴 테크놀로지스, 인크. Sorption heat pump and control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4115020B2 (en) * 1998-12-14 2008-07-09 三洋電機株式会社 Control method of absorption refrigerator
CN114526564B (en) * 2021-12-31 2023-09-29 湖南中创化工股份有限公司 Method and device for recycling latent heat of acetic acid removal tower of isopropyl acetate device based on heat pump system
CN115013998B (en) * 2022-06-27 2023-05-12 张丽红 Ammonia water absorption heat pump and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190006514A (en) * 2016-05-11 2019-01-18 스톤 마운틴 테크놀로지스, 인크. Sorption heat pump and control method
EP3455564A4 (en) * 2016-05-11 2020-03-25 Stone Mountain Technologies, Inc. Sorption heat pump and control method
KR102396178B1 (en) * 2016-05-11 2022-05-09 스톤 마운틴 테크놀로지스, 인크. Sorption heat pumps and control methods

Also Published As

Publication number Publication date
JPH0989405A (en) 1997-04-04

Similar Documents

Publication Publication Date Title
JP5881282B2 (en) Turbo refrigeration apparatus, control apparatus and control method thereof
US4665711A (en) Heat pump systems
JP2002310519A (en) Heat pump water heater
JP3003554B2 (en) Absorption heat pump
JP3448680B2 (en) Absorption air conditioner
JP3451538B2 (en) Absorption type cold heat generator
JPH09287850A (en) Absorption type cold/hot heat generating device
JPH11118283A (en) Controller for ammonia absorption freezer
JP3240343B2 (en) Steam-fired absorption chiller / heater and its control method
JP3451539B2 (en) Absorption type cold heat generator
JP2639969B2 (en) Absorption refrigerator
JP3383898B2 (en) Absorption type cold heat generator
JP3314225B2 (en) Absorption refrigerator
JP3175040B2 (en) Absorption type cold heat generator
JP3289235B2 (en) Absorption type cold heat generator
JP3139099B2 (en) Heat transfer device
JP3084650B2 (en) Absorption chiller / heater and its control method
JP2658457B2 (en) Heating and cooling machine
JP3407182B2 (en) Absorption type cold heat generator
JP3448681B2 (en) Absorption type cold heat generator
JPH11257782A (en) Absorption cold heat generator
JP2005326088A (en) Absorption refrigerating machine
JP3559919B2 (en) Absorption type cold and hot heat generator
JP3161321B2 (en) Absorption heat pump
JP2002310498A (en) Heat pump hot-water supplier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees