JP3175040B2 - Absorption type cold heat generator - Google Patents

Absorption type cold heat generator

Info

Publication number
JP3175040B2
JP3175040B2 JP17835795A JP17835795A JP3175040B2 JP 3175040 B2 JP3175040 B2 JP 3175040B2 JP 17835795 A JP17835795 A JP 17835795A JP 17835795 A JP17835795 A JP 17835795A JP 3175040 B2 JP3175040 B2 JP 3175040B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
cooling
evaporator
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17835795A
Other languages
Japanese (ja)
Other versions
JPH0926223A (en
Inventor
哲也 山田
剛 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Yazaki Corp
Original Assignee
Osaka Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Yazaki Corp filed Critical Osaka Gas Co Ltd
Priority to JP17835795A priority Critical patent/JP3175040B2/en
Publication of JPH0926223A publication Critical patent/JPH0926223A/en
Application granted granted Critical
Publication of JP3175040B2 publication Critical patent/JP3175040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/28Disposition of valves, e.g. of on-off valves or flow control valves specially adapted for sorption cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷熱発生装置に
係り、特に二次冷媒として相変化を利用する流体を用い
る吸収式冷熱発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type cold heat generator, and more particularly, to an absorption type cold heat generator using a fluid utilizing a phase change as a secondary refrigerant.

【0002】[0002]

【従来の技術】従来、吸収式冷熱発生装置として図4に
示す構成の吸収冷温水機を用いた空調装置が知られてい
る。図示の装置は、冷熱を発生する吸収冷温水機100
と、この吸収冷温水機100に冷却水管40,41で接
続され冷却水を冷却するクーリングタワー42と、吸収
冷温水機100に冷温水管43,44で接続され空調対
象空間に配置されて該空間の空気との熱交換を行う図示
されていない空調用室内機と、前記冷却水管41に介装
され冷却水をクーリングタワー42から吸収冷温水機1
00に循環させる冷却水循環ポンプ14と、前記冷温水
管43に介装され該冷温水管43,44に充填された二
次冷媒を吸収冷温水機100と前記空調用室内機の間で
循環させる冷温水循環ポンプ15と、を含んで構成され
ている。
2. Description of the Related Art Conventionally, an air conditioner using an absorption chiller / heater having the structure shown in FIG. 4 has been known as an absorption chiller. The illustrated device is an absorption chiller / heater 100 that generates cold heat.
And a cooling tower 42 connected to the absorption chiller / heater 100 by cooling water pipes 40 and 41 to cool the cooling water, and a cooling tower 42 connected to the absorption chiller / heater 100 by cooling and hot water pipes 43 and 44 and arranged in the space to be air-conditioned. An air-conditioning indoor unit (not shown) for exchanging heat with air, and an absorption chiller / heater 1 for cooling water interposed in the cooling water pipe 41 from a cooling tower 42.
A cooling water circulation pump 14 for circulating the cooling water and a cooling water circulation pump 14 for circulating the secondary refrigerant interposed in the cooling and heating water pipe 43 between the absorption cooling and heating water heater 100 and the air conditioning indoor unit. And a pump 15.

【0003】前記空調用室内機に対して、クーリングタ
ワー42と併せて通常、室外機と呼ばれる吸収冷温水機
100は、燃料を燃焼させその熱で希溶液を加熱する高
温再生器1と、この高温再生器1で加熱された希溶液か
ら冷媒蒸気と中間濃溶液を分離する分離器2と、分離さ
れた冷媒蒸気を熱源として前記中間濃溶液を加熱してさ
らに冷媒蒸気を発生させる低温再生器3と、該低温再生
器3を通過した冷媒蒸気及び該低温再生器3で発生した
冷媒蒸気を冷却して凝縮液化させ液冷媒を生成する凝縮
器4と、該凝縮器4で生成された液冷媒を内装した冷媒
分配器6Bから同じく内装した蒸発コイル上に滴下蒸発
させ該蒸発コイル中の二次冷媒を冷却する蒸発器6と、
該蒸発器6で蒸発した冷媒蒸気を濃溶液に吸収させ希溶
液を生成する吸収器5と、該希溶液を加圧し低温溶液熱
交換器8、高温溶液熱交換器7の被加熱流体側を経て前
記高温再生器1に送りこむ溶液循環ポンプ9と、前記分
離器2の底部と前記蒸発器6の底部を冷暖切換弁10を
介して連通する管路10Aと、前記低温溶液熱交換器8
の加熱流体出側を前記吸収器5の上部に接続する濃溶液
管8Aと、該濃溶液管8Aと前記吸収器5の下部を溶液
バイパス弁13を介して接続する管路13Aと、該濃溶
液管8Aと前記蒸発器5に内装された冷媒分配器を凍結
防止弁12を介して連通する管路12Aと、前記冷媒分
配器に装着され該冷媒分配器内の冷媒の温度を検知する
蒸発器温度センサ17と、前記凝縮器4から前記冷媒分
配器6Bに液冷媒を導く水冷媒管11Bと、該水冷媒管
11Bに並列に接続され水冷媒比例弁11を介装する管
路11Aと、を含んで構成されている。
[0003] In contrast to the indoor unit for air conditioning, an absorption chiller-heater 100, which is usually called an outdoor unit together with a cooling tower 42, is provided with a high-temperature regenerator 1 for burning fuel and heating a dilute solution by the heat thereof. A separator 2 for separating the refrigerant vapor and the intermediate concentrated solution from the dilute solution heated by the regenerator 1, and a low-temperature regenerator 3 for heating the intermediate concentrated solution using the separated refrigerant vapor as a heat source to further generate the refrigerant vapor 3 A condenser 4 that cools and condenses and liquefies the refrigerant vapor that has passed through the low-temperature regenerator 3 and the refrigerant vapor that has been generated by the low-temperature regenerator 3, and a liquid refrigerant that is generated by the condenser 4. An evaporator 6 that drip-evaporates from a refrigerant distributor 6 </ b> B having the inside thereof onto an evaporation coil also housed therein to cool a secondary refrigerant in the evaporation coil;
An absorber 5 that absorbs the refrigerant vapor evaporated by the evaporator 6 into a concentrated solution to generate a dilute solution, and pressurizes the dilute solution to form a low-temperature solution heat exchanger 8 and a high-temperature solution heat exchanger 7 on the heated fluid side. A solution circulating pump 9 which sends the solution to the high-temperature regenerator 1 via a pipe 10A which communicates the bottom of the separator 2 with the bottom of the evaporator 6 via a cooling / heating switching valve 10;
A concentrated solution pipe 8A connecting the outlet side of the heated fluid to the upper part of the absorber 5, a pipe line 13A connecting the concentrated solution pipe 8A and the lower part of the absorber 5 via a solution bypass valve 13, A pipe line 12A that connects the solution pipe 8A and the refrigerant distributor provided in the evaporator 5 via an antifreeze valve 12, and an evaporator that is attached to the refrigerant distributor and detects the temperature of the refrigerant in the refrigerant distributor. And a water refrigerant pipe 11B for guiding liquid refrigerant from the condenser 4 to the refrigerant distributor 6B, and a pipe 11A connected in parallel to the water refrigerant pipe 11B and having a water refrigerant proportional valve 11 interposed therebetween. , Is configured.

【0004】また、分離器2で分離された中間濃溶液が
前記高温溶液熱交換器7の加熱流体側を経て前記低温再
生器3に導かれ、低温再生器3で冷媒を蒸発させて濃溶
液となったのち、前記低温溶液熱交換器8の加熱流体側
を経て前記濃溶液管8Aに導かれるように管路が構成さ
れている。前記吸収器5及び凝縮器4にはそれぞれ冷却
水コイルが内装され、吸収器5の冷却水コイルの出口は
前記凝縮器4の冷却水コイルの入り口に接続されてい
て、吸収器5の冷却水コイルの入り口は前記冷却水管4
1に、凝縮器4の冷却水コイルの出口は前記冷却水管4
0に、それぞれ接続されている。前記冷温水管43は前
記蒸発器6の蒸発コイルの入り側に、前記冷温水管44
は前記蒸発器6の蒸発コイルの出側に、それぞれ接続さ
れ、該冷温水管44の前記蒸発コイル出口近傍には二次
冷媒の温度を検知する冷水出口温度センサ16が装着さ
れている。
Further, the intermediate concentrated solution separated by the separator 2 is led to the low temperature regenerator 3 via the heating fluid side of the high temperature solution heat exchanger 7, and the low temperature regenerator 3 evaporates the refrigerant to remove the concentrated solution. After that, the conduit is configured to be led to the concentrated solution pipe 8A via the heating fluid side of the low temperature solution heat exchanger 8. Each of the absorber 5 and the condenser 4 is provided with a cooling water coil, and an outlet of the cooling water coil of the absorber 5 is connected to an inlet of the cooling water coil of the condenser 4. The inlet of the coil is the cooling water pipe 4
1, the outlet of the cooling water coil of the condenser 4 is connected to the cooling water pipe 4
0, respectively. The cold / hot water pipe 43 is provided at the entrance side of the evaporator coil of the evaporator 6.
Is connected to the outlet side of the evaporator coil of the evaporator 6, and a chilled water outlet temperature sensor 16 for detecting the temperature of the secondary refrigerant is mounted near the outlet of the evaporator coil of the chilled / hot water pipe 44.

【0005】上記構成の装置において、冷暖切換弁10
は、冷房と暖房の切替を行うもので、冷房時は閉、暖房
時は開とされる。水冷媒比例弁11は、蒸発器の温度
(蒸発器温度センサ17の出力)を入力として開度制御
され、溶液濃度の調整を行う弁である。凍結防止弁12
は、蒸発温度が低下して1℃になれば開いて濃溶液を冷
媒分配器6Bに流入させ、冷媒(吸収冷温水機の冷媒に
は通常水が使用される。以下、水冷媒ともいう)の凍結
を防ぐ弁である。溶液バイパス弁13は、冷房立上り時
及び低負荷運転時に、蒸発器温度が低下したとき、凍結
防止弁が作動する前に濃溶液を吸収器5の下部にバイパ
スして吸収器5の吸収能力を低下させ、蒸発器のそれ以
上の温度低下を防ぐためのオン−オフ制御弁である。
In the apparatus having the above-mentioned structure, the cooling / heating switching valve 10
Switches between cooling and heating, and is closed during cooling and opened during heating. The water refrigerant proportional valve 11 is a valve whose opening degree is controlled by inputting the temperature of the evaporator (output of the evaporator temperature sensor 17) to adjust the solution concentration. Antifreeze valve 12
Is opened when the evaporation temperature drops to 1 ° C. and the concentrated solution flows into the refrigerant distributor 6B, and the refrigerant (usually water is used as the refrigerant of the absorption chiller / heater, hereinafter also referred to as water refrigerant). This is a valve to prevent freezing. The solution bypass valve 13 bypasses the concentrated solution to the lower part of the absorber 5 before the antifreeze valve operates when the evaporator temperature is lowered at the start of cooling and low-load operation, thereby increasing the absorption capacity of the absorber 5. An on-off control valve to lower the temperature and prevent further temperature reduction of the evaporator.

【0006】吸収冷温水機は、冷房運転時に機内の水冷
媒が凍結して晶析運転されること、及び低負荷時に冷温
水回路が凍結破損することが最もダメージが大きい。こ
れらの状況になるのをふせぐために冷温水出口温度及び
蒸発器温度に基づく各保護制御がなされている。
The absorption chiller / heater suffers the greatest damage from the fact that the water refrigerant in the machine freezes during the cooling operation and performs the crystallization operation, and that the chiller / heater circuit freezes and breaks at a low load. In order to prevent these situations from occurring, various protection controls are performed based on the cold / hot water outlet temperature and the evaporator temperature.

【0007】例えば、100%負荷時に7℃の冷水を取
り出すようになっている場合、負荷が少ないと能力が負
荷に対して過剰である分、冷水温度が低下する。通常冷
水出口温度5〜6℃になったら高温再生器1の燃焼を停
止させる。冷房立上り時や低負荷時には、冷水出口温度
よりも蒸発器温度が適切な温度幅以上に低下する場合が
あるので、機内の水冷媒が凍結して晶析することのない
よう、蒸発器温度に基づく各種保護制御が行われる。
[0007] For example, in the case where cold water of 7 ° C is taken out at 100% load, if the load is small, the cold water temperature is reduced as the capacity is excessive with respect to the load. When the normal cold water outlet temperature reaches 5 to 6 ° C., the combustion of the high-temperature regenerator 1 is stopped. At the start of cooling or at a low load, the evaporator temperature may be lower than the appropriate temperature range by more than the chilled water outlet temperature.Therefore, the evaporator temperature should be adjusted to prevent the water refrigerant inside the machine from freezing and crystallizing. Various protection controls based on the above are performed.

【0008】図3は、蒸発器温度に基づく制御の例を示
す。図中、LT0〜LT2は蒸発器温度制御の制御種別
を示す。 LT0:蒸発器温度が2℃に低下すると溶液バイパス弁
13を開く、蒸発器温度が3℃に上昇すると溶液バイパ
ス弁13を閉じる。 LT1:蒸発器温度が1℃に低下すると凍結防止弁12
を開く、蒸発器温度が2℃に上昇すると凍結防止弁12
を閉じる。 LT2:蒸発器温度が−2℃に低下すると高温再生器1
での燃焼が停止され、冷却水循環ポンプ14が停止され
る、蒸発器温度が−1℃に上昇すると高温再生器1での
燃焼が開始され、冷却水循環ポンプ14が起動される。
FIG. 3 shows an example of control based on the evaporator temperature. In the figure, LT0 to LT2 indicate control types of evaporator temperature control. LT0: The solution bypass valve 13 is opened when the evaporator temperature drops to 2 ° C., and the solution bypass valve 13 is closed when the evaporator temperature rises to 3 ° C. LT1: anti-freeze valve 12 when evaporator temperature drops to 1 ° C
Open the antifreeze valve 12 when the evaporator temperature rises to 2 ° C.
Close. LT2: high temperature regenerator 1 when evaporator temperature drops to -2 ° C
Is stopped, the cooling water circulation pump 14 is stopped, and when the evaporator temperature rises to -1 ° C., the combustion in the high temperature regenerator 1 is started, and the cooling water circulation pump 14 is started.

【0009】[0009]

【発明が解決しようとする課題】図4に示した空調装置
では、室内機と室外機の間で循環して熱を搬送する二次
冷媒として、相変化をしない流体、一般に液体が用いら
れてきたが、近年、二次冷媒に相変化を行わせることに
より、単位流量あたりの熱搬送量を増加させるものが考
案されている。図5はそのような構成の例を示すもの
で、図4に示す構成のうち、冷温水管43,44に代え
て冷媒液管50、冷媒蒸気管51が蒸発コイルの下端、
上端にそれぞれ接続されている。冷媒液管50,冷媒蒸
気管51の他端は、蒸発コイルよりも下方に配置された
室内機52,53の数だけ分岐しており、冷媒液管50
の分岐端は、室内機にそれぞれ内装された熱交換器の下
側入り口に膨張弁54,55を介して接続され、冷媒蒸
気管51の分岐端は、該熱交換器の上側入り口にそれぞ
れ接続されている。冷媒液管50の蒸発コイルとの接続
部近傍には、二次冷媒の温度を検出して電気信号として
コントローラ59に出力する冷媒液温度センサ21が装
着されている。
In the air conditioner shown in FIG. 4, a non-phase-change fluid, generally a liquid, has been used as a secondary refrigerant that circulates heat between an indoor unit and an outdoor unit to carry heat. However, in recent years, a method has been devised in which a secondary refrigerant undergoes a phase change to increase the heat transfer amount per unit flow rate. FIG. 5 shows an example of such a configuration. In the configuration shown in FIG. 4, the refrigerant liquid pipe 50 and the refrigerant vapor pipe 51 are replaced with the lower end of the evaporating coil instead of the cold and hot water pipes 43 and 44.
Each is connected to the upper end. The other ends of the refrigerant liquid pipe 50 and the refrigerant vapor pipe 51 are branched by the number of the indoor units 52 and 53 arranged below the evaporating coil.
Are connected via expansion valves 54 and 55 to lower inlets of heat exchangers respectively installed in the indoor units, and branch ends of the refrigerant vapor pipes 51 are connected to upper inlets of the heat exchangers, respectively. Have been. A refrigerant liquid temperature sensor 21 that detects the temperature of the secondary refrigerant and outputs it to the controller 59 as an electric signal is mounted near the connection portion of the refrigerant liquid pipe 50 with the evaporation coil.

【0010】冷媒液管50は、途中に室内機52,53
よりも低い位置に配置された部分があり、そこに冷媒液
を加圧して前記蒸発コイルに送りこむ冷媒ポンプ57が
装着されている。冷媒ポンプ57の吐出側には、逆止弁
58が設けられ、この逆止弁58の出側と冷媒ポンプ5
7の吸い込み側は、冷暖切換弁56を介して接続されて
いる。相変化する二次冷媒(以下単に冷媒ともいう)と
して、HFC−134aが冷媒液管に充填されている。
他の構成は前記図4の説明と同じであるので、説明は省
略する。
The refrigerant liquid pipe 50 is provided between the indoor units 52 and 53 on the way.
There is a portion located at a lower position, and a refrigerant pump 57 for pressurizing the refrigerant liquid and sending the pressurized refrigerant liquid to the evaporation coil is mounted thereon. On the discharge side of the refrigerant pump 57, a check valve 58 is provided.
The suction side of 7 is connected via a cooling / heating switching valve 56. HFC-134a is filled in a refrigerant liquid pipe as a secondary refrigerant that changes phase (hereinafter, also simply referred to as a refrigerant).
The other configuration is the same as the description of FIG. 4, and the description is omitted.

【0011】図5に示す空調装置の冷房時の動作は次の
通りである。冷房時には、冷暖切換弁56は開かれてい
る。冷媒蒸気(HFC−134a)は、蒸発器6の蒸発
コイルで冷却凝縮されて冷媒液となり、重力により、冷
媒液管50を下方に流れ、膨張弁54,55を経て各室
内機52,53の熱交換器に流入する。熱交換器に流入
した冷媒液は、空調対象空間の空気の熱を奪って蒸発
し、冷媒蒸気となって冷媒蒸気管51を経て上昇し蒸発
器6の蒸発コイルに流入する。室外機(吸収式冷熱発生
装置)は冷房モードで運転されているから、蒸発器6の
蒸発コイルは、その表面に滴下される水冷媒の蒸発によ
り冷却され、蒸発コイルに流入してきた冷媒蒸気(HF
C−134a)は、凝縮液化する。この凝縮液化によ
り、蒸発コイル内部の圧力が低下し、室内機の熱交換器
で蒸発した冷媒蒸気は蒸発器に吸引される。蒸発コイル
内部で凝縮液化した冷媒液は重力で室内機に流入するか
ら、冷房時の冷媒(HFC−134a)は、自然循環
し、ポンプによる冷媒の駆動を行う必要がない。
The operation of the air conditioner shown in FIG. 5 during cooling is as follows. During cooling, the cooling / heating switching valve 56 is open. The refrigerant vapor (HFC-134a) is cooled and condensed by the evaporator coil of the evaporator 6 to become a refrigerant liquid, flows downward through the refrigerant liquid pipe 50 by gravity, passes through expansion valves 54 and 55, and flows through the indoor units 52 and 53. Flow into heat exchanger. The refrigerant liquid that has flowed into the heat exchanger evaporates by removing the heat of the air in the air-conditioned space, becomes refrigerant vapor, rises through the refrigerant vapor pipe 51, and flows into the evaporator coil of the evaporator 6. Since the outdoor unit (absorption type cold heat generator) is operated in the cooling mode, the evaporation coil of the evaporator 6 is cooled by the evaporation of the water refrigerant dropped on the surface thereof, and the refrigerant vapor ( HF
C-134a) condenses and liquefies. Due to this condensation and liquefaction, the pressure inside the evaporating coil decreases, and the refrigerant vapor evaporated in the heat exchanger of the indoor unit is sucked into the evaporator. Since the refrigerant liquid condensed and liquefied inside the evaporation coil flows into the indoor unit by gravity, the refrigerant (HFC-134a) during cooling naturally circulates, and there is no need to drive the refrigerant by a pump.

【0012】冷房運転が開始されると、先に述べたよう
に、蒸発コイル内部の圧力が低下し、冷媒蒸気管内の飽
和冷媒蒸気が圧力差により蒸発コイル内に流入する。蒸
発コイル内で凝縮して生成された冷媒液は、冷媒液管5
0内を自重で流下し、冷媒液のヘッド(液柱)が上昇し
てくる。先に述べた冷媒の自然循環が成立するために
は、(冷媒の液ヘッド−冷媒ガスヘッド)が冷媒循環経
路の全圧力損失以上であればよい。つまり、次式を満足
する液ヘッドが形成されるまでは冷媒の自然循環は開始
されない。このことは、冷房運転開始時点で蒸発器6に
供給される熱負荷が少ないことを意味する。
When the cooling operation is started, as described above, the pressure inside the evaporating coil decreases, and the saturated refrigerant vapor in the refrigerant vapor pipe flows into the evaporating coil due to the pressure difference. The refrigerant liquid generated by condensation in the evaporating coil is supplied to the refrigerant liquid pipe 5.
0 flows down by its own weight, and the head (liquid column) of the refrigerant liquid rises. In order to achieve the natural circulation of the refrigerant described above, it is sufficient that (the refrigerant liquid head-the refrigerant gas head) is equal to or more than the total pressure loss of the refrigerant circulation path. That is, the natural circulation of the refrigerant is not started until a liquid head satisfying the following equation is formed. This means that the heat load supplied to the evaporator 6 at the start of the cooling operation is small.

【0013】[0013]

【数1】 (Equation 1)

【0014】暖房時には、冷暖切換弁56は閉じられて
いる。冷媒液(HFC−134a)は、蒸発器6の蒸発
コイルで加熱されて冷媒蒸気となり、冷媒蒸気管51を
下方に流れ、各室内機52,53の熱交換器に流入す
る。熱交換器に流入した冷媒蒸気は、空調対象空間の空
気に熱を奪われて凝縮液化し、冷媒液となって冷媒液管
51を下方に流れて冷媒ポンプ57入り側に流入する。
冷媒液は冷媒ポンプ57で加圧され、蒸発器6の蒸発コ
イルに流入して上記のサイクルを繰り返す。このとき、
室外機は暖房モードで運転され、蒸発器6には分離器2
で分離された高温の溶液が導かれ、蒸発コイルはこの熱
により加熱される。
During heating, the cooling / heating switching valve 56 is closed. The refrigerant liquid (HFC-134a) is heated by the evaporator coil of the evaporator 6 to become refrigerant vapor, flows down the refrigerant vapor pipe 51, and flows into the heat exchangers of the indoor units 52 and 53. The refrigerant vapor flowing into the heat exchanger is deprived of heat by the air in the air-conditioned space, condensed and liquefied, becomes a refrigerant liquid, flows downward through the refrigerant liquid pipe 51, and flows into the refrigerant pump 57 inlet side.
The refrigerant liquid is pressurized by the refrigerant pump 57, flows into the evaporation coil of the evaporator 6, and repeats the above cycle. At this time,
The outdoor unit is operated in the heating mode, and the evaporator 6 has the separator 2
The high-temperature solution separated by the above is led, and the evaporation coil is heated by this heat.

【0015】上述の吸収式冷媒自然循環冷房装置の室外
機に、図3,4を参照して説明した蒸発器温度による制
御(LT制御)をそのまま適用して冷房運転を行うと、
次のような問題がある。 1)LT0とLT1の温度幅が狭く、蒸発器温度が急降
下によりオーバーシュートしてLT1作動温度(凍結防
止弁開温度)にまで低下し、凍結防止弁12を作動させ
るため、蒸発器6の水冷媒中に濃溶液が混入し、蒸発器
の冷却能力が著しく低下する。蒸発器の冷却能力が低下
すると蒸発コイル内の圧力が上がり、室内機との間での
冷媒の自然循環が阻害される。冷媒分配器に混入した濃
溶液がほぼなくなるまで蒸発器の冷却能力が回復せず、
また冷媒分配器に混入した濃溶液がほぼなくなるまでに
時間がかかる。このため、蒸発器の冷却能力が回復し、
冷房運転が立ち上がるのに時間がかかることになる。蒸
発器温度が急降下するのは、室内機側の冷媒回路に冷房
時に冷媒を強制循環させるポンプがないため、冷房立上
り時に冷媒の循環量が少なく、したがって負荷との熱交
換量が少ないし冷媒によって蒸発器6の蒸発コイルに供
給される熱量も少ないことによる。このため、室外機の
冷房運転開始時の蒸発器の冷却能力が蒸発コイルに供給
される負荷に対して過大となり、蒸発器温度の急降下を
招くことになる。このような蒸発器温度の急降下は、吸
収器5を冷却する冷却水の温度がひくいとき、一層著し
い。冷却水温度が低いと吸収器5の吸収能力が高まり、
それに伴って蒸発器6の蒸発能力すなわち冷却能力が増
大するのである。
If the control based on the evaporator temperature (LT control) described with reference to FIGS. 3 and 4 is directly applied to the outdoor unit of the above-described absorption type refrigerant natural circulation cooling device, the cooling operation is performed.
There are the following problems. 1) The temperature range of LT0 and LT1 is narrow, and the evaporator temperature overshoots due to a rapid drop to fall to the LT1 operating temperature (freezing valve opening temperature). The concentrated solution is mixed in the refrigerant, and the cooling capacity of the evaporator is significantly reduced. When the cooling capacity of the evaporator decreases, the pressure in the evaporator coil increases, and the natural circulation of the refrigerant with the indoor unit is hindered. The cooling capacity of the evaporator did not recover until the concentrated solution mixed in the refrigerant distributor almost disappeared,
In addition, it takes time for the concentrated solution mixed in the refrigerant distributor to almost disappear. For this reason, the cooling capacity of the evaporator is restored,
It takes time for the cooling operation to start. The sudden drop in the evaporator temperature is due to the fact that there is no pump in the refrigerant circuit on the indoor unit side that forces the refrigerant to circulate during cooling. This is because the amount of heat supplied to the evaporating coil of the evaporator 6 is also small. For this reason, the cooling capacity of the evaporator at the start of the cooling operation of the outdoor unit becomes excessive with respect to the load supplied to the evaporating coil, which causes a sudden drop in the evaporator temperature. Such a sharp drop in the evaporator temperature is more remarkable when the temperature of the cooling water for cooling the absorber 5 is low. When the cooling water temperature is low, the absorption capacity of the absorber 5 increases,
Accordingly, the evaporating ability of the evaporator 6, that is, the cooling ability increases.

【0016】2)蒸発器温度がLT1作動温度に低下す
る前に、LT0制御により溶液バイパス弁13を開い
て、濃溶液を吸収器上部に導く代わりに吸収器底部にバ
イパスし、吸収能力を低下させて蒸発器での水冷媒の蒸
発を抑制しているが、フロン冷媒(HFC−134a)
は温度変化が早く、従来採用されているオン−オフ制御
の溶液バイパス弁13の分流比(10〜20%程度のバ
イパス量)では、LT1作動を止めらない。
2) Before the evaporator temperature falls to the LT1 operating temperature, the solution bypass valve 13 is opened by LT0 control to bypass the concentrated solution to the upper part of the absorber and to bypass the concentrated solution to the bottom of the absorber to reduce the absorption capacity. To suppress the evaporation of the water refrigerant in the evaporator, but the use of CFC refrigerant (HFC-134a)
The temperature change is fast, and the LT1 operation is not stopped at the split ratio (bypass amount of about 10 to 20%) of the solution bypass valve 13 of the conventionally used on-off control.

【0017】なお、LT1制御は、室外機内の水冷媒の
凍結防止に有効であるが、設定温度を下げると、凍結防
止効果が損なわれる。すなわち、蒸発器温度1℃で凍結
防止弁を開としているが、例えば0℃で開とすると、実
質的に水冷媒は凍結を始めており、蒸発器温度センサ1
7の精度、ばらつきを考えると、0℃では水冷媒回路の
凍結により晶析運転につながる可能性が高い。
Note that the LT1 control is effective in preventing freezing of the water refrigerant in the outdoor unit, but lowering the set temperature impairs the antifreezing effect. That is, the antifreeze valve is opened at an evaporator temperature of 1 ° C. However, if the antifreeze valve is opened at 0 ° C., for example, the water refrigerant substantially starts to freeze, and the evaporator temperature sensor 1
Considering the accuracy and variation of 7, there is a high possibility that at 0 ° C., freezing of the water refrigerant circuit will lead to crystallization operation.

【0018】上述のように、二次冷媒として相変化する
流体を用い、冷房時に二次冷媒に自然循環させる場合、
冷房運転開始時、特に冷却水温度が計画温度より低い場
合、吸収器の吸収能力が負荷に対応して必要な能力より
も大きくなり、蒸発器温度が急降下してLT1制御が作
動し、冷房立上りに長時間を要するという問題がある。
一方、水冷媒比例弁11は、先に述べたように機内の溶
液濃度の調整を行うため、蒸発器温度に基づいてその開
度が制御されている。図6は、蒸発器温度と、蒸発器温
度に対応する水冷媒比例弁の開度の例を示している。通
常外気条件の変化に伴う冷却水温度変動に対応して蒸発
器温度も変動するため、蒸発器温度の2℃〜6℃の変動
は、図7に示すように、吸収器5の冷却水入り口での冷
却水温度変動24℃〜32℃にほぼ対応する。水冷媒比
例弁の開度は蒸発器温度に基づいて制御され、冷房運転
の立上りにあっては、図6に示したように、当初の全閉
状態から蒸発器温度が6℃にまで低下して初めて開き始
める。これは運転が開始されてからそれまでの間、凝縮
器4から蒸発器6への水冷媒の供給が制限され、凝縮器
4での水冷媒の貯蔵量が増加することを意味する。つま
り、吸収溶液に溶解されずに循環サイクルから除外され
る水冷媒の量が増え、循環する吸収溶液の濃度が増加す
る。従って、水冷媒比例弁が冷房立上り時に閉じたまま
であることは、吸収器5の吸収能力を増加させ、先に述
べた蒸発器の冷却能力と蒸発コイルに供給される負荷の
アンバランスを増幅するように作用する。すなわち、L
T1が作動しやすくなる原因として働く。
As described above, when a phase-change fluid is used as the secondary refrigerant and the secondary refrigerant is naturally circulated during cooling,
At the start of the cooling operation, especially when the cooling water temperature is lower than the planned temperature, the absorption capacity of the absorber becomes larger than the required capacity corresponding to the load, the evaporator temperature drops rapidly, the LT1 control is activated, and the cooling rises. Takes a long time.
On the other hand, the opening degree of the water refrigerant proportional valve 11 is controlled based on the evaporator temperature in order to adjust the solution concentration in the apparatus as described above. FIG. 6 shows an example of the evaporator temperature and the opening degree of the water refrigerant proportional valve corresponding to the evaporator temperature. Since the evaporator temperature also fluctuates in response to the fluctuation of the cooling water temperature accompanying the change of the outside air condition, the fluctuation of the evaporator temperature from 2 ° C. to 6 ° C., as shown in FIG. Approximately corresponds to a cooling water temperature fluctuation of 24 ° C. to 32 ° C. The opening of the water refrigerant proportional valve is controlled based on the evaporator temperature. At the start of the cooling operation, as shown in FIG. 6, the evaporator temperature drops from the initial fully closed state to 6 ° C. And start to open for the first time. This means that the supply of the water refrigerant from the condenser 4 to the evaporator 6 is restricted during the period from the start of operation to the storage amount of the water refrigerant in the condenser 4. That is, the amount of the water refrigerant that is not dissolved in the absorbing solution and is excluded from the circulation cycle increases, and the concentration of the circulating absorbing solution increases. Therefore, the fact that the water-refrigerant proportional valve is kept closed at the start of cooling increases the absorption capacity of the absorber 5 and amplifies the above-described imbalance between the cooling capacity of the evaporator and the load supplied to the evaporation coil. Act like so. That is, L
It acts as a cause of the easy operation of T1.

【0019】本発明の目的は、二次冷媒として相変化す
る流体を用い、冷房時に二次冷媒に自然循環させる場合
でも、負荷率に対応して冷房運転をスムースに立上らせ
ることにある。
An object of the present invention is to smoothly start up a cooling operation in accordance with a load factor even when a phase-change fluid is used as a secondary refrigerant and the secondary refrigerant is naturally circulated during cooling. .

【0020】[0020]

【課題を解決するための手段】上記の目的は、吸収器5
上部に濃溶液を導く濃溶液管8Aと蒸発器6に内装され
た冷媒分配器6Bとを凍結防止弁12を介して連通する
管路と、凝縮器から前記冷媒分配器6Bに水冷媒を導く
水冷媒管11Bと、該水冷媒管に並列に接続され蒸発器
温度に基づいて開度制御される水冷媒比例弁11を介装
した管路11Aと、前記吸収器に内装された冷却水コイ
ルに冷却水を供給する冷却水管と、前記冷却水に冷却用
空気を送風する送風機42Aを有して該冷却水を冷却す
るクーリングタワー42と、を含んでなり、前記送風機
は前記クーリングタワーに流入する冷却水の温度があら
かじめ設定された第1の温度以下に低下したとき送風を
停止するように構成され、前記蒸発器と負荷との間で循
環する二次冷媒として相変化する流体が用いられる吸収
式冷熱発生装置において、前記冷却水管の吸収器5入り
口付近に冷却水入り口温度を検出して出力する冷却水入
口温度センサ25を設け、前記水冷媒比例弁11を、前
記冷却水入口温度センサ25が出力する冷却水温度が前
記第1の温度より低く設定された第2の温度未満である
とき蒸発器温度と無関係に全開するように構成すること
により達成される。第2の温度の設定に際しては、第1
の温度との温度差が2℃〜5.5℃になるように設定す
るのが望ましい。
An object of the present invention is to provide an absorber 5
A pipe connecting the concentrated solution pipe 8A for guiding the concentrated solution to the upper part and the refrigerant distributor 6B provided in the evaporator 6 through the anti-freezing valve 12, and the water refrigerant from the condenser to the refrigerant distributor 6B. A water refrigerant pipe 11B, a pipe line 11A interposed with a water refrigerant proportional valve 11 connected in parallel to the water refrigerant pipe and having an opening controlled based on the evaporator temperature, and a cooling water coil installed in the absorber A cooling water pipe that supplies cooling water to the cooling water, and a cooling tower 42 that has a blower 42A that blows cooling air to the cooling water and cools the cooling water, wherein the blower cools the cooling water flowing into the cooling tower. An absorption type in which a fluid that changes phase is used as a secondary refrigerant circulating between the evaporator and the load, and is configured to stop blowing when the temperature of the water falls below a first temperature set in advance. For cold heat generator A cooling water inlet temperature sensor 25 for detecting and outputting a cooling water inlet temperature near the inlet of the absorber 5 of the cooling water pipe; and cooling the water refrigerant proportional valve 11 to the cooling water output by the cooling water inlet temperature sensor 25. This is attained by arranging such that when the water temperature is lower than the second temperature set lower than the first temperature, it is fully opened regardless of the evaporator temperature. When setting the second temperature, the first temperature
Is desirably set so that the temperature difference from the temperature of 2 ° C. becomes 2 ° C. to 5.5 ° C.

【0021】[0021]

【作用】冷房運転開始時点では、水冷媒比例弁は閉じら
れており、凝縮器の水冷媒は、水冷媒管を経て蒸発器に
供給される。蒸発器の温度があらかじめ設定された温度
に低下するまでは水冷媒比例弁は閉じたままであり、そ
の間、水冷媒の一部は凝縮器に蓄えられ、作動流体とし
ての循環サイクルから除外された状態となり、吸収溶液
の濃度は高められる。すなわち、吸収器の吸収能力が増
大する傾向にある。また、冷却水温度が計画温度よりも
低い場合、これはさらに吸収器の吸収能力を高め、冷房
立上り時点での蒸発器冷却能力と蒸発器に供給される負
荷のアンバランスを増幅し、蒸発器温度を凍結防止弁の
作動温度に近付けることを意味する。
When the cooling operation is started, the water refrigerant proportional valve is closed, and the water refrigerant in the condenser is supplied to the evaporator through the water refrigerant pipe. The water refrigerant proportional valve remains closed until the temperature of the evaporator drops to a preset temperature, during which part of the water refrigerant is stored in the condenser and excluded from the circulation cycle as working fluid. And the concentration of the absorbing solution is increased. That is, the absorption capacity of the absorber tends to increase. Also, when the cooling water temperature is lower than the planned temperature, this further increases the absorption capacity of the absorber, amplifies the imbalance between the evaporator cooling capacity at the start of cooling and the load supplied to the evaporator, and increases the evaporator temperature. This means bringing the temperature closer to the operating temperature of the antifreeze valve.

【0022】しかし、冷却水温度があらかじめ設定され
た第2の温度、クーリングタワーに還流した冷却水が十
分に低温で送風機による冷却が必要でないと判断される
第1の温度よりも低く設定された第2の温度未満である
場合、蒸発器温度に関係なく水冷媒比例弁が全開され、
凝縮器に蓄えられていた水冷媒が蒸発器の冷媒分配器に
供給される。水冷媒比例弁を経て冷媒分配器に供給され
た水冷媒は過剰な水冷媒であり、大部分は蒸発すること
なく蒸発器底部に流下し、吸収器で冷媒蒸気を吸収した
吸収溶液と混合されて希溶液となる。すなわち、それま
で循環サイクル外にあった水冷媒が循環サイクルに戻さ
れることによって吸収溶液の濃度が低下し、吸収器にお
ける吸収能力が低下する。吸収能力の低下により、蒸発
器冷却能力と蒸発器に供給される負荷のアンバランスが
縮小され、蒸発器の温度が凍結防止弁の作動温度に低下
するのが防がれるから、冷房運転開始時のLT1作動
(凍結防止弁開)を回避することができる。
However, the cooling water temperature is set to be lower than the second temperature which is set in advance, or the first temperature at which the cooling water returned to the cooling tower is sufficiently low that cooling by the blower is not necessary. If the temperature is less than the temperature of 2, the water refrigerant proportional valve is fully opened regardless of the evaporator temperature,
The water refrigerant stored in the condenser is supplied to the refrigerant distributor of the evaporator. The water refrigerant supplied to the refrigerant distributor via the water refrigerant proportional valve is excess water refrigerant, and most of the water flows down to the bottom of the evaporator without being evaporated, and is mixed with the absorbing solution that has absorbed the refrigerant vapor in the absorber. Into a dilute solution. That is, the concentration of the absorbing solution is reduced by returning the water refrigerant outside the circulation cycle to the circulation cycle, and the absorption capacity of the absorber is reduced. The reduction in the absorption capacity reduces the imbalance between the cooling capacity of the evaporator and the load supplied to the evaporator, and prevents the temperature of the evaporator from decreasing to the operating temperature of the antifreeze valve. LT1 operation (freezing prevention valve opening) can be avoided.

【0023】[0023]

【実施例】以下、本発明の実施例を図1を参照して説明
する。図1の実施例が図6に示したものと異なるのは、
冷却水管41の吸収器5との接続部近傍に冷却水入り口
温度を検出、出力する冷却水入口温度センサ25を設け
た点、水冷媒比例弁11が、蒸発器温度センサ17の出
力に基づいて無段階に開度制御されるだけでなく、前記
冷却水入口温度センサ25が出力する冷却水入り口温度
によっても制御される構成としてある点、コントローラ
59は、水冷媒比例弁11を蒸発器温度センサ17の出
力及び冷却水入口温度センサ25に基づいて開度制御す
るように構成されている点、及び、冷媒蒸気管51の蒸
発コイル出側立上り部と冷媒液管50の蒸発コイル接続
部とを電磁弁60を介して連通する点であり、他の構成
は図6のものと同じであるので、構成の詳細説明を省略
する。なお、クーリングタワー42の送風機42Aは、
クーリングタワー入り口における冷却水温度が24℃以
上であるとき、運転されるようになっている。本実施例
における蒸発器の計画運転温度は5℃であり、LT制御
は前記図4により説明したものと同じに行われる。
An embodiment of the present invention will be described below with reference to FIG. The difference of the embodiment of FIG. 1 from that shown in FIG.
The cooling water inlet temperature sensor 25 for detecting and outputting the cooling water inlet temperature near the connection of the cooling water pipe 41 with the absorber 5 is provided. The controller 59 sets the water refrigerant proportional valve 11 to an evaporator temperature sensor, in that the opening is controlled steplessly and also controlled by the cooling water inlet temperature output from the cooling water inlet temperature sensor 25. 17, the opening degree is controlled based on the cooling water inlet temperature sensor 25, and the evaporating coil outlet side rising part of the refrigerant vapor pipe 51 and the evaporating coil connection part of the refrigerant liquid pipe 50 This is a point of communication via the solenoid valve 60, and the other configuration is the same as that of FIG. 6, and therefore detailed description of the configuration is omitted. In addition, the blower 42A of the cooling tower 42
When the cooling water temperature at the cooling tower entrance is 24 ° C. or higher, the cooling tower is operated. The planned operating temperature of the evaporator in this embodiment is 5 ° C., and the LT control is performed in the same manner as that described with reference to FIG.

【0024】本実施例における水冷媒比例弁11の開度
制御の温度条件を図2に示す。図2はX軸に蒸発器温
度、Y軸に冷却水入口温度、Z軸に水冷媒比例弁開度を
とって、蒸発器温度、冷却水入口温度と水冷媒比例弁開
度の関係を示しており、コントローラ59はこの関係を
満たすように水冷媒比例弁11の開度を制御する。水冷
媒比例弁11は、冷却水入口温度が22℃未満の場合は
蒸発器温度に関係なく全開され、冷却水入口温度が22
℃以上の場合は、蒸発器温度が6℃以下になったら開き
始め、2℃で全開する。冷却水入り口温度が22℃以上
で蒸発器温度が6℃〜2℃の間にあるときは、開度が
(6−蒸発器温度)÷4×100%になるように制御さ
れ、6℃以上では全閉、2℃以下では全開を維持する。
FIG. 2 shows temperature conditions for controlling the opening degree of the water refrigerant proportional valve 11 in this embodiment. FIG. 2 shows the relationship between the evaporator temperature, the cooling water inlet temperature and the water refrigerant proportional valve opening by taking the evaporator temperature on the X axis, the cooling water inlet temperature on the Y axis, and the water refrigerant proportional valve opening on the Z axis. The controller 59 controls the opening of the water refrigerant proportional valve 11 so as to satisfy this relationship. When the cooling water inlet temperature is lower than 22 ° C., the water refrigerant proportional valve 11 is fully opened regardless of the evaporator temperature, and when the cooling water inlet temperature is lower than 22 ° C.
If the temperature is not lower than 6 ° C., it starts to open when the evaporator temperature becomes 6 ° C. or lower, and is fully opened at 2 ° C. When the cooling water inlet temperature is 22 ° C. or more and the evaporator temperature is between 6 ° C. and 2 ° C., the opening degree is controlled to be (6-evaporator temperature) ÷ 4 × 100%, and 6 ° C. or more Then, fully closed at 2 ° C or less.

【0025】図1に示す実施例の冷房運転開始時の動作
を説明する。まず、冷房運転が開始されると蒸発器温度
が低下し始める。コントローラ59は、入力される冷却
水入口温度が22℃以上であれば水冷媒比例弁11の開
度を蒸発器温度センサ17の出力に基づいて制御し、冷
却水入口温度が22℃未満であれば蒸発器温度に関係な
く直ちに水冷媒比例弁11を全開する。水冷媒比例弁1
1が全開されると、凝縮器4に蓄えられていた水冷媒が
蒸発器6の冷媒分配器6Bに供給される。水冷媒比例弁
11を経て冷媒分配器6Bに供給された水冷媒は過剰な
水冷媒であり、大部分は蒸発することなく蒸発器6底部
に流下し、吸収器5で冷媒蒸気を吸収した吸収溶液と混
合されて希溶液となる。すなわち、それまで循環サイク
ル外にあった水冷媒が循環サイクルに戻されることによ
って吸収溶液の濃度が低下し、吸収器5における吸収能
力が低下する。吸収能力の低下により、蒸発器冷却能力
が低下して蒸発器6に供給される負荷のアンバランスが
縮小され、冷房運転開始時の蒸発器温度の急激な低下が
少なくなる。蒸発器の温度降下が少なくなって凍結防止
弁の作動温度に低下するのが防がれるから、冷房運転開
始時のLT1作動(凍結防止弁開)を回避することがで
きる。
The operation of the embodiment shown in FIG. 1 when the cooling operation is started will be described. First, when the cooling operation is started, the evaporator temperature starts to decrease. The controller 59 controls the opening of the water refrigerant proportional valve 11 based on the output of the evaporator temperature sensor 17 if the input cooling water inlet temperature is 22 ° C. or higher, and if the cooling water inlet temperature is lower than 22 ° C. For example, the water refrigerant proportional valve 11 is fully opened immediately regardless of the evaporator temperature. Water refrigerant proportional valve 1
When the valve 1 is fully opened, the water refrigerant stored in the condenser 4 is supplied to the refrigerant distributor 6B of the evaporator 6. The water refrigerant supplied to the refrigerant distributor 6B via the water refrigerant proportional valve 11 is excess water refrigerant, and most of the water refrigerant flows down to the bottom of the evaporator 6 without evaporating, and is absorbed by the absorber 5 by absorbing the refrigerant vapor. It is mixed with the solution to form a dilute solution. That is, the concentration of the absorbing solution is reduced by returning the water refrigerant which has been outside the circulation cycle to the circulation cycle, and the absorption capacity of the absorber 5 is reduced. Due to the decrease in the absorption capacity, the cooling capacity of the evaporator is reduced, the imbalance of the load supplied to the evaporator 6 is reduced, and the rapid decrease in the evaporator temperature at the start of the cooling operation is reduced. Since it is prevented that the temperature drop of the evaporator decreases and the operating temperature of the antifreeze valve decreases, the LT1 operation (opening of the antifreeze valve) at the start of the cooling operation can be avoided.

【0026】冷却水入口温度が22℃以上の場合は、コ
ントローラ59は入力される蒸発器温度に基づいて水冷
媒比例弁の開度を制御するが、冷却水入口温度が22℃
以上の場合は、冷却水温度に起因する蒸発器の過剰な冷
却能力は大きくなく、冷却水入り口温度が22℃未満の
場合に比べて、LT1作動の恐れは比較的少ない。
When the cooling water inlet temperature is 22 ° C. or higher, the controller 59 controls the opening degree of the water refrigerant proportional valve based on the input evaporator temperature.
In the above case, the excessive cooling capacity of the evaporator due to the cooling water temperature is not large, and the risk of LT1 operation is relatively small as compared with the case where the cooling water inlet temperature is lower than 22 ° C.

【0027】上述のように、冷却水入り口温度が22℃
未満という低い温度の場合に生じる吸収器の吸収能力の
増大が、水冷媒比例弁を開いて吸収溶液の濃度を低下さ
せることで抑制されるので、低冷却水温度に起因する冷
房運転開始時のLT1作動(凍結防止弁開)を回避する
ことができ、その結果、蒸発器の冷却能力を回復し冷媒
自然循環に必要な液ヘッド形成に要する時間、つまり、
冷房運転立上りに要する時間が長くなるのを防止でき
る。
As described above, the cooling water inlet temperature is 22 ° C.
Since the increase in the absorption capacity of the absorber that occurs when the temperature is lower than that is suppressed by opening the water refrigerant proportional valve and lowering the concentration of the absorbing solution, at the time of starting the cooling operation due to the low cooling water temperature The LT1 operation (freezing prevention valve opening) can be avoided, and as a result, the time required for recovering the cooling capacity of the evaporator and forming the liquid head required for the natural circulation of the refrigerant, that is,
It is possible to prevent the time required for starting the cooling operation from increasing.

【0028】上記実施例では、クーリングタワー42の
送風機42Aが停止される冷却水の温度(第1の温度)
と水冷媒比例弁11が全開される冷却水の温度(第2の
温度)の差が2℃となるように第2の温度が設定されて
いるが、第2の温度の設定にあたってはこの差は2℃〜
5.5℃程度になるようにするのが望ましい。差が2℃
よりも少ないと吸収能力を無駄に低下させて冷房能力の
余裕をなくす可能性があり、5.5℃よりも大きくする
と、LT1作動を抑制する効果が少なくなる。
In the above embodiment, the temperature (first temperature) of the cooling water at which the blower 42A of the cooling tower 42 is stopped.
And the second temperature is set such that the difference between the temperature of the cooling water (the second temperature) at which the water refrigerant proportional valve 11 is fully opened is 2 ° C. In setting the second temperature, the difference is set. Is 2 ° C ~
It is desirable that the temperature be about 5.5 ° C. 2 ° C difference
If it is less than this, there is a possibility that the absorption capacity is uselessly reduced and the margin of the cooling capacity is lost, and if it is more than 5.5 ° C., the effect of suppressing the LT1 operation decreases.

【0029】[0029]

【発明の効果】本発明によれば、蒸発器で冷却される二
次側冷媒として相変化する流体を自然循環させる場合、
冷却水温度が計画温度に比べて低い時にでも、冷房運転
起動時に蒸発器の温度の過大な降下が抑止され、蒸発器
に供給される水冷媒への濃溶液の混入が防がれるので、
冷房の立上りに要する時間が長くなるのを回避できる。
According to the present invention, when a phase-changing fluid is naturally circulated as a secondary refrigerant cooled by an evaporator,
Even when the cooling water temperature is lower than the planned temperature, an excessive drop in the temperature of the evaporator is suppressed at the time of starting the cooling operation, and the mixture of the concentrated solution into the water refrigerant supplied to the evaporator is prevented.
It is possible to avoid an increase in the time required for the rise of cooling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の要部構成を示す系統図であ
る。
FIG. 1 is a system diagram showing a main configuration of an embodiment of the present invention.

【図2】図1に示す実施例の水冷媒比例弁の開度と蒸発
器温度、冷却水入口温度の関係の例を示すグラフであ
る。
FIG. 2 is a graph showing an example of the relationship among the opening degree of the water refrigerant proportional valve, the evaporator temperature, and the cooling water inlet temperature of the embodiment shown in FIG.

【図3】蒸発器温度に基づく保護制御の例を示す概念図
である。
FIG. 3 is a conceptual diagram illustrating an example of protection control based on an evaporator temperature.

【図4】従来技術の例を示す系統図である。FIG. 4 is a system diagram showing an example of the related art.

【図5】従来技術の他の例を示す系統図である。FIG. 5 is a system diagram showing another example of the related art.

【図6】蒸発器温度と水冷媒比例弁開度の関係の例を示
すグラフである。
FIG. 6 is a graph showing an example of a relationship between an evaporator temperature and a water refrigerant proportional valve opening.

【図7】蒸発器温度と冷却水入口温度の相関関係の例を
示すグラフである。
FIG. 7 is a graph showing an example of a correlation between an evaporator temperature and a cooling water inlet temperature.

【符号の説明】 1 高温再生器 2 分離器 3 低温再生器 4 凝縮器 5 吸収器 6 蒸発器 6B 冷媒分配器 7 高温溶液熱交
換器 8 低温溶液熱交換器 8A 濃溶液管 9 溶液循環ポンプ 10 冷暖切換弁 10A 管路 11 水冷媒比例
弁 11A 管路 11B 水冷媒管 12 凍結防止弁 12A 管路 13 溶液バイパス弁 13A 管路 14 冷却水循環ポンプ 15 冷温水循環
ポンプ 16 冷水出口温度センサ 17 蒸発器温度
センサ 21 冷媒液温度センサ 22 溶液バイパ
ス弁 25 冷却水入口温度センサ 40,41 冷却
水管 42 クーリングタワー 42A 送風機 43,44 冷温水管 50 冷媒液管 51 冷媒蒸気管 52,53 室内
機 54,55 膨張弁 56 冷暖切換弁 57 冷媒ポンプ 58 逆止弁 59 コントローラ 60 電磁弁
[Description of Signs] 1 High temperature regenerator 2 Separator 3 Low temperature regenerator 4 Condenser 5 Absorber 6 Evaporator 6B Refrigerant distributor 7 High temperature solution heat exchanger 8 Low temperature solution heat exchanger 8A Concentrated solution pipe 9 Solution circulation pump 10 Cooling / heating switching valve 10A Line 11 Water refrigerant proportional valve 11A Line 11B Water refrigerant pipe 12 Freezing prevention valve 12A Line 13 Solution bypass valve 13A Line 14 Cooling water circulation pump 15 Cold and hot water circulation pump 16 Cold water outlet temperature sensor 17 Evaporator temperature sensor DESCRIPTION OF SYMBOLS 21 Refrigerant liquid temperature sensor 22 Solution bypass valve 25 Cooling water inlet temperature sensor 40, 41 Cooling water pipe 42 Cooling tower 42A Blower 43, 44 Cooling / heating water pipe 50 Refrigerant liquid pipe 51 Refrigerant vapor pipe 52, 53 Indoor unit 54, 55 Expansion valve 56 Cooling / heating switching Valve 57 Refrigerant pump 58 Check valve 59 Controller 60 Solenoid valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−247968(JP,A) 特開 平6−257880(JP,A) 特開 昭56−155352(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-247968 (JP, A) JP-A-6-257880 (JP, A) JP-A-56-155352 (JP, A) (58) Field (Int.Cl. 7 , DB name) F25B 15/00 306

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 吸収器上部に濃溶液を導く濃溶液管
発器に内装された冷媒分配器とを凍結防止弁を介して連
通する管路と、凝縮器から前記冷媒分配器に水冷媒を導
水冷媒管と、該水冷媒管に並列に接続され蒸発器温度
に基づいて開度制御される水冷媒比例弁を介装した管路
と、前記吸収器に内装された冷却水コイルに冷却水を供
給する冷却水管と、冷却水に冷却用空気を送風する送風
を有して該冷却水を冷却するクーリングタワーと、を
含んでなり、前記送風機は前記クーリングタワーに流入
する冷却水の温度があらかじめ設定された第1の温度以
下に低下したとき送風を停止するように構成され、前記
蒸発器と負荷との間で循環する二次冷媒として相変化す
る流体が用いられる吸収式冷熱発生装置において、前記
冷却水管吸収器入り口付近に冷却水入り口温度を検出
して出力する冷却水入口温度センサが設けられ、前記
冷媒比例弁は、前記冷却水入口温度センサが出力する冷
却水温度が前記第1の温度より低く設定された第2の温
度未満であるとき蒸発器温度と無関係に全開するように
構成されていることを特徴とする吸収式冷熱発生装置。
1. A concentrated solution pipe for introducing a concentrated solution to an upper part of an absorber and a steam
A conduit which communicates the interior refrigerant distributor via the antifreeze valve Hatsuki, water refrigerant pipe for guiding the water coolant to said refrigerant distributor from the condenser, evaporator connected in parallel to the water refrigerant pipe a conduit <br/> was interposed water coolant proportional valve which is opening control based on the vessel temperature, and the cooling water pipe for supplying cooling water to the cooling water coil is decorated in the absorber, cooled to cooling water Blast to blow air
A cooling tower having a cooling device for cooling the cooling water, wherein the blower stops blowing when the temperature of the cooling water flowing into the cooling tower falls below a first temperature set in advance. Configured as above,
In an absorption-type cold heat generating apparatus in which a phase-change fluid is used as a secondary refrigerant circulating between an evaporator and a load,
The cooling water inlet temperature sensor detects and outputs the absorber cooling water inlet temperature in the vicinity of the inlet of the cooling water pipe is provided, the water
The refrigerant proportional valve is configured to be fully opened irrespective of an evaporator temperature when a cooling water temperature output by the cooling water inlet temperature sensor is lower than a second temperature set lower than the first temperature. An absorption type cold heat generator.
【請求項2】 前記第2の温度と前記第1の温度との温
度差が、2〜5.5℃の範囲内であることを特徴とする
請求項1に記載の吸収式冷熱発生装置。
2. The absorption type cold heat generator according to claim 1, wherein a temperature difference between the second temperature and the first temperature is in a range of 2 to 5.5 ° C.
【請求項3】 前記第2の温度が22℃であることを特
徴とする請求項1または2に記載の吸収式冷熱発生装
置。
3. The absorption-type cold heat generator according to claim 1, wherein the second temperature is 22 ° C.
JP17835795A 1995-07-14 1995-07-14 Absorption type cold heat generator Expired - Fee Related JP3175040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17835795A JP3175040B2 (en) 1995-07-14 1995-07-14 Absorption type cold heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17835795A JP3175040B2 (en) 1995-07-14 1995-07-14 Absorption type cold heat generator

Publications (2)

Publication Number Publication Date
JPH0926223A JPH0926223A (en) 1997-01-28
JP3175040B2 true JP3175040B2 (en) 2001-06-11

Family

ID=16047083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17835795A Expired - Fee Related JP3175040B2 (en) 1995-07-14 1995-07-14 Absorption type cold heat generator

Country Status (1)

Country Link
JP (1) JP3175040B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5091590B2 (en) * 2007-08-30 2012-12-05 矢崎総業株式会社 Absorption type water heater

Also Published As

Publication number Publication date
JPH0926223A (en) 1997-01-28

Similar Documents

Publication Publication Date Title
US20170184314A1 (en) Heat pump heating system
JP3393780B2 (en) Absorption air conditioner
JPH05231724A (en) Refrigerator and operation thereof
JP4317793B2 (en) Cooling system
JP3175040B2 (en) Absorption type cold heat generator
JP2011122801A (en) Air heat source heat pump system and method of operating the same
JP2002295917A (en) Control method for absorption freezer
JP3448680B2 (en) Absorption air conditioner
JP3289235B2 (en) Absorption type cold heat generator
JP3451539B2 (en) Absorption type cold heat generator
JP3393398B2 (en) Absorption type cold heat generator
JP3080802B2 (en) Subcooled ice thermal storage device
JP3407182B2 (en) Absorption type cold heat generator
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP3289236B2 (en) Absorption type cold heat generator
JP3280169B2 (en) Double effect absorption refrigerator and chiller / heater
JP3448681B2 (en) Absorption type cold heat generator
JP3383898B2 (en) Absorption type cold heat generator
JP3451538B2 (en) Absorption type cold heat generator
JP3871206B2 (en) Refrigeration system combining absorption and compression
JPH11257782A (en) Absorption cold heat generator
JP3594453B2 (en) Operating method of air conditioner
JP2984459B2 (en) Absorption chiller / heater
JPH09287850A (en) Absorption type cold/hot heat generating device
JP6341481B2 (en) Refrigeration system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees