JP3407182B2 - Absorption type cold heat generator - Google Patents

Absorption type cold heat generator

Info

Publication number
JP3407182B2
JP3407182B2 JP05820798A JP5820798A JP3407182B2 JP 3407182 B2 JP3407182 B2 JP 3407182B2 JP 05820798 A JP05820798 A JP 05820798A JP 5820798 A JP5820798 A JP 5820798A JP 3407182 B2 JP3407182 B2 JP 3407182B2
Authority
JP
Japan
Prior art keywords
cooling
cooling water
refrigerant
temperature
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05820798A
Other languages
Japanese (ja)
Other versions
JPH11257785A (en
Inventor
哲也 山田
▲隆▼一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Yazaki Corp
Original Assignee
Osaka Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Yazaki Corp filed Critical Osaka Gas Co Ltd
Priority to JP05820798A priority Critical patent/JP3407182B2/en
Publication of JPH11257785A publication Critical patent/JPH11257785A/en
Application granted granted Critical
Publication of JP3407182B2 publication Critical patent/JP3407182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷温水機に係
り、特に相変化する二次冷媒を用いた吸収式冷熱発生装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller-heater, and more particularly to an absorption-type cold heat generator using a secondary refrigerant that changes phase.

【0002】[0002]

【従来の技術】近年、二次冷媒(以下、単に冷媒ともい
う)に相変化を行わせることにより、単位流量あたりの
熱搬送量を増加させるものが考案されている。図3はそ
のような構成の例を示すもので、冷熱を発生する吸収冷
温水機と、この吸収冷温水機に冷却水管40,41で接
続され冷却水を冷却するクーリングタワ(冷却塔)21
と、クーリングタワ21に内装され水槽内温度センサ
(CTSセンサ)22で検知された貯水の温度に応じて
駆動されるファンモータ23と、冷却水管41に介装さ
れ冷却水をクーリングタワ21から吸収器3及び凝縮器
2に循環させる冷却水ポンプ12と、蒸発器4に冷媒液
管50及び冷媒ガス管51で接続され空調対象空間に配
置されて空間の空気との熱交換を行う空調用の室内機5
2,53と、冷媒液管50に介装され冷媒液管50及び
冷媒ガス管51に充填された二次冷媒を蒸発器4と空調
用の室内機52,53との間で循環させる冷媒ポンプ5
7とを含んで構成されている。そして冷却回路は、クー
リングタワ21及び冷却水ポンプ12等で形成され、冷
媒回路は、室内機52,53及び冷媒ポンプ57等で形
成される。
2. Description of the Related Art In recent years, a secondary refrigerant (hereinafter, also simply referred to as "refrigerant") has been devised to increase the amount of heat transfer per unit flow rate by causing a phase change. FIG. 3 shows an example of such a configuration. An absorption chiller-heater that generates cold heat and a cooling tower (cooling tower) 21 that is connected to the absorption chiller-heater by cooling water pipes 40 and 41 to cool the cooling water.
And a fan motor 23 which is installed in the cooling tower 21 and is driven according to the temperature of the stored water detected by the temperature sensor (CTS sensor) 22 in the water tank, and a cooling water pipe 41 which absorbs the cooling water from the cooling tower 21. A cooling water pump 12 which circulates to the condenser 3 and the condenser 2, and an evaporator 4 which is connected to the evaporator 4 by a refrigerant liquid pipe 50 and a refrigerant gas pipe 51 and is arranged in an air-conditioned space to exchange heat with the air in the space. Indoor unit 5
Refrigerant pump that circulates the secondary refrigerants 2, 53, and the secondary refrigerant that is interposed in the refrigerant liquid pipe 50 and filled in the refrigerant liquid pipe 50 and the refrigerant gas pipe 51 between the evaporator 4 and the indoor units 52, 53 for air conditioning. 5
And 7 are included. The cooling circuit is formed by the cooling tower 21 and the cooling water pump 12 and the like, and the refrigerant circuit is formed by the indoor units 52 and 53, the refrigerant pump 57 and the like.

【0003】冷媒液管50及び冷媒ガス管51は、蒸発
器4の蒸発コイルの下端及び上端にそれぞれ接続されて
いる。冷媒液管50及び冷媒ガス管51の他端は、蒸発
コイルよりも下方に配置された室内機52,53の数だ
け分岐しており、冷媒液管50の分岐端は、室内機5
2,53にそれぞれ内装された熱交換器の下側入口に膨
張弁54,55を介して接続され、冷媒ガス管51の分
岐端は、熱交換器の上側出口にそれぞれ接続されてい
る。冷媒液管50の蒸発コイルとの接続部近傍には、二
次冷媒の温度を検出して電気信号としてコントロールボ
ックス(制御手段)59に出力する冷媒液温度センサ
(CRIセンサ)17、冷却水ポンプ12の出口近傍に
冷却水温度センサ(CT1センサ)19及び蒸発器4の
上部に蒸発器温度センサ(LTセンサ)16等が装着さ
れ、また冷媒ガス管51の蒸発コイル上端近傍に冷媒ガ
ス温度センサ(CROセンサ)18と、冷媒ガス温度セ
ンサ18が検知した温度に応じてコントロールボックス
59により制御される冷媒電磁弁20とが装着されてい
る。
The refrigerant liquid pipe 50 and the refrigerant gas pipe 51 are connected to the lower end and the upper end of the evaporation coil of the evaporator 4, respectively. The other ends of the refrigerant liquid pipe 50 and the refrigerant gas pipe 51 are branched by the number of the indoor units 52 and 53 arranged below the evaporation coil, and the branched end of the refrigerant liquid pipe 50 is the indoor unit 5
2 and 53 are connected to the lower inlets of the heat exchangers respectively installed therein via expansion valves 54 and 55, and the branch ends of the refrigerant gas pipes 51 are respectively connected to the upper outlets of the heat exchangers. A refrigerant liquid temperature sensor (CRI sensor) 17 for detecting the temperature of the secondary refrigerant and outputting it as an electric signal to a control box (control means) 59 near the connection portion of the refrigerant liquid pipe 50 with the evaporation coil, a cooling water pump. A cooling water temperature sensor (CT1 sensor) 19 near the outlet of 12, an evaporator temperature sensor (LT sensor) 16 and the like above the evaporator 4, and a refrigerant gas temperature sensor near the upper end of the evaporation coil of the refrigerant gas pipe 51. The (CRO sensor) 18 and the refrigerant solenoid valve 20 controlled by the control box 59 according to the temperature detected by the refrigerant gas temperature sensor 18 are mounted.

【0004】室内機52,53に対して、吸収冷温水機
は、通常、冷却回路を備えて温水焚マルチ室外機と呼ば
れ、熱媒体の熱で希溶液を加熱し濃溶液と冷媒蒸気とに
分離する再生器1と、分離された冷媒蒸気を冷却して凝
縮液化させ液冷媒を生成する凝縮器2と、凝縮器2で生
成された液冷媒を内装した蒸発コイル上に滴下蒸発させ
蒸発コイル中の二次冷媒を冷却する蒸発器4と、蒸発器
4で蒸発した冷媒蒸気を濃溶液に吸収させ希溶液を生成
する吸収器3と、希溶液を加圧し熱交換器5の被加熱流
体側を経て再生器1に送りこむ溶液循環ポンプ7と、凝
縮器2の底部と蒸発器4とを連通する管路6と、熱交換
器5の加熱流体出側を吸収器3の上部に接続する濃溶液
管8Aと、濃溶液管8Aと吸収器3の下部とを接続する
溶液バイパス弁8と、蒸発器4の冷媒分配器6A内の冷
媒の温度(蒸発器温度)を検知する蒸発器温度センサ1
6と、溶液循環ポンプ7の吐出側を冷媒分配器6Aへ接
続する管路上に設けられる凍結防止弁9とを含んで構成
されている。
In contrast to the indoor units 52 and 53, the absorption chiller-heater is usually called a hot water-fired multi-unit outdoor unit having a cooling circuit, and heats a dilute solution with heat of a heat medium to generate a concentrated solution and a refrigerant vapor. Regenerator 1 that separates into two parts, a condenser 2 that cools the separated refrigerant vapor and condenses and liquefies it to produce a liquid refrigerant, and the liquid refrigerant created in condenser 2 drops and evaporates on an evaporation coil equipped with it. An evaporator 4 that cools the secondary refrigerant in the coil, an absorber 3 that absorbs the refrigerant vapor evaporated in the evaporator 4 into a concentrated solution to produce a dilute solution, and the dilute solution is pressurized to heat the heat exchanger 5. The solution circulation pump 7 that feeds into the regenerator 1 via the fluid side, the conduit 6 that connects the bottom of the condenser 2 and the evaporator 4, and the heating fluid outlet side of the heat exchanger 5 are connected to the upper portion of the absorber 3. Concentrated solution pipe 8A, and a solution bypass valve 8 connecting the concentrated solution pipe 8A and the lower part of the absorber 3 , Evaporator temperature sensor 1 for detecting the temperature (evaporator temperature) of the refrigerant in the refrigerant distributor 6A evaporator 4
6 and an antifreezing valve 9 provided on a pipe line connecting the discharge side of the solution circulation pump 7 to the refrigerant distributor 6A.

【0005】また、吸収器3及び凝縮器2にはそれぞれ
冷却水コイルが内装され、吸収器3の冷却水コイルの出
口は凝縮器2の冷却水コイルの入口に接続されていて、
吸収器3の冷却水コイルの入口は冷却水管41に、凝縮
器2の冷却水コイルの出口は冷却水管40に、それぞれ
接続されている。そして蒸発器4の蒸発コイルの入り側
に冷媒液管50が、冷媒ガス管51は蒸発器4の蒸発コ
イルの出側に、それぞれ接続され、蒸発器4の蒸発コイ
ル出口近傍には二次冷媒の温度を検知する冷水出口温度
センサ17が装着されている。
Further, a cooling water coil is installed in each of the absorber 3 and the condenser 2, and an outlet of the cooling water coil of the absorber 3 is connected to an inlet of the cooling water coil of the condenser 2.
The inlet of the cooling water coil of the absorber 3 is connected to the cooling water pipe 41, and the outlet of the cooling water coil of the condenser 2 is connected to the cooling water pipe 40. The refrigerant liquid pipe 50 is connected to the entrance side of the evaporation coil of the evaporator 4, the refrigerant gas pipe 51 is connected to the exit side of the evaporation coil of the evaporator 4, and the secondary refrigerant is provided near the exit of the evaporation coil of the evaporator 4. A cold water outlet temperature sensor 17 for detecting the temperature of the is attached.

【0006】冷媒液管50は、途中に室内機52,53
よりも低い位置に配置された部分があり、そこに冷媒液
を加圧して前記蒸発コイルに送りこむ冷媒ポンプ57が
装着されている。暖房運転時、冷媒ポンプ57の吐出側
に設けられた逆止弁58の出側と冷媒ポンプ57の吸い
込み側とは、冷暖切換弁56を介して接続されている。
そして相変化する二次冷媒として、例えばHFC134
aが冷媒液管50に充填されている。
The refrigerant liquid pipe 50 is connected to the indoor units 52 and 53 on the way.
There is a portion arranged at a lower position than the above, and a refrigerant pump 57 that pressurizes the refrigerant liquid and sends it to the evaporation coil is attached thereto. During the heating operation, the outlet side of the check valve 58 provided on the discharge side of the refrigerant pump 57 and the suction side of the refrigerant pump 57 are connected via the cooling / heating switching valve 56.
Then, as a secondary refrigerant that changes phase, for example, HFC134
The refrigerant liquid pipe 50 is filled with a.

【0007】図3に示す空調装置の冷房時の動作は次の
通りである。冷房時には、冷暖切換弁56は開かれてい
る。冷媒蒸気(HFC134a)は、蒸発器4の蒸発コ
イルで冷却凝縮されて冷媒液となり、重力により、冷媒
液管50を下方に流れ、膨張弁54,55を経て各室内
機52,53の熱交換器に流入する。熱交換器に流入し
た冷媒液は、空調対象空間の空気の熱を奪って蒸発し、
冷媒ガスとなって冷媒ガス管51を経て上昇し蒸発器4
の蒸発コイルに流入する。室外機は冷房モードで運転さ
れているから、蒸発器4の蒸発コイルは、その表面に滴
下される液冷媒の蒸発により冷却され、蒸発コイルに流
入してきた冷媒ガスを凝縮液化する。この凝縮液化によ
り、蒸発コイル内部の圧力が低下し、室内機52,53
の熱交換器で蒸発した冷媒ガスは蒸発器4に吸引され
る。蒸発コイル内部で凝縮液化した冷媒液は重力で室内
機52,53に流入するから、冷房時の冷媒は、自然循
環し、冷媒ポンプ57による冷媒の駆動を行う必要がな
い。
The operation of the air conditioner shown in FIG. 3 during cooling is as follows. The cooling / heating switching valve 56 is opened during cooling. The refrigerant vapor (HFC134a) is cooled and condensed in the evaporation coil of the evaporator 4 to become a refrigerant liquid, which flows downward in the refrigerant liquid pipe 50 due to gravity, and through the expansion valves 54 and 55, heat exchange between the indoor units 52 and 53. Flows into the vessel. The refrigerant liquid flowing into the heat exchanger evaporates by taking the heat of the air in the air-conditioned space,
It becomes the refrigerant gas and goes up through the refrigerant gas pipe 51 to rise to the evaporator 4
Flowing into the evaporation coil of. Since the outdoor unit is operated in the cooling mode, the evaporation coil of the evaporator 4 is cooled by the evaporation of the liquid refrigerant dropped on its surface, and the refrigerant gas flowing into the evaporation coil is condensed and liquefied. Due to this condensation and liquefaction, the pressure inside the evaporation coil decreases, and the indoor units 52, 53
The refrigerant gas evaporated in the heat exchanger is sucked into the evaporator 4. Since the refrigerant liquid condensed and liquefied inside the evaporation coil flows into the indoor units 52 and 53 by gravity, the refrigerant during cooling naturally circulates, and it is not necessary to drive the refrigerant by the refrigerant pump 57.

【0008】冷房運転が開始されると、前記のように、
蒸発コイル内部の圧力が低下し、冷媒ガス管51内の飽
和冷媒ガスが圧力差により蒸発コイル内に流入する。蒸
発コイル内で凝縮して生成された冷媒液は、冷媒液管5
0内を自重で流下し、冷媒液のヘッド(液柱)が上昇し
てくる。冷媒の自然循環が成立するためには、(冷媒の
液ヘッド−冷媒ガスヘッド)が冷媒循環経路の全圧力損
失以上であればよい。つまり、この関係を満足する液ヘ
ッドが形成されるまでは冷媒の自然循環は開始されな
い。このことは、冷房運転開始時点で蒸発器4に供給さ
れる熱負荷が少ないことを意味する。
When the cooling operation is started, as described above,
The pressure inside the evaporation coil decreases, and the saturated refrigerant gas in the refrigerant gas pipe 51 flows into the evaporation coil due to the pressure difference. The refrigerant liquid condensed and generated in the evaporation coil is the refrigerant liquid pipe 5
The head (liquid column) of the refrigerant liquid rises as it flows down in 0 by its own weight. In order for the natural circulation of the refrigerant to be established, it is sufficient that (refrigerant liquid head-refrigerant gas head) is equal to or greater than the total pressure loss of the refrigerant circulation path. That is, the natural circulation of the refrigerant is not started until the liquid head satisfying this relationship is formed. This means that the heat load supplied to the evaporator 4 at the start of the cooling operation is small.

【0009】そして暖房時には、冷暖切換弁56は閉じ
られている。冷媒液は、蒸発器4の蒸発コイルで加熱さ
れて冷媒ガスとなり、冷媒ガス管51を下方に流れ、各
室内機52,53の熱交換器に流入する。熱交換器に流
入した冷媒ガスは、空調対象空間の空気に熱を奪われて
凝縮液化し、冷媒液となって冷媒液管50を下方に流れ
て冷媒ポンプ57入り側に流入する。冷媒液は冷媒ポン
プ57で加圧され、蒸発器4の蒸発コイルに流入して上
記のサイクルを繰り返す。このとき、室外機は暖房モー
ドで運転され、蒸発器4には再生器1で分離された高温
の濃溶液が導かれ、蒸発コイルはこの熱により加熱され
る。
During heating, the cooling / heating switching valve 56 is closed. The refrigerant liquid is heated by the evaporation coil of the evaporator 4 to become a refrigerant gas, flows through the refrigerant gas pipe 51 downward, and flows into the heat exchanger of each indoor unit 52, 53. The refrigerant gas flowing into the heat exchanger is deprived of heat by the air in the air-conditioned space to be condensed and liquefied, and becomes a refrigerant liquid, which flows downward through the refrigerant liquid pipe 50 and flows into the refrigerant pump 57 inlet side. The refrigerant liquid is pressurized by the refrigerant pump 57, flows into the evaporation coil of the evaporator 4, and repeats the above cycle. At this time, the outdoor unit is operated in the heating mode, the high temperature concentrated solution separated by the regenerator 1 is guided to the evaporator 4, and the evaporation coil is heated by this heat.

【0010】このような装置において、冬期冷房等に対
して一般には、冷房運転立上り(冷房運転し始め)可能
な冷却水入口温度が設定されており、この設定温度以
下、例えば8℃以下では保護機能が作動し、冷房運転が
できないようになっている。そして温水焚自然マルチシ
ステムでは、冷却水入口温度が低温の例えば8℃以下の
場合に、冷房運転を開始すると、溶液温度や冷却水温度
が上昇するまでに時間を要し、冷房立上りが遅くなって
しまう。特に熱媒体温度を常温より昇温した場合に顕著
であった。
In such a device, a cooling water inlet temperature at which the cooling operation can be started (starting the cooling operation) is generally set for winter cooling or the like, and protection is performed at a temperature lower than this set temperature, for example, 8 ° C. or lower. The function is activated and air conditioning cannot be performed. In the warm water-fired natural multi-system, when the cooling water inlet temperature is low, for example, 8 ° C. or less, when the cooling operation is started, it takes time until the solution temperature and the cooling water temperature rise, and the cooling start-up becomes slow. Will end up. This was particularly noticeable when the heat medium temperature was raised above room temperature.

【0011】[0011]

【発明が解決しようとする課題】従来の吸収式冷熱発生
装置にあっては、冷房運転立上り可能な冷却水入口温度
が例えば8℃のように設定してあり、この設定温度以下
で冷房運転を開始すると、溶液温度及び冷却水温度が上
昇するまでに時間を要し、冷房立上りが遅くなる。特に
熱媒体温度を常温より昇温した場合に顕著になる問題点
がある。
In the conventional absorption-type cold heat generator, the cooling water inlet temperature at which the cooling operation can be started is set to, for example, 8 ° C., and the cooling operation is performed below this set temperature. Once started, it takes time for the temperature of the solution and the temperature of the cooling water to rise, and the cooling rise is delayed. In particular, there is a problem that becomes remarkable when the temperature of the heating medium is raised from room temperature.

【0012】本発明の課題は、低温冷却水時の冷房運転
立上りをスムーズに行うことのできる吸収式冷熱発生装
置を提供することにある。
An object of the present invention is to provide an absorption type cold heat generating device which can smoothly start up the cooling operation at the time of low temperature cooling water.

【0013】[0013]

【課題を解決するための手段】前記の課題を達成するた
め、本発明に係る吸収式冷熱発生装置は、吸収器より送
給した希溶液を再生器で加熱して冷媒蒸気と濃溶液とに
分離し、濃溶液を冷暖切換弁及び/又は溶液バイパス弁
を経て吸収器へ循環するとともに冷媒蒸気を凝縮器及び
蒸発器へ循環する吸収式冷温水機と、吸収器を経て凝縮
器へ冷却水を冷却水ポンプにより循環する冷却回路と、
少なくとも冷暖切換弁を制御する制御手段と、蒸発器と
少なくとも一つの室内機との間に相変化する冷媒を循環
する冷媒回路とよりなる吸収式冷熱発生装置において、
制御手段は、冷房運転開始時の冷却水入口温度が低温の
際に低温に応じて運転時間を長く制御し強制暖房するも
のである構成とする。
In order to achieve the above-mentioned object, the absorption type cold heat generating device according to the present invention heats the dilute solution fed from the absorber by the regenerator to form a refrigerant vapor and a concentrated solution. An absorption chiller / heater that separates and circulates the concentrated solution through the cooling / heating switching valve and / or the solution bypass valve to the absorber and the refrigerant vapor to the condenser and evaporator, and cooling water to the condenser via the absorber A cooling circuit that circulates with a cooling water pump,
In an absorption-type cold heat generating device, which comprises at least a control means for controlling the cooling / heating switching valve, and a refrigerant circuit for circulating a phase change refrigerant between the evaporator and at least one indoor unit,
When the cooling water inlet temperature at the start of the cooling operation is low, the control means controls the operation time for a long time according to the low temperature to perform forced heating.

【0014】そして制御手段は、冷却水の入口温度が8
℃〜15℃の際に、冷暖切換弁を10分開するとともに
溶液バイパス弁を開し、冷却水ポンプを5分後に遅延運
転して10分の強制暖房を行い、かつ冷却水の入口温度
が5℃〜8℃の際に、冷暖切換弁を15分開するととも
に溶液バイパス弁を開し、冷却水ポンプを10分後に遅
延運転して15分の強制暖房を行い、冷却水入口温度を
15℃以上に昇温するものである構成でもよい。
The control means is arranged so that the inlet temperature of the cooling water is 8
When the temperature is between 15 ° C and 15 ° C, the cooling / heating switching valve is opened for 10 minutes, the solution bypass valve is opened, the cooling water pump is delayed for 5 minutes for forced heating for 10 minutes, and the cooling water inlet temperature is 5 minutes. When the temperature is between 8 ° C and 8 ° C, the cooling / heating switching valve is opened for 15 minutes, the solution bypass valve is opened, the cooling water pump is delayed for 10 minutes, and forced heating is performed for 15 minutes. The configuration may be such that the temperature is raised to.

【0015】本発明によれば、低温冷却水時の冷房立上
りが早くなり、冷却水入口温度が5℃以上であれば、冬
期でも冷房立上げられる。
According to the present invention, cooling start-up is accelerated during low-temperature cooling water, and if the cooling water inlet temperature is 5 ° C. or higher, cooling can be started even in winter.

【0016】[0016]

【発明の実施の形態】本発明の一実施の形態を図1、図
2及び図3を参照しながら説明する。図1、図2及び図
3に示すように、吸収器3より希溶液を溶液循環ポンプ
7で送給し、希溶液を再生器1で熱媒体により加熱して
冷媒蒸気と濃溶液とに分離し、濃溶液を溶液バイパス弁
(SV9)8及び/又は冷暖切換弁(CV)10を経て
吸収器3へ循環し、冷媒蒸気を凝縮器2及び蒸発器3へ
循環する吸収式冷温水機と、吸収器3を経て凝縮器2へ
冷却水を冷却水ポンプ(P2)12により循環するクー
リングタワー21を含む冷却回路と、少なくとも冷暖切
換弁10を制御する制御手段(コントロールボックス)
59と、蒸発器4と少なくとも一つの室内機52,53
との間に相変化する冷媒を循環する冷媒回路とよりなる
吸収式冷熱発生装置であって、制御手段59は、冷房運
転開始時の冷却水入口温度が冷房運転開始可能な設定温
度近い低温の際に、低温に応じて運転時間を長く制御し
強制暖房するものである構成とする。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIGS. 1, 2 and 3. As shown in FIGS. 1, 2 and 3, the dilute solution is fed from the absorber 3 by the solution circulation pump 7, and the dilute solution is heated by the heat medium in the regenerator 1 and separated into the refrigerant vapor and the concentrated solution. Then, the concentrated solution is circulated to the absorber 3 through the solution bypass valve (SV9) 8 and / or the cooling / heating switching valve (CV) 10, and the refrigerant vapor is circulated to the condenser 2 and the evaporator 3 and , A cooling circuit including a cooling tower 21 in which cooling water is circulated to a condenser 2 via an absorber 3 by a cooling water pump (P2) 12, and a control means (control box) for controlling at least the cooling / heating switching valve 10.
59, the evaporator 4 and at least one indoor unit 52, 53
And a refrigerant circuit that circulates a phase-change refrigerant between the control unit 59 and the control unit 59. The control unit 59 controls the cooling water inlet temperature at the start of the cooling operation to be a low temperature close to the set temperature at which the cooling operation can be started. At this time, the operating time is controlled to be long according to the low temperature to perform forced heating.

【0017】そして制御手段59は、冷却水の入口温度
が8℃〜15℃の際に、冷暖切換弁10を10分開する
とともに溶液バイパス弁8を開し、冷却水ポンプ12を
5分後に遅延運転して10分の強制暖房を行い、かつ冷
却水の入口温度が5℃〜8℃の際に、冷暖切換弁10を
15分開するとともに溶液バイパス弁8を開し、冷却水
ポンプ12を10分後に遅延運転して15分の強制暖房
を行い、冷却水入口温度を15℃以上に昇温するもので
ある。
When the inlet temperature of the cooling water is 8 ° C to 15 ° C, the control means 59 opens the cooling / heating switching valve 10 for 10 minutes and the solution bypass valve 8 and delays the cooling water pump 12 after 5 minutes. When the cooling water heating valve 10 is operated to perform forced heating for 10 minutes and the inlet temperature of the cooling water is 5 ° C. to 8 ° C., the cooling / heating switching valve 10 is opened for 15 minutes, the solution bypass valve 8 is opened, and the cooling water pump 12 is turned on. After a minute, the operation is delayed to perform forced heating for 15 minutes to raise the cooling water inlet temperature to 15 ° C. or higher.

【0018】すなわち冷房運転開始時に冷却水入口温度
をCTIセンサー19で検知してコントロールボックス
59に入力し、コントロールボックス59の出力により
冷却水ポンプ12、冷暖切換弁10及び溶液バイパス弁
8を以下のように制御する構成を特徴としている。
That is, when the cooling operation is started, the cooling water inlet temperature is detected by the CTI sensor 19 and input to the control box 59, and the control box 59 outputs the cooling water pump 12, the cooling / heating switching valve 10 and the solution bypass valve 8 as follows. It is characterized by such a control.

【0019】本一実施の形態の作用を説明する。冷却水
入口温度が15℃以上の場合は通常どおり冷房運転は立
上る。冷却水入口温度が8〜15℃の場合は、冷暖切換
弁10は所定時間の10分開し、濃溶液を吸収器コイル
の下部に流入させて冷却させないようにして10分間の
強制暖房運転(又は予熱運転)を行う。このとき、吸収
器コイル内に冷却水の流入を所定時間遅らせるように冷
却水ポンプ12は5分後に遅延運転され、溶液バイパス
弁8は開(ON)される。10分の強制暖房運転の経過
後、冷却水入口温度が15℃以上の場合は冷暖切換弁1
0は閉し、冷却水ポンプ12は運転(ON)を継続す
る。また溶液バイパス弁8は、冷却水入口温度が20℃
以上で閉(OFF)し、冷却水入口温度が15℃以上で
開(ON)する。
The operation of the present embodiment will be described. When the cooling water inlet temperature is 15 ° C or higher, the cooling operation starts as usual. When the cooling water inlet temperature is 8 to 15 ° C., the cooling / heating switching valve 10 is opened for a predetermined time of 10 minutes to prevent the concentrated solution from flowing into the lower part of the absorber coil so as not to be cooled and forced heating operation for 10 minutes (or Perform preheating operation). At this time, the cooling water pump 12 is delayed after 5 minutes so that the flow of the cooling water into the absorber coil is delayed for a predetermined time, and the solution bypass valve 8 is opened (ON). After the forced heating operation for 10 minutes, if the cooling water inlet temperature is 15 ° C or higher, the cooling / heating switching valve 1
0 is closed, and the cooling water pump 12 continues to operate (ON). The solution bypass valve 8 has a cooling water inlet temperature of 20 ° C.
With the above, it is closed (OFF) and opened (ON) when the cooling water inlet temperature is 15 ° C or higher.

【0020】同様に、冷却水入口温度が5〜8℃では冷
暖切換弁10は15分開し、冷却水ポンプ12は10分
後に遅延運転される。冷却水入口温度が5℃以下の場合
は、冷房運転を停止のままとし、低冷却水異常警報を出
力する。通常、パックタイプ(冷却塔一体)で冬期及び
中間期に冷房運転を行う場合、使用外気温度を考慮して
冷却塔水槽内に凍結防止ヒータを装備して冷却水温度を
制御するのが一般的であり、冬期であっても凍結防止ヒ
ータにより冷却水温度は8〜10℃に保持される。温水
焚マルチシステムにおいても、冬期冷房の場合は凍結防
止ヒータを用いるが、冷房運転開始時に冷却水入口温度
が5℃以下とすると、室外機制御異常と判断し、室外機
保護のために冷房運転を行わない。
Similarly, when the cooling water inlet temperature is 5 to 8 ° C., the cooling / heating switching valve 10 is opened for 15 minutes, and the cooling water pump 12 is delayed after 10 minutes. When the cooling water inlet temperature is 5 ° C. or lower, the cooling operation is stopped and the low cooling water abnormality alarm is output. Normally, when performing a cooling operation in the winter type and in the interim period for a pack type (integrated cooling tower), it is common to control the cooling water temperature by installing an antifreezing heater in the cooling tower water tank in consideration of the outside air temperature. The temperature of the cooling water is kept at 8 to 10 ° C. by the antifreezing heater even in the winter. Even in the hot water multi-system, the anti-freezing heater is used in the case of winter cooling, but if the cooling water inlet temperature is 5 ° C or less at the start of cooling operation, it is judged that the outdoor unit control is abnormal and the cooling operation is performed to protect the outdoor unit. Do not do.

【0021】本発明によれば、冷房立上りを早くでき、
冷却水入口温度が5℃以上であれば、冬期でも冷房運転
が可能になる。
According to the present invention, cooling can be started up quickly,
If the cooling water inlet temperature is 5 ° C or higher, cooling operation can be performed even in winter.

【0022】[0022]

【発明の効果】本発明によれば、冷房運転開始時に冷却
水入口温度に応じて強制暖房運転する制御手段を備えた
ため、冷房立上りを早くでき、冷却水入口温度が5℃以
上であれば、冬期でも冷房運転が可能になる効果があ
る。
According to the present invention, since the control means for performing the forced heating operation according to the cooling water inlet temperature at the start of the cooling operation is provided, the cooling rising can be accelerated and the cooling water inlet temperature is 5 ° C. or more. This has the effect of enabling air-conditioning operation even in winter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態の制御手段の動作を示す
図である。
FIG. 1 is a diagram showing an operation of a control means according to an embodiment of the present invention.

【図2】図1の制御ステップを示す図である。FIG. 2 is a diagram showing control steps in FIG.

【図3】従来の技術を示す系統図である。FIG. 3 is a system diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 再生器 2 分離器 3 低温再生器 2 凝縮器 3 吸収器 4 蒸発器 5 熱交換器 7 溶液循環ポンプ 8 溶液バイパス弁 10 冷暖切換弁 12 冷却水ポンプ 21 クーリングタワ 52,53 室内機 59 コントロールボックス 1 regenerator 2 separator 3 low temperature regenerator 2 condenser 3 absorber 4 evaporator 5 heat exchanger 7 Solution circulation pump 8 Solution bypass valve 10 Cooling / heating switching valve 12 Cooling water pump 21 Cooling Tawa 52,53 Indoor unit 59 control box

フロントページの続き (56)参考文献 特開 平9−89410(JP,A) 特開 平6−257882(JP,A) 特開 平5−332640(JP,A) 特開 平8−247571(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 F25B 15/00 Continuation of front page (56) Reference JP-A-9-89410 (JP, A) JP-A-6-257882 (JP, A) JP-A-5-332640 (JP, A) JP-A-8-247571 (JP , A) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 15/00 306 F25B 15/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 吸収器より送給した希溶液を再生器で加
熱して冷媒蒸気と濃溶液とに分離し、該濃溶液を冷暖切
換弁及び/又は溶液バイパス弁を経て前記吸収器へ循環
するとともに前記冷媒蒸気を凝縮器及び蒸発器へ循環す
る吸収式冷温水機と、前記吸収器を経て前記凝縮器へ冷
却水を冷却水ポンプにより循環する冷却回路と、少なく
とも前記冷暖切換弁を制御する制御手段と、前記蒸発器
と少なくとも一つの室内機との間に相変化する冷媒を循
環する冷媒回路とよりなる吸収式冷熱発生装置におい
て、前記制御手段は、冷房運転開始時の冷却水入口温度
が低温の際に該低温に応じて運転時間を長く制御し強制
暖房するものであることを特徴とする吸収式冷熱発生装
置。
1. A dilute solution fed from an absorber is heated by a regenerator to separate into a refrigerant vapor and a concentrated solution, and the concentrated solution is circulated to the absorber through a cooling / heating switching valve and / or a solution bypass valve. An absorption type chiller / heater that circulates the refrigerant vapor to a condenser and an evaporator, a cooling circuit that circulates cooling water to the condenser through the absorber by a cooling water pump, and controls at least the cooling / heating switching valve. In the absorption type cold heat generating device comprising a control means for controlling and a refrigerant circuit for circulating a phase change refrigerant between the evaporator and at least one indoor unit, the control means is a cooling water inlet at the start of cooling operation. An absorption-type cold heat generator characterized in that, when the temperature is low, the operating time is controlled to be long according to the low temperature and forced heating is performed.
【請求項2】 制御手段は、冷却水の入口温度が8℃〜
15℃の際に、冷暖切換弁を10分開するとともに溶液
バイパス弁を開し、冷却水ポンプを5分後に遅延運転し
て10分の強制暖房を行い、かつ前記冷却水の入口温度
が5℃〜8℃の際に、前記冷暖切換弁を15分開すると
ともに前記溶液バイパス弁を開し、冷却水ポンプを10
分後に遅延運転して15分の強制暖房を行い、冷却水入
口温度を15℃以上に昇温するものであることを特徴と
する請求項1記載の吸収式冷熱発生装置。
2. The control means has an inlet temperature of cooling water of 8 ° C.
At 15 ° C, the cooling / heating switching valve is opened for 10 minutes, the solution bypass valve is opened, the cooling water pump is delayed for 5 minutes to perform forced heating for 10 minutes, and the inlet temperature of the cooling water is 5 ° C. When the temperature is 8 ° C, the cooling / heating switching valve is opened for 15 minutes, the solution bypass valve is opened, and the cooling water pump is turned on.
The absorption type cold heat generator according to claim 1, wherein the cooling water inlet temperature is raised to 15 ° C or higher by performing a delayed heating after 15 minutes to perform forced heating for 15 minutes.
JP05820798A 1998-03-10 1998-03-10 Absorption type cold heat generator Expired - Fee Related JP3407182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05820798A JP3407182B2 (en) 1998-03-10 1998-03-10 Absorption type cold heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05820798A JP3407182B2 (en) 1998-03-10 1998-03-10 Absorption type cold heat generator

Publications (2)

Publication Number Publication Date
JPH11257785A JPH11257785A (en) 1999-09-24
JP3407182B2 true JP3407182B2 (en) 2003-05-19

Family

ID=13077609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05820798A Expired - Fee Related JP3407182B2 (en) 1998-03-10 1998-03-10 Absorption type cold heat generator

Country Status (1)

Country Link
JP (1) JP3407182B2 (en)

Also Published As

Publication number Publication date
JPH11257785A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
KR20120010034A (en) Heat pump type speed heating apparatus
JP3882056B2 (en) Refrigeration air conditioner
JP4317793B2 (en) Cooling system
JPS6155018B2 (en)
JP2011122801A (en) Air heat source heat pump system and method of operating the same
JP3407182B2 (en) Absorption type cold heat generator
JP3451539B2 (en) Absorption type cold heat generator
JP3448680B2 (en) Absorption air conditioner
JP3451538B2 (en) Absorption type cold heat generator
JP2001099474A (en) Air conditioner
JP3289373B2 (en) Heat pump water heater
JP3393398B2 (en) Absorption type cold heat generator
JP3383898B2 (en) Absorption type cold heat generator
JP3175040B2 (en) Absorption type cold heat generator
JP3448681B2 (en) Absorption type cold heat generator
JP3871206B2 (en) Refrigeration system combining absorption and compression
JP3448682B2 (en) Absorption type cold heat generator
JP3289235B2 (en) Absorption type cold heat generator
JP3594453B2 (en) Operating method of air conditioner
JP2984459B2 (en) Absorption chiller / heater
JP2000283598A (en) Method for controlling engine heat pump
JP3139099B2 (en) Heat transfer device
JP3289236B2 (en) Absorption type cold heat generator
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPS6028936Y2 (en) Separate air conditioner/heater

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees