JPH11257782A - Absorption cold heat generator - Google Patents

Absorption cold heat generator

Info

Publication number
JPH11257782A
JPH11257782A JP10058029A JP5802998A JPH11257782A JP H11257782 A JPH11257782 A JP H11257782A JP 10058029 A JP10058029 A JP 10058029A JP 5802998 A JP5802998 A JP 5802998A JP H11257782 A JPH11257782 A JP H11257782A
Authority
JP
Japan
Prior art keywords
solution
cooling
temperature
evaporator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10058029A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamada
哲也 山田
Ryuichiro Kawakami
▲隆▼一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Yazaki Corp
Original Assignee
Osaka Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Yazaki Corp filed Critical Osaka Gas Co Ltd
Priority to JP10058029A priority Critical patent/JPH11257782A/en
Publication of JPH11257782A publication Critical patent/JPH11257782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To obtain an absorption cold heat generator employing a variable phase fluid as a secondary cold heat carrier in which stabilized cooling output control can be ensured at the time of cooling the secondary cold heat carrier by controlling a solution bypass valve for introducing a concentrated absorbing solution to the bottom of an absorber depending on the evaporator temperature. SOLUTION: The absorption cold heat generator 1 comprises a regenerator 3 for heating a dilute absorbing solution with exhaust hot water from a heat carrier pump 28, a condenser 11 for cooling and condensing refrigerant vapor generated therefrom, an evaporator 13 for cooling the refrigerant vapor in an evaporation coil by evaporating the liquid refrigerant, and an absorber 16 for absorbing the refrigerant vapor through a concentrated solution. A solution bypass valve 33 is provided in a pipeline 51 connecting the lower part of the absorber 16 with a concentrated solution rising pipe 42 which connects the heating fluid side of a solution heat exchanger 20 with the upper part of the absorber 16. Efficient cooling operation following up the fluctuation of cooling load is realized by controlling the bypass valve 33 depending on the evaporator temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷凍サイク
ルを利用した吸収式冷熱発生装置に係り、特に、二次側
冷熱媒体として相変化(潜熱)する流体を用いる吸収式
冷熱発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption-type chiller using an absorption refrigeration cycle, and more particularly to an absorption-type chiller using a phase-change (latent heat) fluid as a secondary cooling medium. It is.

【0002】[0002]

【従来の技術】図5は、従来技術に係る温水焚吸収式冷
温水機の一例を示す系統図である。この温水焚吸収式冷
温水機2aは、再生器3の加熱源熱源として、例えば排
温水等の熱媒を用いるもので、通常、単効用使用がほと
んどであり、冷凍能力成績係数(COPで表し、COP
=(冷凍能力)/(実インプット(入熱量)))は0.
7程度である。
2. Description of the Related Art FIG. 5 is a system diagram showing an example of a hot water-fired absorption type chiller / heater according to the prior art. This hot-water-fired absorption chiller / heater 2a uses a heat medium such as waste water as a heat source heat source of the regenerator 3, and is usually used for a single effect, and has a refrigeration capacity coefficient of performance (COP). , COP
= (Refrigeration capacity) / (actual input (heat input)))
It is about 7.

【0003】この温水焚吸収式冷温水機2aにおいて、
冷房運転を行なう時は、冷温水ポンプ26、冷却水ポン
プ27、熱媒ポンプ28、溶液循環ポンプ25が運転さ
れる。熱媒出入口の二方弁32、32は手動又は自動で
開となり、100%の定格流量の排温水73aが供給さ
れる。熱媒入口74の温度は、各装置によって差はある
が、70〜90℃の範囲内で決定し、定格条件の熱媒入
口74の温度、例えば88℃とし、熱媒入口74と熱媒
出口75との温度差はΔt=5℃とする。温水焚では、 インプット(入熱量)=熱媒出入口温度差Δt×熱媒循
環量×比熱×比重量 で算出する。
In this hot water-fired absorption type chiller / heater 2a,
When performing the cooling operation, the cold / hot water pump 26, the cooling water pump 27, the heat medium pump 28, and the solution circulation pump 25 are operated. The two-way valves 32, 32 at the heat medium inlet / outlet are opened manually or automatically, and the waste water 73a having a rated flow rate of 100% is supplied. The temperature of the heat medium inlet 74 is determined within the range of 70 to 90 ° C., although there is a difference depending on each device. The temperature of the heat medium inlet 74 under rated conditions, for example, 88 ° C., is set. The temperature difference from 75 is Δt = 5 ° C. In hot water firing, the input (heat input) = heat medium inlet / outlet temperature difference Δt × heat medium circulation amount × specific heat × specific weight.

【0004】再生器3では排温水73aが供給され、加
熱源で吸収溶液を加熱し排温水73bとなって排出され
る。再生器3に送られてくる稀溶液が再生器コイル表面
で沸騰し、冷媒蒸気と濃溶液に分離する。冷媒蒸気は上
部の凝縮器11へ導かれ凝縮器コイル内の冷却水により
コイル表面で凝縮して水冷媒となり、溶液濃度調整機能
を有する冷媒貯蔵室9へ送られる。水冷媒は水冷媒管4
0を介して水冷媒分配器14へ移送される。水冷媒は蒸
発器13の蒸発コイル表面へ滴下、散布されて蒸発し冷
媒蒸気となる。このとき蒸発コイル内を循環する冷水7
9a(冷温水)は、気化熱(潜熱)を奪われて温度が低
下し冷水79bとなる。
In the regenerator 3, waste water 73a is supplied, and the absorbing solution is heated by a heating source and discharged as waste water 73b. The dilute solution sent to the regenerator 3 boils on the surface of the regenerator coil and separates into a refrigerant vapor and a concentrated solution. The refrigerant vapor is guided to the upper condenser 11 and condensed on the coil surface by the cooling water in the condenser coil to become a water refrigerant, which is sent to the refrigerant storage chamber 9 having a solution concentration adjusting function. The water refrigerant is a water refrigerant pipe 4
0 to the water refrigerant distributor 14. The water refrigerant is dropped on the surface of the evaporator coil of the evaporator 13 and is scattered to evaporate to form refrigerant vapor. At this time, the cold water 7 circulating in the evaporation coil
9a (cold / hot water) is deprived of heat of vaporization (latent heat) and its temperature drops to become cold water 79b.

【0005】更に、再生器3で分離された濃溶液は濃溶
液降り管41、溶液熱交換器20、濃溶液昇り管42を
介して吸収器16へ導かれ、蒸発器13で蒸発した冷媒
蒸気を吸収し冷却水83aと熱交換して稀溶液となり、
溶液循環ポンプ25にて稀溶液降り管43、溶液熱交換
器20、稀溶液昇り管44を介して再生器3に送られて
同様の冷房サイクルを繰り返す。
Further, the concentrated solution separated in the regenerator 3 is guided to the absorber 16 via the concentrated solution down pipe 41, the solution heat exchanger 20, and the concentrated solution up pipe 42, and the refrigerant vapor evaporated in the evaporator 13 And heat exchange with the cooling water 83a to become a dilute solution,
The solution circulation pump 25 sends the solution to the regenerator 3 via the diluted solution downcomer 43, the solution heat exchanger 20, and the diluted solution ascending tube 44, and repeats the same cooling cycle.

【0006】冷房運転時の出力制御は、冷水出口に組み
込まれ冷水出口温度を検知する冷水温度センサー(「W
Tセンサー」とも云う)61で行なう。水冷媒及び冷水
の凍結破損や溶液の晶析トラブル防止の保護機能として
WTセンサー61と、蒸発器13の温度を検知する蒸発
器温度センサー(「LTセンサー」とも云う)60とで
運転の発停制御を行なっている。特に、蒸発器温度が低
下した場合は、蒸発器温度センサー60にて凍結防止弁
34を開に作動させて稀溶液分岐管45を介して水冷媒
分配器14へ溶液を流入させて凍結防止を図る。
[0006] The output control during the cooling operation is performed by a chilled water temperature sensor ("W
T sensor 61). Operation is started and stopped by a WT sensor 61 and an evaporator temperature sensor (also referred to as an “LT sensor”) 60 for detecting the temperature of the evaporator 13 as a protection function for preventing freezing damage of the water refrigerant and cold water and crystallization trouble of the solution. Controlling. In particular, when the evaporator temperature decreases, the evaporator temperature sensor 60 operates the antifreeze valve 34 to open, so that the solution flows into the water refrigerant distributor 14 through the dilute solution branch pipe 45 to prevent freezing. Aim.

【0007】一般に排熱利用の吸収式冷温水機は、冷房
運転が主であり、暖房運転で使われることは少ない。こ
れは、暖房機においてはイニシャルコストの点から直に
熱交換器を介して温水温度を調節し室内機へ送るシステ
ムが多いためである。但し、システムの組み方によって
は温水焚吸収式冷温水機に暖房機能を有した方が安価な
場合もある。
[0007] In general, an absorption type chiller / heater utilizing waste heat mainly performs a cooling operation, and is rarely used in a heating operation. This is because many heaters directly control the temperature of hot water via a heat exchanger and send it to an indoor unit in terms of initial cost. However, depending on how the system is assembled, it may be cheaper to have a heating function in the hot water-fired absorption chiller / heater.

【0008】本温水焚吸収式冷温水機2aは、暖房運転
も可能であるので暖房作用についても記載しておく。こ
の温水焚吸収式冷温水機2aは、濃溶液分岐管47、冷
暖切替弁35、溶液バイパス弁33及びバッフル板17
を有し、暖房運転時は、冷却水ポンプ27はOff(オ
フ、全閉の意味で、以下同様)、冷暖切替弁35はOn
(オン、全開の意味で、以下同様)となり、再生器3で
加熱された溶液を直接吸収器16の底部へ導く。バッフ
ル板17は気液分離機能を有し高温の溶液が吸収器コイ
ルへ飛散するのを防止する。吸収器16及び蒸発器13
周囲の加熱蒸気は蒸発コイル内を循環する冷温水と熱交
換して温水となる。又、暖房運転時、濃溶液昇り管42
より吸収器16に高温溶液が流入しないように溶液バイ
パス弁33を開として吸収器16の底部へ逃がしてい
る。
[0008] Since the hot water-fired absorption type chiller / heater 2a can also perform a heating operation, the heating action will be described. The hot-water-fired absorption-type hot / cold water heater 2a includes a concentrated solution branch pipe 47, a cooling / heating switching valve 35, a solution bypass valve 33, and a baffle plate 17
During the heating operation, the cooling water pump 27 is turned off (in the meaning of off and fully closed, the same applies hereinafter), and the cooling / heating switching valve 35 is turned on.
(The meaning of ON, fully open, the same applies hereinafter), and the solution heated by the regenerator 3 is directly led to the bottom of the absorber 16. The baffle plate 17 has a gas-liquid separation function and prevents a high-temperature solution from scattering to the absorber coil. Absorber 16 and evaporator 13
The surrounding heated steam exchanges heat with cold and hot water circulating in the evaporating coil to become hot water. Also, during the heating operation, the concentrated solution riser pipe 42
The solution bypass valve 33 is opened to escape to the bottom of the absorber 16 so that the hot solution does not flow into the absorber 16.

【0009】図6は、図5に示す温水焚吸収式冷温水機
の制御を説明する図で、(A)は蒸発器温度と各ポンプ
の起動、停止との関係を示す線図、(B)は冷水出口温
度と各ポンプの起動、停止との関係を示す線図、であ
る。
FIG. 6 is a diagram for explaining the control of the hot water absorption type chiller / heater shown in FIG. 5, (A) is a diagram showing the relationship between the evaporator temperature and the start and stop of each pump, (B) () Is a diagram showing the relationship between the chilled water outlet temperature and the start and stop of each pump.

【0010】先に述べたように、温水焚吸収式冷温水機
2aは、蒸発器温度(「LT」とも云う)を検知する温
度検知手段として蒸発器温度センサー60を備えてい
る。蒸発器温度センサー60は、図6(A)に示すよう
に、蒸発器温度が5℃未満の場合は、凍結防止弁34を
On、溶液循環ポンプ25を遅延Off(遅延停止、以
下同様)、熱媒ポンプ28及び冷却水ポンプ27をOf
fとする。一方、蒸発器温度が5℃未満の温度から上昇
し5℃になると切り替わり、5℃を超えた範囲で凍結防
止弁34をOff、溶液循環ポンプ25、熱媒ポンプ2
8及び冷却水ポンプ27を各々Onとする。他方、蒸発
器温度が2℃を超えた温度から下降し2℃までは凍結防
止弁34をOff、溶液循環ポンプ25、熱媒ポンプ2
8及び冷却水ポンプ27を各々Onとし、2℃で切り替
わり、凍結防止弁34をOn、溶液循環ポンプ25を遅
延Off、熱媒ポンプ28及び冷却水ポンプ27をOf
fとし、以上のサイクルを繰り返す。
As described above, the hot water-fired absorption chiller / heater 2a has the evaporator temperature sensor 60 as temperature detecting means for detecting the evaporator temperature (also referred to as "LT"). As shown in FIG. 6A, when the evaporator temperature is lower than 5 ° C., the evaporator temperature sensor 60 turns on the antifreeze valve 34, turns off the solution circulation pump 25, and turns off the solution circulation pump 25 (delay stop, the same applies hereinafter). Turn off the heat medium pump 28 and the cooling water pump 27
f. On the other hand, when the evaporator temperature rises from a temperature lower than 5 ° C. to 5 ° C., the temperature is switched, and the anti-freezing valve 34 is turned off, the solution circulation pump 25, and the heat medium pump 2
8 and the cooling water pump 27 are each On. On the other hand, when the evaporator temperature drops from a temperature exceeding 2 ° C. to 2 ° C., the antifreeze valve 34 is turned off, the solution circulation pump 25 and the heat medium pump 2 are turned off.
8 and the cooling water pump 27 are turned on, respectively, and switched at 2 ° C., the antifreeze valve 34 is turned on, the solution circulation pump 25 is turned off, the heat medium pump 28 and the cooling water pump 27 are turned off.
f, and the above cycle is repeated.

【0011】又、温水焚吸収式冷温水機2aは、温度検
知手段として冷水温度センサー61を備え、図6(B)
に示すように、冷水出口温度が10℃未満の温度の場合
は、溶液バイパス弁33をOn、溶液循環ポンプ25を
遅延Off、熱媒ポンプ28及び冷却水ポンプ27をO
ffとする。一方、冷水出口温度が10℃未満の温度か
ら上昇し10℃になると切り替わり、溶液バイパス33
をOff、溶液循環ポンプ25、熱媒ポンプ28及び冷
却水ポンプ27をOnとする。他方、6℃を超える温度
から下降し6℃までは溶液バイパス33をOff、溶液
循環ポンプ25、熱媒ポンプ28及び冷却水ポンプ27
をOnとし、6℃で切り替わり、溶液バイパス弁33を
On、溶液循環ポンプ25を遅延Off、熱媒ポンプ2
8及び冷却水ポンプ27をOffとし、以上のサイクル
を繰り返す。
The hot-water-fired absorption-type chiller / heater 2a has a chilled-water temperature sensor 61 as a temperature detecting means.
As shown in FIG. 5, when the chilled water outlet temperature is lower than 10 ° C., the solution bypass valve 33 is turned on, the solution circulation pump 25 is turned off, the heat medium pump 28 and the cooling water pump 27 are turned on.
ff. On the other hand, when the chilled water outlet temperature rises from a temperature lower than 10 ° C. to 10 ° C., it is switched, and the solution bypass 33
Is Off, and the solution circulation pump 25, the heat medium pump 28, and the cooling water pump 27 are On. On the other hand, the temperature is lowered from a temperature exceeding 6 ° C., and the solution bypass 33 is turned off, the solution circulation pump 25, the heating medium pump 28 and the cooling water pump 27
Is switched on at 6 ° C., the solution bypass valve 33 is turned on, the solution circulation pump 25 is turned off, and the heat medium pump 2 is turned on.
8 and the cooling water pump 27 are turned off, and the above cycle is repeated.

【0012】図7は、従来技術に係る吸収式冷熱発生装
置を有する空調装置の一例を示す系統図である。この図
に示すように、近年、二次側冷熱媒体に相変化を行なう
流体を用いることにより、単位流量あたりの熱搬送量を
増加させる吸収式冷熱発生装置2bを含む空調装置が提
案されている(例えば、特開平9−26223号公
報)。
FIG. 7 is a system diagram showing an example of an air conditioner having an absorption type cold heat generator according to the prior art. As shown in this figure, in recent years, an air conditioner including an absorption-type cold heat generator 2b that increases a heat transfer amount per unit flow rate by using a fluid that changes phase as a secondary-side cooling medium has been proposed. (For example, JP-A-9-26223).

【0013】上記空調装置は、枠で囲まれた吸収式冷熱
発生装置2bと、この吸収式冷熱発生装置2bに冷媒液
管54、冷媒蒸気管55で接続され空調対象空間に配置
されて該空間の空気との熱交換を行なう空調用室内機、
例えば室内機90a〜90dと、二次側冷熱媒体の液を
吸収式冷熱発生装置2bに戻す冷媒ポンプ102と、こ
れら吸収式冷熱発生装置2b、室内機90a〜90d等
を制御するコントローラ98及びシステムコントローラ
100とを含んでいる。この例では、コントローラ98
は、吸収式冷熱発生装置2b内に設けられている。そし
て、吸収式冷熱発生装置2bは、冷却水管48、49に
接続され冷却水を冷却する冷却塔69と、前記冷却水管
49に介装され冷却水を冷却塔69から吸収器16及び
凝縮器11に循環させる冷却水ポンプ27とを有する。
The air conditioner is arranged in a space to be air-conditioned by being connected to an absorption-type cold heat generator 2b surrounded by a frame and connected to the absorption-type cold heat generator 2b by a refrigerant liquid pipe 54 and a refrigerant vapor pipe 55. Air-conditioning indoor unit that performs heat exchange with air
For example, the indoor units 90a to 90d, the refrigerant pump 102 for returning the liquid of the secondary-side cooling medium to the absorption-type cold-heat generator 2b, the controller 98 and the system for controlling the absorption-type cold-heat generator 2b, the indoor units 90a to 90d, and the like And a controller 100. In this example, the controller 98
Is provided in the absorption-type cold heat generator 2b. The absorption-type cold heat generator 2b is connected to the cooling water pipes 48 and 49 to cool the cooling water, and the cooling water pipe 49 interposed between the cooling tower 69 and the cooling water from the cooling tower 69 to the absorber 16 and the condenser 11. And a cooling water pump 27 that circulates the water.

【0014】更に通常、室外機と呼ばれる吸収式冷熱発
生装置2bは、燃料を燃焼させその熱で稀溶液を加熱す
る高温再生器4と、この高温再生器4で加熱された稀溶
液から冷媒蒸気と中間濃溶液を分離する分離器7と、分
離された冷媒蒸気を熱源として前記中間濃溶液を加熱し
て更に冷媒蒸気を発生させる低温再生器5と、該低温再
生器5を通過した冷媒蒸気及び該低温再生器5で発生し
た冷媒蒸気を冷却して凝縮液化させ液冷媒を生成する凝
縮器11と、該凝縮器11で生成された液冷媒を内装し
た水冷媒分配器14から同じく内装した蒸発コイル上に
滴下、蒸発させ該蒸発コイル中の二次側冷媒(例えば、
HFC134)を冷却する蒸発器13と、該蒸発器13
で蒸発した冷媒蒸気を濃溶液に吸収させ稀溶液とする吸
収器16と、該稀溶液を加圧し低温溶液熱交換器22、
高温溶液熱交換器21の被加熱流体側を経て前記高温再
生器4に送る溶液循環ポンプ25と、暖房運転の時に分
離器7で分離された中間濃溶液を蒸発器13及び吸収器
16の底部に導く冷暖切換弁35とを有する。
Further, an absorption-type cold heat generator 2b, usually called an outdoor unit, comprises a high-temperature regenerator 4 for burning fuel and heating a dilute solution with the heat, and a refrigerant vapor from the dilute solution heated by the high-temperature regenerator 4. A low-temperature regenerator 5 for heating the intermediate-concentrated solution using the separated refrigerant vapor as a heat source to further generate a refrigerant vapor, and a refrigerant vapor passing through the low-temperature regenerator 5 And a condenser 11 for cooling and condensing and liquefying the refrigerant vapor generated in the low-temperature regenerator 5 to generate a liquid refrigerant, and a water refrigerant distributor 14 in which the liquid refrigerant generated in the condenser 11 is mounted. Drop on the evaporation coil, evaporate and make the secondary refrigerant in the evaporation coil (for example,
Evaporator 13 for cooling the HFC 134);
An absorber 16 that absorbs the refrigerant vapor evaporated in the concentrated solution into a diluted solution, and a low-temperature solution heat exchanger 22 that pressurizes the diluted solution,
A solution circulating pump 25 which feeds the high-temperature solution heat exchanger 21 to the high-temperature regenerator 4 via the fluid to be heated, and an intermediate concentrated solution separated by the separator 7 during the heating operation at the bottom of the evaporator 13 and the absorber 16 And a cooling / heating switching valve 35 that leads to

【0015】図7に示す空調装置の動作は次の通りであ
る。即ち、冷房時には、冷暖切換弁104は開かれてい
る。冷媒蒸気(HFC134)は、蒸発器13の蒸発コ
イルで冷却凝縮して冷媒液となり、重力により、冷媒液
管54を下方に流れ、膨張弁94a〜94dを経て各室
内機90a〜90dの熱交換器に流入する。熱交換器に
流入した冷媒液は、空調対象空間の空気の熱を奪って蒸
発し、冷媒蒸気となって冷媒蒸気管55を経て上昇し蒸
発器13の蒸発コイルに流入する。吸収式冷熱発生装置
(室外機)2bは、冷房モードで運転されているから、
蒸発器13の蒸発コイルは、その表面に滴下される水冷
媒の蒸発により冷却され、蒸発コイルに流入してきた冷
媒蒸気を凝縮液化させる。この凝縮液化により、蒸発コ
イル内部の圧力が低下し、室内機90a〜90dの熱交
換器で蒸発した冷媒蒸気を蒸発器13に吸引する。蒸発
コイル内部で凝縮液化した冷媒液は重力で室内機に流入
するから、冷房時の二次側冷媒は自然循環し、ポンプに
よる冷媒の駆動を行なう必要がない。
The operation of the air conditioner shown in FIG. 7 is as follows. That is, during cooling, the cooling / heating switching valve 104 is open. The refrigerant vapor (HFC 134) is cooled and condensed by the evaporating coil of the evaporator 13 to become a refrigerant liquid, flows downward through the refrigerant liquid pipe 54 by gravity, and exchanges heat with the indoor units 90a to 90d via expansion valves 94a to 94d. Flows into the vessel. The refrigerant liquid that has flowed into the heat exchanger evaporates by removing the heat of the air in the air-conditioned space, becomes refrigerant vapor, rises through the refrigerant vapor pipe 55, and flows into the evaporation coil of the evaporator 13. Since the absorption-type cold heat generator (outdoor unit) 2b is operated in the cooling mode,
The evaporation coil of the evaporator 13 is cooled by evaporation of the water refrigerant dropped on the surface thereof, and condenses and liquefies the refrigerant vapor flowing into the evaporation coil. Due to this condensation and liquefaction, the pressure inside the evaporation coil decreases, and the refrigerant vapor evaporated in the heat exchangers of the indoor units 90a to 90d is sucked into the evaporator 13. Since the refrigerant liquid condensed and liquefied inside the evaporation coil flows into the indoor unit by gravity, the secondary-side refrigerant naturally circulates during cooling, and there is no need to drive the refrigerant by a pump.

【0016】冷房運転が開始されると、先に述べたよう
に、蒸発コイル内部の圧力が低下し、冷媒蒸気管55内
の飽和冷媒蒸気が圧力差により蒸発コイル内に流入す
る。蒸発コイル内で凝縮して生成した冷媒液は、冷媒液
管54内を自重で流下し、冷媒液のヘッド(液柱)が上
昇してくる。冷媒の自然循環が成立するためには、冷媒
液ヘッドと冷媒蒸気ヘッドの差が、二次側冷媒循環回路
の全圧力損失以上であればよい。つまり、次式を満足す
る液ヘッドが形成されるまでは冷媒の自然循環は開始さ
れない。このことは、冷房運転開始時点で蒸発器13に
供給される熱負荷が少ないことを意味する。
When the cooling operation is started, as described above, the pressure inside the evaporator coil decreases, and the saturated refrigerant vapor in the refrigerant vapor pipe 55 flows into the evaporator coil due to the pressure difference. The refrigerant liquid generated by condensing in the evaporation coil flows down in the refrigerant liquid pipe 54 by its own weight, and the head (liquid column) of the refrigerant liquid rises. In order to achieve the natural circulation of the refrigerant, the difference between the refrigerant liquid head and the refrigerant vapor head only needs to be equal to or greater than the total pressure loss of the secondary refrigerant circulation circuit. That is, the natural circulation of the refrigerant is not started until a liquid head satisfying the following equation is formed. This means that the heat load supplied to the evaporator 13 at the start of the cooling operation is small.

【0017】[0017]

【数1】 (Equation 1)

【0018】溶液バイパス弁33は、暖房運転時の高温
溶液が吸収器コイルへ流入しないようにするため、暖房
運転時開となりバイパスさせることを主目的としてい
る。冷房運転時は二次側冷媒がOFF以外は閉となる。
The main purpose of the solution bypass valve 33 is to open and bypass the heating operation in order to prevent the high-temperature solution from flowing into the absorber coil during the heating operation. During the cooling operation, the secondary side refrigerant is closed except for OFF.

【0019】[0019]

【発明が解決しようとする課題】しかしながら、図5に
示した従来の温水焚吸収式冷温水機2aで行なっていた
蒸発器温度及び冷水出口温度による制御を、二次側冷熱
媒体として相変化(潜熱)する流体を用いる図7の吸収
式冷熱発生装置2bに適用して運転した場合、冷却水入
口温度が低い時及び低冷房負荷運転の時に蒸発器温度セ
ンサー60が頻繁に作動し、結果として、凍結防止弁3
4がOn−Offするために各部温度の変動が大きくな
り、安定した運転が出来ず、二次側冷媒の自然循環サイ
クルに支障が発生し、急激な温度変動は二次側循環回路
に好ましくない。
However, the control by the evaporator temperature and the outlet temperature of the chilled water performed by the conventional hot water-fired absorption type chiller / heater 2a shown in FIG. When the cooling water inlet temperature is low and when the cooling water inlet temperature is low, the evaporator temperature sensor 60 frequently operates, and as a result, when the operation is applied to the absorption type cold heat generation device 2b of FIG. , Anti-freeze valve 3
4 is on-off, the temperature of each part fluctuates greatly, stable operation is not possible, and a trouble occurs in the natural circulation cycle of the secondary refrigerant, and rapid temperature fluctuation is not preferable in the secondary circulation circuit. .

【0020】本発明の課題は、二次側冷熱媒体として相
変化する流体を用いる吸収式冷熱発生装置において、二
次側冷熱媒体を冷却する時に、冷却出力制御が安定し、
効率良く冷却運転が出来ることである。
An object of the present invention is to provide an absorption-type cold heat generator using a phase-changing fluid as a secondary cooling medium, in which cooling output control is stabilized when cooling the secondary cooling medium.
That is, the cooling operation can be performed efficiently.

【0021】[0021]

【課題を解決するための手段】上記課題を解決するため
本発明は、再生器、凝縮器、蒸発器、吸収器、熱交換器
及び循環ポンプを含む各機器を接続し、前記再生器に供
給される熱媒によって加熱する吸収溶液を循環させる一
次側循環回路を形成すると共に、前記蒸発器の蒸発伝熱
管の管路を含む二次側循環回路を流れる二次側冷熱媒体
を前記蒸発器の蒸発伝熱管を介して前記吸収溶液によっ
て冷却又は加熱し相変化をさせる吸収式冷熱発生装置に
おいて、前記二次側冷熱媒体を冷却する時に、前記再生
器で加熱、分離された吸収溶液の濃溶液を前記吸収器の
底部に導入する溶液バイパス弁と、前記吸収器の冷却水
入口温度、前記蒸発器の蒸発器温度、前記蒸発器の二次
側冷熱媒体出口温度の少なくとも一つを検知する温度検
知手段と、該温度検知手段が検知した温度に対応して前
記溶液バイパス弁の流量を制御する制御信号を該溶液バ
イパス弁に出力するコントローラとを備えたことであ
る。
In order to solve the above-mentioned problems, the present invention connects various devices including a regenerator, a condenser, an evaporator, an absorber, a heat exchanger, and a circulation pump, and supplies the equipment to the regenerator. A primary-side circulation circuit for circulating the absorption solution heated by the heat medium to be heated is formed, and a secondary-side cooling / heating medium flowing through a secondary-side circulation circuit including a pipe of an evaporation heat transfer tube of the evaporator is supplied to the evaporator. In an absorption-type cold heat generating apparatus that performs a phase change by cooling or heating by the absorption solution through an evaporation heat transfer tube, when the secondary-side cooling medium is cooled, a concentrated solution of the absorption solution heated and separated by the regenerator is cooled. A solution bypass valve for introducing a gas to the bottom of the absorber, and a temperature for detecting at least one of a cooling water inlet temperature of the absorber, an evaporator temperature of the evaporator, and a secondary cooling medium outlet temperature of the evaporator. Detecting means and the temperature Knowledge means is that has a controller that outputs the solution bypass valve control signals for controlling the flow rate of the solution bypass valve in response to temperature detected.

【0022】二次側冷熱媒体を冷却する時に、冷却水入
口温度、蒸発器温度、蒸発器の二次側冷熱媒体出口温度
の少なくとも一つを検知する温度検知手段により、温度
を検知し、この温度信号を受けてコントローラはこの温
度に対応する溶液バイパス弁の流量を制御する制御信号
を出力する。溶液バイパス弁は、この制御信号を受けて
吸収溶液を吸収器の底部に導入する。これにより、低温
度の冷却水により、吸収能力が過大になり、その結果冷
却水入口温度を低下させることを防止するので、冷却出
力制御が安定し、効率良く冷却運転が出来る。
When cooling the secondary cooling medium, the temperature is detected by temperature detecting means for detecting at least one of a cooling water inlet temperature, an evaporator temperature, and a secondary cooling medium outlet temperature of the evaporator. Upon receiving the temperature signal, the controller outputs a control signal for controlling the flow rate of the solution bypass valve corresponding to the temperature. The solution bypass valve receives the control signal and introduces the absorbing solution to the bottom of the absorber. This prevents the absorption capacity from becoming excessive due to the low-temperature cooling water, thereby preventing the cooling-water inlet temperature from lowering, so that the cooling output control is stabilized and the cooling operation can be performed efficiently.

【0023】[0023]

【発明の実施の形態】以下、本発明に係る吸収式冷熱発
生装置の実施の形態を図面に基づいて詳細に説明する。
尚、図1〜4において、従来技術で説明した図5〜7と
同じ構造、作用部分には同一符号を付けて示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of an absorption-type cold heat generator according to the present invention will be described in detail with reference to the drawings.
In FIGS. 1 to 4, the same reference numerals are given to the same structures and working parts as in FIGS.

【0024】図1は、本発明に係る吸収式冷熱発生装置
を含む空調装置の一実施の形態を示す系統図である。本
実施の形態の空調装置は、枠で囲まれた吸収式冷熱発生
装置1と、この吸収式冷熱発生装置1に冷媒液管54及
び冷媒蒸気管55で接続され空調対象空間に配置され
て、この空間の空気との熱交換を行なう複数の室内機、
例えば室内機90a〜90dと、冷媒液を吸収式冷熱発
生装置1に戻す冷媒ポンプ102と、これら吸収式冷熱
発生装置1、室内機90a〜90d等を制御するコント
ローラ98及びシステムコントローラ100とを含んで
いる。更に、吸収式冷熱発生装置1は、この吸収式冷熱
発生装置1に冷却水管48、49で接続され冷却水を冷
却する冷却塔69と、冷却水管49に介装され冷却水を
冷却塔69から後述の吸収器16と凝縮器11に循環さ
せる冷却水ポンプ27とを有する。ここで、コントロー
ラ98は、この実施の形態の場合、吸収式冷熱発生装置
1の側に設けられ、各温度又は圧力センサーで検知され
た温度又は圧力に基づいて演算し、各制御弁に制御信号
を出力する。又、システムコントローラ100は、室内
機90a〜90d、冷媒ポンプ102等を制御する。
FIG. 1 is a system diagram showing an embodiment of an air conditioner including an absorption type cold heat generator according to the present invention. The air conditioner of the present embodiment includes an absorption-type cold heat generating device 1 surrounded by a frame, and connected to the absorption-type cold heat generation device 1 by a refrigerant liquid pipe 54 and a refrigerant vapor pipe 55 and arranged in a space to be air-conditioned. A plurality of indoor units that exchange heat with the air in this space,
For example, it includes the indoor units 90a to 90d, a refrigerant pump 102 for returning the refrigerant liquid to the absorption-type cold heat generator 1, a controller 98 for controlling the absorption-type cold heat generator 1, the indoor units 90a to 90d, and the like, and a system controller 100. In. Further, the absorption-type cold-heat generator 1 is connected to the absorption-type cold-heat generator 1 by the cooling water pipes 48 and 49 to cool the cooling water, and the cooling tower 69 interposed in the cooling water pipe 49 to cool the cooling water from the cooling tower 69. It has an absorber 16 to be described later and a cooling water pump 27 circulating through the condenser 11. Here, in the case of this embodiment, the controller 98 is provided on the side of the absorption-type cold-heat generator 1, calculates based on the temperature or pressure detected by each temperature or pressure sensor, and sends a control signal to each control valve. Is output. Further, the system controller 100 controls the indoor units 90a to 90d, the refrigerant pump 102, and the like.

【0025】更に、吸収式冷熱発生装置1は、熱源をコ
ージェネレーション等にて発生する排熱、例えば排温水
等の熱媒を送り出す熱媒ポンプ28と、この熱媒ポンプ
28から送り出された排温水で一次側冷熱媒体である吸
収溶液の稀溶液を加熱する再生器3と、この再生器3で
発生した冷媒蒸気を冷却して凝縮液化させ液冷媒を生成
する凝縮器11と、この凝縮器11で生成された液冷媒
を内装した冷媒分配器14から同じく内装した蒸発コイ
ル上に滴下、蒸発させ該蒸発コイル中の二次側冷熱媒体
である冷媒蒸気を冷却する蒸発器13と、この蒸発器1
3で蒸発した冷媒蒸気を濃溶液に吸収させ稀溶液を生成
する吸収器16と、蒸発器13及び吸収器16の底部か
ら稀溶液を吸引し加圧する溶液循環ポンプ25(循環ポ
ンプ)と、この溶液循環ポンプ25から送り出された稀
溶液を被加熱流体側に通し、再生器3からの濃溶液と熱
交換する溶液熱交換器20(熱交換器)とを有してい
る。
Further, the absorption-type cold-heat generating apparatus 1 includes a heat medium pump 28 for sending out a heat medium such as waste heat generated by cogeneration as a heat source, for example, waste water, and an exhaust gas sent from the heat medium pump 28. A regenerator 3 for heating a dilute solution of an absorption solution as a primary-side cooling medium with hot water, a condenser 11 for cooling a refrigerant vapor generated by the regenerator 3 to condense and liquefy to generate a liquid refrigerant; An evaporator 13 for dropping and evaporating the liquid refrigerant generated in step 11 from a refrigerant distributor 14 provided therein on a vaporizing coil also provided therein to cool a refrigerant vapor as a secondary cooling medium in the vaporizing coil; Vessel 1
An absorber 16 that absorbs the refrigerant vapor evaporated in 3 into a concentrated solution to generate a dilute solution; a solution circulation pump 25 (circulation pump) that sucks and pressurizes the dilute solution from the evaporator 13 and the bottom of the absorber 16; It has a solution heat exchanger 20 (heat exchanger) that passes the dilute solution sent from the solution circulation pump 25 to the heated fluid side and exchanges heat with the concentrated solution from the regenerator 3.

【0026】更に、吸収式冷熱発生装置1は、再生器3
の底部と吸収器16の底部を冷暖切換弁35を介して連
通する管路50と、溶液熱交換器20の加熱流体出側を
吸収器16の上部に接続する濃溶液昇り管42と、この
濃溶液昇り管42と吸収器16の下部を溶液バイパス弁
33を介して接続する管路51と、溶液循環ポンプ25
の出口側と蒸発器5に内装された水冷媒分配器14を凍
結防止弁34を介して連通する管路52と、凝縮器11
から水冷媒分配器14に水冷媒を導く水冷媒管46とを
含んでいる。又、水冷媒分配器14には、水冷媒分配器
14内の水冷媒の温度を検知する蒸発器温度センサー
(LTセンサー)60が装着されている。
Further, the absorption-type cold heat generator 1 includes a regenerator 3
A pipe 50 communicating the bottom of the absorber 16 with the bottom of the absorber 16 via a cooling / heating switching valve 35; a concentrated solution riser 42 connecting the heated fluid outlet side of the solution heat exchanger 20 to the upper part of the absorber 16; A conduit 51 connecting the concentrated solution riser pipe 42 and the lower part of the absorber 16 via a solution bypass valve 33;
A conduit 52 communicating the outlet side of the water refrigerant distributor 14 provided in the evaporator 5 via an antifreeze valve 34, and a condenser 11
And a water refrigerant pipe 46 for guiding the water refrigerant to the water refrigerant distributor 14. Further, the water refrigerant distributor 14 is equipped with an evaporator temperature sensor (LT sensor) 60 for detecting the temperature of the water refrigerant in the water refrigerant distributor 14.

【0027】更に、吸収式冷熱発生装置1は、再生器
3、凝縮器11、蒸発器13、吸収器16、溶液熱交換
器20及び溶液循環ポンプ25等の各機器を管路で接続
して形成し、再生器3に供給される排温水によって加熱
する吸収溶液(一次側冷熱媒体)を循環させる一次側循
環回路を有する。そして、先の室内機90a〜90d、
冷媒ポンプ102及び蒸発器13の蒸発コイル(蒸発伝
熱管)の管路とを冷媒液管54及び冷媒蒸気管55で接
続して形成し、冷媒(二次側冷熱媒体)を蒸発器13の
蒸発コイルを介して吸収溶液によって冷却又は加熱し相
変化(潜熱)をさせる二次側循環回路を有する。ここ
で、冷媒液管54は蒸発器13の蒸発コイルの出口側
に、冷媒蒸気管55は蒸発器13の蒸発コイルの入口側
に、それぞれ接続されている。
Further, the absorption-type cold-heat generating apparatus 1 is connected to respective devices such as a regenerator 3, a condenser 11, an evaporator 13, an absorber 16, a solution heat exchanger 20, a solution circulation pump 25, and the like by pipes. It has a primary circulation circuit that circulates an absorption solution (primary cooling medium) formed and heated by waste water supplied to the regenerator 3. And the previous indoor units 90a to 90d,
The refrigerant pump 102 and a pipe of an evaporating coil (evaporating heat transfer tube) of the evaporator 13 are connected to each other by a refrigerant liquid pipe 54 and a refrigerant vapor pipe 55 to form a refrigerant (secondary cooling medium) in the evaporator 13. It has a secondary side circulation circuit for cooling or heating with an absorbing solution through a coil to cause a phase change (latent heat). Here, the refrigerant liquid pipe 54 is connected to the outlet side of the evaporator coil of the evaporator 13, and the refrigerant vapor pipe 55 is connected to the inlet side of the evaporator coil of the evaporator 13.

【0028】更に、吸収器16及び凝縮器11にはそれ
ぞれ冷却水コイルが内装され、吸収器16の冷却水コイ
ルの出口は凝縮器11の冷却水コイルの入口に接続され
ていて、吸収器16の冷却水コイルの入口は冷却水管4
9に、凝縮器11の冷却水コイルの出口は冷却水管48
に、それぞれ接続されている。そして、吸収器16の冷
却水コイルの入口近傍には、冷却水コイルの入口温度を
検知するCT1センサー64(温度検知手段)が、冷却
塔69の低部近傍には冷却塔69で冷却された冷却水の
温度を検知するCTSセンサー65が、それぞれ装着さ
れている。
Further, a cooling water coil is provided in each of the absorber 16 and the condenser 11, and an outlet of the cooling water coil of the absorber 16 is connected to an inlet of the cooling water coil of the condenser 11. Cooling water coil inlet is cooling water pipe 4
9, the outlet of the cooling water coil of the condenser 11 is connected to a cooling water pipe 48.
, Respectively. In the vicinity of the inlet of the cooling water coil of the absorber 16, a CT1 sensor 64 (temperature detecting means) for detecting the temperature of the inlet of the cooling water coil was cooled by the cooling tower 69 near the lower part of the cooling tower 69. A CTS sensor 65 for detecting the temperature of the cooling water is mounted.

【0029】又、蒸発器蒸発コイルの冷媒(液)出口温
度を検知する冷媒出口(液)温度センサー(「CRIセ
ンサー」とも云う)62と、冷媒蒸気管55の蒸発コイ
ル入口近傍には冷媒蒸気温度を検知する冷媒蒸気温度セ
ンサー(「CROセンサー」とも云う)63が装着さ
れ、一方、冷房運転をする時に、二次側冷媒の冷房負荷
(冷却負荷)に対応して排温水の流量を制御する三方弁
31が備えられている。
A refrigerant outlet (liquid) temperature sensor (also referred to as a “CRI sensor”) 62 for detecting the refrigerant (liquid) outlet temperature of the evaporator evaporation coil, and a refrigerant vapor A refrigerant vapor temperature sensor (also referred to as a “CRO sensor”) 63 for detecting the temperature is installed. On the other hand, when performing the cooling operation, the flow rate of the discharged hot water is controlled in accordance with the cooling load (cooling load) of the secondary refrigerant. A three-way valve 31 is provided.

【0030】上記構成の吸収式冷熱発生装置1におい
て、冷暖切換弁35は、冷房と暖房の切替を行なうもの
で、冷房時は閉、暖房時は開とされる。凍結防止弁34
は、蒸発器温度が低下して1℃になれば開いて稀溶液を
冷媒分配器14に流入させ、水冷媒の凍結を防ぐ弁であ
る。溶液バイパス弁33は、流量調整機能を有し、冷房
立ち上り時及び低負荷運転時に、蒸発器温度が低下した
とき、濃溶液を吸収器5の下部にバイパスして吸収器5
の吸収能力を低下させ、蒸発器のそれ以上の温度低下を
防ぐための制御弁である。又、溶液バイパス弁33は、
暖房運転時に高温溶液が吸収器コイルへ流入しないよう
にするため、暖房運転時に開となりバイパスさせる働き
をする。
In the absorption-type cooling / heating apparatus 1 having the above-described structure, the cooling / heating switching valve 35 switches between cooling and heating, and is closed during cooling and opened during heating. Antifreeze valve 34
Is a valve that opens when the temperature of the evaporator drops to 1 ° C. and allows the dilute solution to flow into the refrigerant distributor 14 to prevent freezing of the water refrigerant. The solution bypass valve 33 has a flow rate adjusting function. When the evaporator temperature is lowered at the start of cooling and at the time of low-load operation, the concentrated solution is bypassed to a lower portion of the absorber 5 so as to bypass the absorber 5.
Is a control valve for reducing the absorption capacity of the evaporator and preventing the temperature of the evaporator from lowering further. Also, the solution bypass valve 33 is
In order to prevent the high-temperature solution from flowing into the absorber coil during the heating operation, it is opened during the heating operation and functions to bypass.

【0031】更に、上記構成を有する吸収式冷熱発生装
置1は、二次側冷媒を冷却する時、即ちこの冷媒出口温
度センサー62の検知した温度によって冷媒の冷房負荷
を演算し、三方弁31に制御信号を出力するコントロー
ラ98とを備えている。
Further, the absorption-type cold-heat generating apparatus 1 having the above structure calculates the cooling load of the refrigerant based on the temperature detected by the refrigerant outlet temperature sensor 62 when the secondary-side refrigerant is cooled. A controller 98 for outputting a control signal.

【0032】一方、冷媒出口(液)温度センサー(CR
Iセンサー)62と冷媒蒸気温度センサー(CROセン
サー)63は、温度の替わりに圧力を検知して制御信号
を送ることも出来る。
On the other hand, a refrigerant outlet (liquid) temperature sensor (CR)
The I sensor 62 and the refrigerant vapor temperature sensor (CRO sensor) 63 can also transmit a control signal by detecting pressure instead of temperature.

【0033】次に暖房運転について説明する。暖房運転
時は冷暖切換弁104は閉じられている。冷媒液(HF
C134)は、蒸発器13の蒸発コイルで加熱されて冷
媒蒸気となり、冷媒蒸気管55を下方に流れ、各室内機
90a〜90dの熱交換器に流入する。熱交換器に流入
した冷媒蒸気は、空調対象空間の空気に熱を奪われて凝
縮液化し、冷媒液となって冷媒液管54を下方に流れて
冷媒ポンプ102入口側に流入する。冷媒液は冷媒ポン
プ102で加圧され、蒸発器13の蒸発コイルに戻り上
記のサイクルを繰り返す。この時、吸収式冷熱発生装置
(室外機)2bは暖房モードで運転され、蒸発器13に
は再生器3で分離された高温の濃溶液が導かれ、蒸発コ
イルはこの熱により加熱される。
Next, the heating operation will be described. During the heating operation, the cooling / heating switching valve 104 is closed. Refrigerant liquid (HF
C134) is heated by the evaporating coil of the evaporator 13 to become refrigerant vapor, flows down the refrigerant vapor pipe 55, and flows into the heat exchangers of the indoor units 90a to 90d. The refrigerant vapor that has flowed into the heat exchanger is deprived of heat by the air in the air-conditioned space, condensed and liquefied, becomes a refrigerant liquid, flows down the refrigerant liquid pipe 54, and flows into the inlet side of the refrigerant pump 102. The refrigerant liquid is pressurized by the refrigerant pump 102, returns to the evaporator coil of the evaporator 13, and repeats the above cycle. At this time, the absorption-type cold heat generator (outdoor unit) 2b is operated in the heating mode, the high-temperature concentrated solution separated by the regenerator 3 is guided to the evaporator 13, and the evaporator coil is heated by this heat.

【0034】次に、上記構成の吸収式冷熱発生装置1を
含む空調装置について、溶液バイパス弁33の動作につ
いて説明する。
Next, the operation of the solution bypass valve 33 in the air conditioner including the absorption-type cold heat generator 1 having the above-described configuration will be described.

【0035】表1及び図2は、吸収器冷却水入口温度と
溶液バイパス弁33の動作を説明するものである。冷房
運転時、溶液バイパス弁33は、冷却水入口温度により
作動し、例えばHi−Low−Off(Hiは全開、L
owは半開、Offは全閉を意味する、以下同様)の機
構を有する電磁弁とした場合、図2に示すように、冷却
水入口温度によりCT1HとCT1Lの2段階の制御が
行なわれる。冷却水入口温度が20℃以下の低温度冷却
水運転時に冷却水入口温度が18℃未満の場合、冷却水
入口温度が18℃まで溶液バイパス弁33はHi流量で
運転される。冷却水入口温度が上昇して18℃を超える
とLow流量に切り替わり、20℃までLow流量で運
転される。冷却水入口温度が20℃を超えるとOffと
なる。反対に、冷却水入口温度が18℃を超えた値から
下降し18℃になればLow流量に切り替わり、15℃
までLow流量で運転される。冷却水入口温度が15℃
未満になるとHi流量に切り替わり、以上のサイクルを
繰り返す。表1は、上記冷却水入口温度、溶液バイパス
弁33の弁開度とその濃溶液バイパス量及び吸収器16
への濃溶液流入量が示されている。この溶液バイパス弁
33の制御により、吸収能力が低温度冷却水により過大
になり冷却水入口温度低下を防止するが、主な目的は吸
収能力が過剰になると蒸発器での水冷媒蒸発量が増加
し、蒸発器(LT)温度が低下し、水冷媒の凍結及び溶
液の晶析へとつながっていくのを防止するために冷却水
入口温度を20℃以上に保つことである。
Table 1 and FIG. 2 describe the operation of the absorber cooling water inlet temperature and the operation of the solution bypass valve 33. During the cooling operation, the solution bypass valve 33 is activated by the cooling water inlet temperature, for example, Hi-Low-Off (Hi is fully open, L
As shown in FIG. 2, two-stage control of CT1H and CT1L is performed according to the cooling water inlet temperature, assuming that the solenoid valve has a mechanism of "ow means half open, Off means fully closed, the same applies to the following). If the cooling water inlet temperature is lower than 18 ° C. during the low temperature cooling water operation at a cooling water inlet temperature of 20 ° C. or less, the solution bypass valve 33 is operated at a Hi flow rate until the cooling water inlet temperature reaches 18 ° C. When the cooling water inlet temperature rises and exceeds 18 ° C., the flow rate is switched to the low flow rate, and the operation is performed at a low flow rate up to 20 ° C. When the cooling water inlet temperature exceeds 20 ° C., it turns off. Conversely, when the cooling water inlet temperature drops from a value exceeding 18 ° C. and reaches 18 ° C., the flow rate is switched to a low flow rate, and the cooling water inlet temperature becomes 15 ° C.
It is operated at a low flow rate up to that. Cooling water inlet temperature is 15 ℃
When it becomes less than the above, the flow rate is switched to the Hi flow rate, and the above cycle is repeated. Table 1 shows the cooling water inlet temperature, the valve opening degree of the solution bypass valve 33, its concentrated solution bypass amount, and the absorber 16.
The flow of concentrated solution into the system is shown. The control of the solution bypass valve 33 prevents the absorption capacity from becoming excessive due to the low-temperature cooling water, thereby preventing the cooling water inlet temperature from dropping. However, the main purpose is to increase the water refrigerant evaporation amount in the evaporator when the absorption capacity becomes excessive. In order to prevent the evaporator (LT) temperature from lowering and leading to freezing of the water refrigerant and crystallization of the solution, the cooling water inlet temperature is kept at 20 ° C. or higher.

【0036】表1に示すように、溶液バイパス弁33が
二方弁(On−Off)の場合、Low流量は、タイマ
ーにより間欠運転にて調節出来る。例えば、設定温度範
囲内の時に、On−10秒間、Off−15秒間の繰り
返しを行なわせてOn−Off時間をセットすることも
出来る。
As shown in Table 1, when the solution bypass valve 33 is a two-way valve (On-Off), the Low flow rate can be adjusted by an intermittent operation using a timer. For example, when the temperature is within the set temperature range, On-Off time can be set by repeating On-10 seconds and Off-15 seconds.

【0037】表2及び図3は、蒸発器温度と溶液バイパ
ス弁33の動作を説明するものである。冷房運転時、溶
液バイパス弁33は、蒸発器温度によっても作動し、図
3に示すように、蒸発器温度によりLT1とLT0の2
段階の制御を行なう。蒸発器温度が3℃を超えた値から
下降し3℃までは溶液バイパス弁33はOffで、3℃
未満から2℃まではLow流量で運転され、2℃未満は
Hi流量で運転される。一方、2℃未満から3.5℃の
間はHi流量で運転され、温度が上昇して3.5℃にな
るとLow流量に切り替わり、4.5℃まではLow流
量で運転され、4.5℃になるとOffとなり、以上の
サイクルを繰り返す。
Table 2 and FIG. 3 illustrate the evaporator temperature and the operation of the solution bypass valve 33. During the cooling operation, the solution bypass valve 33 also operates according to the evaporator temperature, and as shown in FIG.
Step control is performed. When the evaporator temperature drops from a value exceeding 3 ° C. to 3 ° C., the solution bypass valve 33 is off and the evaporator temperature is 3 ° C.
From below to 2 ° C., it is operated at a low flow rate, and below 2 ° C., it is operated at a Hi flow rate. On the other hand, the operation is performed at the Hi flow rate between less than 2 ° C. and 3.5 ° C., switched to the Low flow rate when the temperature rises to 3.5 ° C., and is operated at the Low flow rate until 4.5 ° C. When the temperature reaches ° C, the cycle becomes Off, and the above cycle is repeated.

【0038】表2に示すように、溶液バイパス弁33が
二方弁(On−Off)の場合、Low流量は、タイマ
ーにより間欠運転にて調節出来、例えば、設定温度範囲
内の時に、On−10秒間、Off−15秒間の繰り返
しを行なわせてOn−Off時間をセットすることも出
来る。
As shown in Table 2, when the solution bypass valve 33 is a two-way valve (On-Off), the Low flow rate can be adjusted by an intermittent operation using a timer. It is also possible to set On-Off time by repeating Off-15 seconds for 10 seconds.

【0039】表3及び図4は、蒸発器二次側冷媒出口温
度と溶液バイパス弁33の動作を説明するものである。
冷房運転時、溶液バイパス弁33は、蒸発器二次側冷媒
出口温度によっても作動し、例えばHi−Low−Of
fの電磁弁とした場合、図4に示すように、二次側冷媒
出口温度によりCRHとCRLの2段階の制御を行な
う。二次側冷媒出口温度が6℃未満の温度の場合はHi
流量で運転され、二次側冷媒出口温度が6℃に上昇する
とLow流量に切り替わり、6℃以上7℃未満ではLo
w流量で運転され、7℃でOffとなる。反対に、二次
側冷媒出口温度が6℃を超える温度でOffとなり、温
度が下降し6℃になるとLow流量に切り替わり、6℃
以下5℃まではLow流量で運転され、5℃未満でHi
運転となり、以上のサイクルを繰り返す。
Table 3 and FIG. 4 explain the operation of the evaporator secondary-side refrigerant outlet temperature and the solution bypass valve 33.
At the time of cooling operation, the solution bypass valve 33 is also operated by the evaporator secondary-side refrigerant outlet temperature, for example, Hi-Low-Of.
In the case of the solenoid valve of f, as shown in FIG. 4, two-stage control of CRH and CRL is performed based on the secondary-side refrigerant outlet temperature. Hi when the secondary refrigerant outlet temperature is lower than 6 ° C.
It is operated at a flow rate and switches to a low flow rate when the secondary-side refrigerant outlet temperature rises to 6 ° C.
It operates at a flow rate of w and turns off at 7 ° C. On the other hand, when the secondary-side refrigerant outlet temperature exceeds 6 ° C., the temperature becomes Off, and when the temperature decreases to 6 ° C., the flow rate is switched to the low flow rate, and 6 ° C.
In the following, operation is performed at a low flow rate up to 5 ° C.
Operation starts and the above cycle is repeated.

【0040】表3に示すように、溶液バイパス弁33が
二方弁(On−Off)の場合、Low流量は、タイマ
ーにより間欠運転にて調節出来、例えば、設定温度範囲
内の時に、On−10秒間、Off−15秒間の繰り返
しを行なわせてOn−Off時間をセットすることも出
来る。
As shown in Table 3, when the solution bypass valve 33 is a two-way valve (On-Off), the Low flow rate can be adjusted by an intermittent operation using a timer. It is also possible to set On-Off time by repeating Off-15 seconds for 10 seconds.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】以上説明したように、二次側冷媒を冷却す
る時、即ち冷房運転の時に、吸収器冷却水入口温度、蒸
発器温度及び蒸発器の二次側冷媒出口温度のそれぞれを
検知する温度検知手段60、62、64により、これら
温度を検知し、これらの温度信号を受けてコントローラ
98は、これらの温度に対応する溶液バイパス弁33の
流量を制御する制御信号を出力する。溶液バイパス弁3
3は、この制御信号を受けて高温の吸収溶液である濃溶
液を吸収器16の底部に導入する。これにより、低温度
冷却水による吸収能力過大がなくなり、その結果冷却水
入口温度低下及び蒸発器温度低下を防止するので、冷房
出力制御が安定し、冷房負荷の変動に追随した効率良い
冷房運転が出来る。吸収器冷却水入口温度、蒸発器温度
又は二次側冷媒出口温度による停止動作を押さえ安定し
た冷房運転が行なえる。更に、低温度冷却水(低外気
温)での冷房立ち上がりがスムーズに行なえる。
As described above, when the secondary refrigerant is cooled, that is, during the cooling operation, the temperatures at which the inlet temperature of the absorber cooling water, the temperature of the evaporator, and the temperature of the secondary refrigerant outlet of the evaporator are detected. These temperatures are detected by the detecting means 60, 62, 64, and upon receiving these temperature signals, the controller 98 outputs a control signal for controlling the flow rate of the solution bypass valve 33 corresponding to these temperatures. Solution bypass valve 3
3 receives the control signal and introduces a concentrated solution, which is a high-temperature absorbing solution, into the bottom of the absorber 16. As a result, the absorption capacity of the low-temperature cooling water is not excessive, and as a result, the cooling water inlet temperature and the evaporator temperature are prevented from lowering, so that the cooling output control is stabilized, and the efficient cooling operation that follows the fluctuation of the cooling load is performed. I can do it. A stable cooling operation can be performed by suppressing the stop operation due to the absorber cooling water inlet temperature, the evaporator temperature, or the secondary-side refrigerant outlet temperature. Further, the cooling can be smoothly started with the low temperature cooling water (low outside air temperature).

【0045】[0045]

【発明の効果】本発明の吸収式冷熱発生装置によれば、
二次側冷熱媒体を冷却する時に、冷却出力制御が安定
し、効率良く冷却運転が出来る。
According to the absorption-type cold heat generator of the present invention,
When cooling the secondary-side cooling medium, the cooling output control is stable, and the cooling operation can be performed efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る吸収式冷熱発生装置を含む空調装
置の一実施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of an air conditioner including an absorption type cold heat generator according to the present invention.

【図2】図1に示す吸収式冷熱発生装置の吸収器冷却水
入口温度と溶液バイパス弁の弁開度との関係を示す線図
である。
FIG. 2 is a diagram showing a relationship between an inlet temperature of an absorber cooling water of the absorption-type cold heat generator shown in FIG. 1 and a valve opening degree of a solution bypass valve.

【図3】図1に示す吸収式冷熱発生装置の蒸発器温度と
溶液バイパス弁の弁開度との関係を示す線図である。
FIG. 3 is a diagram showing the relationship between the evaporator temperature of the absorption-type cold heat generator shown in FIG. 1 and the valve opening of the solution bypass valve.

【図4】図1に示す吸収式冷熱発生装置の蒸発器二次側
冷媒出口温度と溶液バイパス弁の弁開度との関係を示す
線図である。
FIG. 4 is a diagram showing a relationship between an evaporator secondary-side refrigerant outlet temperature of the absorption-type cold heat generator shown in FIG. 1 and a valve opening degree of a solution bypass valve.

【図5】従来技術に係る温水焚吸収式冷温水機の一例を
示す系統図である。
FIG. 5 is a system diagram showing an example of a hot-water-fired absorption-type cold / hot water machine according to the related art.

【図6】図5に示す温水焚吸収式冷温水機の制御を説明
する図で、(A)は蒸発器温度と各ポンプの起動、停止
との関係を示す線図、(B)は冷水出口温度と各ポンプ
の起動、停止との関係を示す線図、である。
6A and 6B are diagrams for explaining the control of the hot water-fired absorption chiller and hot water machine shown in FIG. 5, wherein FIG. 6A is a diagram showing the relationship between evaporator temperature and starting and stopping of each pump, and FIG. FIG. 4 is a diagram illustrating a relationship between an outlet temperature and activation and stop of each pump.

【図7】従来技術に係る吸収式冷熱発生装置を有する空
調装置の一例を示す系統図である。
FIG. 7 is a system diagram showing an example of an air conditioner having an absorption-type cold heat generator according to the related art.

【符号の説明】[Explanation of symbols]

1 吸収式冷熱発生装置 3 再生器 11 凝縮器 13 蒸発器 16 吸収器 20 溶液熱交換器(熱交換器) 25 溶液循環ポンプ(循環ポンプ) 33 溶液バイパス弁 60 蒸発器温度センサー(温度検知手段) 62 冷媒出口温度センサー(温度検知手段) 64 冷却水入口温度センサー(温度検知手段) 98 コントローラ DESCRIPTION OF SYMBOLS 1 Absorption-type cold-heat generator 3 Regenerator 11 Condenser 13 Evaporator 16 Absorber 20 Solution heat exchanger (Heat exchanger) 25 Solution circulation pump (Circulation pump) 33 Solution bypass valve 60 Evaporator temperature sensor (Temperature detection means) 62 Refrigerant outlet temperature sensor (temperature detecting means) 64 Cooling water inlet temperature sensor (temperature detecting means) 98 Controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 再生器、凝縮器、蒸発器、吸収器、熱交
換器及び循環ポンプを含む各機器を接続し、前記再生器
に供給される熱媒によって加熱する吸収溶液を循環させ
る一次側循環回路を形成すると共に、前記蒸発器の蒸発
伝熱管の管路を含む二次側循環回路を流れる二次側冷熱
媒体を前記蒸発器の蒸発伝熱管を介して前記吸収溶液に
よって冷却又は加熱し相変化をさせる吸収式冷熱発生装
置において、前記二次側冷熱媒体を冷却する時に、前記
再生器で加熱、分離された吸収溶液の濃溶液を前記吸収
器の底部に導入する溶液バイパス弁と、前記吸収器の冷
却水入口温度、前記蒸発器の蒸発器温度、前記蒸発器の
二次側冷熱媒体出口温度の少なくとも一つを検知する温
度検知手段と、該温度検知手段が検知した温度に対応し
て前記溶液バイパス弁の流量を制御する制御信号を該溶
液バイパス弁に出力するコントローラとを備えたことを
特徴とする吸収式冷熱発生装置。
1. A primary side for connecting each device including a regenerator, a condenser, an evaporator, an absorber, a heat exchanger, and a circulation pump, and circulating an absorbing solution to be heated by a heat medium supplied to the regenerator. Forming a circulation circuit, cooling or heating the secondary cooling medium flowing through the secondary circulation circuit including the pipe of the evaporator heat transfer tube of the evaporator by the absorption solution via the evaporator heat transfer tube of the evaporator. In the absorption-type cold heat generating device that performs a phase change, when cooling the secondary-side cooling medium, a solution bypass valve that is heated by the regenerator and that introduces a concentrated solution of the separated absorbing solution into the bottom of the absorber. Temperature detecting means for detecting at least one of a cooling water inlet temperature of the absorber, an evaporator temperature of the evaporator, and a secondary cooling medium outlet temperature of the evaporator; and a temperature detecting means corresponding to the temperature detected by the temperature detecting means. And the solution bypass A controller for outputting a control signal for controlling the flow rate of the valve to the solution bypass valve.
JP10058029A 1998-03-10 1998-03-10 Absorption cold heat generator Pending JPH11257782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10058029A JPH11257782A (en) 1998-03-10 1998-03-10 Absorption cold heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10058029A JPH11257782A (en) 1998-03-10 1998-03-10 Absorption cold heat generator

Publications (1)

Publication Number Publication Date
JPH11257782A true JPH11257782A (en) 1999-09-24

Family

ID=13072532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10058029A Pending JPH11257782A (en) 1998-03-10 1998-03-10 Absorption cold heat generator

Country Status (1)

Country Link
JP (1) JPH11257782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307364A (en) * 2002-04-15 2003-10-31 Ebara Corp Refrigerating equipment combined with absorption type and compression type
KR100628282B1 (en) * 1999-05-13 2006-09-27 제너럴 일렉트릭 캄파니 Method and apparatus for converting low grade heat to cooling load in an integrated gasification system
JP2018141565A (en) * 2017-02-27 2018-09-13 矢崎エナジーシステム株式会社 Absorption type refrigeration system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100628282B1 (en) * 1999-05-13 2006-09-27 제너럴 일렉트릭 캄파니 Method and apparatus for converting low grade heat to cooling load in an integrated gasification system
JP2003307364A (en) * 2002-04-15 2003-10-31 Ebara Corp Refrigerating equipment combined with absorption type and compression type
JP2018141565A (en) * 2017-02-27 2018-09-13 矢崎エナジーシステム株式会社 Absorption type refrigeration system

Similar Documents

Publication Publication Date Title
US6487874B2 (en) Absorption refrigerator
JP3966770B2 (en) Absorption cooling system
KR20030045175A (en) Phase-change Heat Transfer Coupling For Aqua-ammonia Absorption Systems
JP2000018762A (en) Absorption refrigerating machine
JP2002295917A (en) Control method for absorption freezer
JPH11257782A (en) Absorption cold heat generator
JP3448680B2 (en) Absorption air conditioner
JP3883894B2 (en) Absorption refrigerator
JP3448681B2 (en) Absorption type cold heat generator
JP2001099474A (en) Air conditioner
JP2650654B2 (en) Absorption refrigeration cycle device
JP3813348B2 (en) Absorption refrigerator
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JP3889655B2 (en) Absorption refrigerator
JP3393398B2 (en) Absorption type cold heat generator
JP3451539B2 (en) Absorption type cold heat generator
JP4330522B2 (en) Absorption refrigerator operation control method
JP3240344B2 (en) Refrigerant temperature controller for gas absorption heat source equipment
JP3451538B2 (en) Absorption type cold heat generator
JP2898202B2 (en) Absorption cooling system
JP3559919B2 (en) Absorption type cold and hot heat generator
KR100286833B1 (en) Heat exchanger for regenerator of cool/heating system
JP6320958B2 (en) Absorption chiller / heater, heat exchanger, absorption chiller / heater control method
JP2001208443A (en) Absorption freezer
JP3289235B2 (en) Absorption type cold heat generator