JPH0926223A - Absorption type cold heat generator - Google Patents

Absorption type cold heat generator

Info

Publication number
JPH0926223A
JPH0926223A JP7178357A JP17835795A JPH0926223A JP H0926223 A JPH0926223 A JP H0926223A JP 7178357 A JP7178357 A JP 7178357A JP 17835795 A JP17835795 A JP 17835795A JP H0926223 A JPH0926223 A JP H0926223A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
water
evaporator
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7178357A
Other languages
Japanese (ja)
Other versions
JP3175040B2 (en
Inventor
Tetsuya Yamada
哲也 山田
Takeshi Okumura
剛 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Yazaki Corp
Original Assignee
Osaka Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Yazaki Corp filed Critical Osaka Gas Co Ltd
Priority to JP17835795A priority Critical patent/JP3175040B2/en
Publication of JPH0926223A publication Critical patent/JPH0926223A/en
Application granted granted Critical
Publication of JP3175040B2 publication Critical patent/JP3175040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/28Disposition of valves, e.g. of on-off valves or flow control valves specially adapted for sorption cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To enable smoothly starting the cooling operation which is proportionate to the load factor by a method wherein when the cooling-water temperature outputted by a temperature sensor at the inlet for the cooling water is below a second temperature set lower than a first temperature, a water-refrigerant proportional valve is opened fully independent of the temperature of an evaporator. SOLUTION: A cooling water-inlet-temperature sensor 25 is provided in the vicinity of the joint between a cooling-water pipe 41 and an absorber 5 and, while the opening of a water-refrigerant proportional valve 11 is controlled without steps on the basis of the output of an evaporator-temperature sensor 17 and also on the basis of the cooling water-inlet-temperature outputted by the cooling water-inlet-temperature sensor 25. A controller 59 controls the opening of the water-refrigerant proportional valve 11 on the basis of the output of the evaporator-temperature sensor 17 and that of the cooling water-inlet-temperature sensor 25 and make the rise part at the outlet of an evaporator coil in the refrigerant-vapor pipe 51 and the connecting part of the evaporator coil in the liquid-refrigerant pipe 50 communicate through a solenoid valve 60. The water-refrigerant proportional valve 11 keeps fully closed when the cooling water-inlet-temperature is, for example, 6 deg.C or higher and fully open when the temperature is, for example, 2 deg.C or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷熱発生装置に
係り、特に二次冷媒として相変化を利用する流体を用い
る吸収式冷熱発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type cold heat generating device, and more particularly to an absorption type cold heat generating device using a fluid utilizing a phase change as a secondary refrigerant.

【0002】[0002]

【従来の技術】従来、吸収式冷熱発生装置として図4に
示す構成の吸収冷温水機を用いた空調装置が知られてい
る。図示の装置は、冷熱を発生する吸収冷温水機100
と、この吸収冷温水機100に冷却水管40,41で接
続され冷却水を冷却するクーリングタワー42と、吸収
冷温水機100に冷温水管43,44で接続され空調対
象空間に配置されて該空間の空気との熱交換を行う図示
されていない空調用室内機と、前記冷却水管41に介装
され冷却水をクーリングタワー42から吸収冷温水機1
00に循環させる冷却水循環ポンプ14と、前記冷温水
管43に介装され該冷温水管43,44に充填された二
次冷媒を吸収冷温水機100と前記空調用室内機の間で
循環させる冷温水循環ポンプ15と、を含んで構成され
ている。
2. Description of the Related Art Conventionally, as an absorption type cold heat generator, an air conditioner using an absorption chiller / heater having a structure shown in FIG. 4 has been known. The illustrated apparatus is an absorption chiller-heater 100 that generates cold heat.
A cooling tower 42 connected to the absorption chiller / heater 100 by cooling water pipes 40, 41 to cool the cooling water; and a cooling tower 42 connected to the absorption chiller / heater 100 by cold / hot water pipes 43, 44 and arranged in an air-conditioned space. An air conditioning indoor unit (not shown) for exchanging heat with air, and absorption of cooling water from the cooling tower 42 interposed in the cooling water pipe 41 into the chiller / heater 1
Cooling water circulation pump 14 for circulating to 00, and cold / hot water circulation for circulating the secondary refrigerant interposed in the cold / hot water pipe 43 and filled in the cold / hot water pipes 43, 44 between the absorption cold / hot water machine 100 and the indoor unit for air conditioning. The pump 15 is included.

【0003】前記空調用室内機に対して、クーリングタ
ワー42と併せて通常、室外機と呼ばれる吸収冷温水機
100は、燃料を燃焼させその熱で希溶液を加熱する高
温再生器1と、この高温再生器1で加熱された希溶液か
ら冷媒蒸気と中間濃溶液を分離する分離器2と、分離さ
れた冷媒蒸気を熱源として前記中間濃溶液を加熱してさ
らに冷媒蒸気を発生させる低温再生器3と、該低温再生
器3を通過した冷媒蒸気及び該低温再生器3で発生した
冷媒蒸気を冷却して凝縮液化させ液冷媒を生成する凝縮
器4と、該凝縮器4で生成された液冷媒を内装した冷媒
分配器6Bから同じく内装した蒸発コイル上に滴下蒸発
させ該蒸発コイル中の二次冷媒を冷却する蒸発器6と、
該蒸発器6で蒸発した冷媒蒸気を濃溶液に吸収させ希溶
液を生成する吸収器5と、該希溶液を加圧し低温溶液熱
交換器8、高温溶液熱交換器7の被加熱流体側を経て前
記高温再生器1に送りこむ溶液循環ポンプ9と、前記分
離器2の底部と前記蒸発器6の底部を冷暖切換弁10を
介して連通する管路10Aと、前記低温溶液熱交換器8
の加熱流体出側を前記吸収器5の上部に接続する濃溶液
管8Aと、該濃溶液管8Aと前記吸収器5の下部を溶液
バイパス弁13を介して接続する管路13Aと、該濃溶
液管8Aと前記蒸発器5に内装された冷媒分配器を凍結
防止弁12を介して連通する管路12Aと、前記冷媒分
配器に装着され該冷媒分配器内の冷媒の温度を検知する
蒸発器温度センサ17と、前記凝縮器4から前記冷媒分
配器6Bに液冷媒を導く水冷媒管11Bと、該水冷媒管
11Bに並列に接続され水冷媒比例弁11を介装する管
路11Aと、を含んで構成されている。
In contrast to the above-mentioned air conditioner indoor unit, an absorption chiller-heater 100, which is usually called an outdoor unit together with the cooling tower 42, has a high temperature regenerator 1 for burning fuel and heating the dilute solution with its heat, and this high temperature regenerator. A separator 2 for separating a refrigerant vapor and an intermediate concentrated solution from a dilute solution heated by a regenerator 1, and a low temperature regenerator 3 for heating the intermediate concentrated solution by using the separated refrigerant vapor as a heat source to further generate a refrigerant vapor. A condenser 4 that cools and condenses and liquefies the refrigerant vapor that has passed through the low-temperature regenerator 3 and the refrigerant vapor that has occurred in the low-temperature regenerator 3 to produce a liquid refrigerant; and the liquid refrigerant that has generated in the condenser 4. An evaporator 6 for cooling the secondary refrigerant in the evaporation coil by dropping and evaporating it from the refrigerant distributor 6B in which the same is installed,
The absorber 5 which absorbs the refrigerant vapor evaporated in the evaporator 6 into a concentrated solution to produce a dilute solution, and the low-temperature solution heat exchanger 8 and the high-temperature solution heat exchanger 7 to be heated are connected to the heated fluid side by pressurizing the dilute solution. The solution circulating pump 9 that is sent to the high temperature regenerator 1 via the above, the pipe 10A that connects the bottom of the separator 2 and the bottom of the evaporator 6 via a cooling / heating switching valve 10, and the low temperature solution heat exchanger 8
A concentrated solution pipe 8A connecting the heated fluid outlet side to the upper part of the absorber 5, a conduit 13A connecting the concentrated solution pipe 8A and the lower part of the absorber 5 via a solution bypass valve 13, and A pipe line 12A that connects the solution pipe 8A and a refrigerant distributor installed in the evaporator 5 via an antifreezing valve 12, and evaporation that is attached to the refrigerant distributor and detects the temperature of the refrigerant in the refrigerant distributor. A temperature sensor 17, a water refrigerant pipe 11B for guiding a liquid refrigerant from the condenser 4 to the refrigerant distributor 6B, and a pipe line 11A connected in parallel to the water refrigerant pipe 11B and having a water refrigerant proportional valve 11 interposed therebetween. , Is included.

【0004】また、分離器2で分離された中間濃溶液が
前記高温溶液熱交換器7の加熱流体側を経て前記低温再
生器3に導かれ、低温再生器3で冷媒を蒸発させて濃溶
液となったのち、前記低温溶液熱交換器8の加熱流体側
を経て前記濃溶液管8Aに導かれるように管路が構成さ
れている。前記吸収器5及び凝縮器4にはそれぞれ冷却
水コイルが内装され、吸収器5の冷却水コイルの出口は
前記凝縮器4の冷却水コイルの入り口に接続されてい
て、吸収器5の冷却水コイルの入り口は前記冷却水管4
1に、凝縮器4の冷却水コイルの出口は前記冷却水管4
0に、それぞれ接続されている。前記冷温水管43は前
記蒸発器6の蒸発コイルの入り側に、前記冷温水管44
は前記蒸発器6の蒸発コイルの出側に、それぞれ接続さ
れ、該冷温水管44の前記蒸発コイル出口近傍には二次
冷媒の温度を検知する冷水出口温度センサ16が装着さ
れている。
Further, the intermediate concentrated solution separated by the separator 2 is introduced into the low temperature regenerator 3 via the heating fluid side of the high temperature solution heat exchanger 7, and the refrigerant is evaporated in the low temperature regenerator 3 to form a concentrated solution. After that, the pipe line is configured to be guided to the concentrated solution pipe 8A through the heating fluid side of the low temperature solution heat exchanger 8. A cooling water coil is installed in each of the absorber 5 and the condenser 4, and an outlet of the cooling water coil of the absorber 5 is connected to an inlet of the cooling water coil of the condenser 4 to cool the cooling water of the absorber 5. The inlet of the coil is the cooling water pipe 4
1, the outlet of the cooling water coil of the condenser 4 is the cooling water pipe 4
0, respectively. The cold / hot water pipe 43 is provided on the inlet side of the evaporator coil of the evaporator 6 at the cold / hot water pipe 44.
Is connected to the outlet side of the evaporator coil of the evaporator 6, and a cold water outlet temperature sensor 16 for detecting the temperature of the secondary refrigerant is mounted in the vicinity of the evaporator coil outlet of the cold / hot water pipe 44.

【0005】上記構成の装置において、冷暖切換弁10
は、冷房と暖房の切替を行うもので、冷房時は閉、暖房
時は開とされる。水冷媒比例弁11は、蒸発器の温度
(蒸発器温度センサ17の出力)を入力として開度制御
され、溶液濃度の調整を行う弁である。凍結防止弁12
は、蒸発温度が低下して1℃になれば開いて濃溶液を冷
媒分配器6Bに流入させ、冷媒(吸収冷温水機の冷媒に
は通常水が使用される。以下、水冷媒ともいう)の凍結
を防ぐ弁である。溶液バイパス弁13は、冷房立上り時
及び低負荷運転時に、蒸発器温度が低下したとき、凍結
防止弁が作動する前に濃溶液を吸収器5の下部にバイパ
スして吸収器5の吸収能力を低下させ、蒸発器のそれ以
上の温度低下を防ぐためのオン−オフ制御弁である。
In the apparatus having the above structure, the cooling / heating switching valve 10
Switches between cooling and heating, and is closed during cooling and open during heating. The water-refrigerant proportional valve 11 is a valve whose opening is controlled by inputting the temperature of the evaporator (output of the evaporator temperature sensor 17) to adjust the solution concentration. Antifreeze valve 12
Is opened when the evaporation temperature decreases to 1 ° C. and the concentrated solution is caused to flow into the refrigerant distributor 6B, and the refrigerant (usually water is used as the refrigerant of the absorption chiller-heater. Hereinafter, also referred to as water refrigerant). This is a valve that prevents freezing. The solution bypass valve 13 bypasses the concentrated solution to the lower part of the absorber 5 to lower the absorption capacity of the absorber 5 before the antifreezing valve is activated when the evaporator temperature is lowered during cooling start-up and low load operation. It is an on-off control valve for lowering and preventing further temperature drop of the evaporator.

【0006】吸収冷温水機は、冷房運転時に機内の水冷
媒が凍結して晶析運転されること、及び低負荷時に冷温
水回路が凍結破損することが最もダメージが大きい。こ
れらの状況になるのをふせぐために冷温水出口温度及び
蒸発器温度に基づく各保護制御がなされている。
The absorption chiller-heater suffers the most damage from the fact that the water refrigerant in the machine freezes during the cooling operation and is crystallized, and the cold-hot water circuit freezes and breaks when the load is low. In order to prevent these situations, various protection controls based on the cold / hot water outlet temperature and the evaporator temperature are performed.

【0007】例えば、100%負荷時に7℃の冷水を取
り出すようになっている場合、負荷が少ないと能力が負
荷に対して過剰である分、冷水温度が低下する。通常冷
水出口温度5〜6℃になったら高温再生器1の燃焼を停
止させる。冷房立上り時や低負荷時には、冷水出口温度
よりも蒸発器温度が適切な温度幅以上に低下する場合が
あるので、機内の水冷媒が凍結して晶析することのない
よう、蒸発器温度に基づく各種保護制御が行われる。
For example, in the case where cold water at 7 ° C. is taken out at 100% load, the cold water temperature lowers as much as the capacity exceeds the load when the load is small. Normally, when the cold water outlet temperature reaches 5 to 6 ° C, the combustion of the high temperature regenerator 1 is stopped. When the air conditioner starts up or when the load is low, the evaporator temperature may drop below the chilled water outlet temperature by more than an appropriate temperature range.Therefore, the evaporator temperature should be adjusted so that the water refrigerant inside the machine does not freeze and crystallize. Based on this, various protection controls are performed.

【0008】図3は、蒸発器温度に基づく制御の例を示
す。図中、LT0〜LT2は蒸発器温度制御の制御種別
を示す。 LT0:蒸発器温度が2℃に低下すると溶液バイパス弁
13を開く、蒸発器温度が3℃に上昇すると溶液バイパ
ス弁13を閉じる。 LT1:蒸発器温度が1℃に低下すると凍結防止弁12
を開く、蒸発器温度が2℃に上昇すると凍結防止弁12
を閉じる。 LT2:蒸発器温度が−2℃に低下すると高温再生器1
での燃焼が停止され、冷却水循環ポンプ14が停止され
る、蒸発器温度が−1℃に上昇すると高温再生器1での
燃焼が開始され、冷却水循環ポンプ14が起動される。
FIG. 3 shows an example of control based on the evaporator temperature. In the figure, LT0 to LT2 indicate control types of evaporator temperature control. LT0: The solution bypass valve 13 is opened when the evaporator temperature drops to 2 ° C., and the solution bypass valve 13 is closed when the evaporator temperature rises to 3 ° C. LT1: Antifreeze valve 12 when the evaporator temperature drops to 1 ° C
Freeze valve 12 when the evaporator temperature rises to 2 ℃
Close. LT2: High temperature regenerator 1 when the evaporator temperature drops to -2 ° C
Combustion is stopped and the cooling water circulation pump 14 is stopped. When the evaporator temperature rises to -1 ° C, combustion in the high temperature regenerator 1 is started and the cooling water circulation pump 14 is started.

【0009】[0009]

【発明が解決しようとする課題】図4に示した空調装置
では、室内機と室外機の間で循環して熱を搬送する二次
冷媒として、相変化をしない流体、一般に液体が用いら
れてきたが、近年、二次冷媒に相変化を行わせることに
より、単位流量あたりの熱搬送量を増加させるものが考
案されている。図5はそのような構成の例を示すもの
で、図4に示す構成のうち、冷温水管43,44に代え
て冷媒液管50、冷媒蒸気管51が蒸発コイルの下端、
上端にそれぞれ接続されている。冷媒液管50,冷媒蒸
気管51の他端は、蒸発コイルよりも下方に配置された
室内機52,53の数だけ分岐しており、冷媒液管50
の分岐端は、室内機にそれぞれ内装された熱交換器の下
側入り口に膨張弁54,55を介して接続され、冷媒蒸
気管51の分岐端は、該熱交換器の上側入り口にそれぞ
れ接続されている。冷媒液管50の蒸発コイルとの接続
部近傍には、二次冷媒の温度を検出して電気信号として
コントローラ59に出力する冷媒液温度センサ21が装
着されている。
In the air conditioner shown in FIG. 4, a fluid that does not change phase, generally a liquid, has been used as the secondary refrigerant that circulates between the indoor unit and the outdoor unit to transfer heat. However, in recent years, it has been devised to increase the amount of heat transfer per unit flow rate by causing a phase change in the secondary refrigerant. FIG. 5 shows an example of such a configuration. In the configuration shown in FIG. 4, instead of the cold / hot water pipes 43 and 44, a refrigerant liquid pipe 50 and a refrigerant vapor pipe 51 are the lower end of the evaporation coil.
Each is connected to the upper end. The other ends of the refrigerant liquid pipe 50 and the refrigerant vapor pipe 51 are branched by the number of the indoor units 52 and 53 arranged below the evaporation coil.
The branch ends of the refrigerant vapor pipes 51 are connected to the lower inlets of the heat exchangers respectively installed in the indoor units via expansion valves 54 and 55, and are connected to the upper inlets of the heat exchangers, respectively. Has been done. A refrigerant liquid temperature sensor 21 that detects the temperature of the secondary refrigerant and outputs it as an electric signal to the controller 59 is mounted near the connection portion of the refrigerant liquid pipe 50 with the evaporation coil.

【0010】冷媒液管50は、途中に室内機52,53
よりも低い位置に配置された部分があり、そこに冷媒液
を加圧して前記蒸発コイルに送りこむ冷媒ポンプ57が
装着されている。冷媒ポンプ57の吐出側には、逆止弁
58が設けられ、この逆止弁58の出側と冷媒ポンプ5
7の吸い込み側は、冷暖切換弁56を介して接続されて
いる。相変化する二次冷媒(以下単に冷媒ともいう)と
して、HFC−134aが冷媒液管に充填されている。
他の構成は前記図4の説明と同じであるので、説明は省
略する。
The refrigerant liquid pipe 50 is connected to the indoor units 52 and 53 on the way.
There is a portion arranged at a lower position than the above, and a refrigerant pump 57 that pressurizes the refrigerant liquid and sends it to the evaporation coil is attached thereto. A check valve 58 is provided on the discharge side of the refrigerant pump 57, and the outlet side of the check valve 58 and the refrigerant pump 5 are provided.
The suction side of 7 is connected via a cooling / heating switching valve 56. A refrigerant liquid pipe is filled with HFC-134a as a secondary refrigerant (hereinafter, also simply referred to as a refrigerant) that undergoes a phase change.
Since the other configurations are the same as those described with reference to FIG. 4, description thereof will be omitted.

【0011】図5に示す空調装置の冷房時の動作は次の
通りである。冷房時には、冷暖切換弁56は開かれてい
る。冷媒蒸気(HFC−134a)は、蒸発器6の蒸発
コイルで冷却凝縮されて冷媒液となり、重力により、冷
媒液管50を下方に流れ、膨張弁54,55を経て各室
内機52,53の熱交換器に流入する。熱交換器に流入
した冷媒液は、空調対象空間の空気の熱を奪って蒸発
し、冷媒蒸気となって冷媒蒸気管51を経て上昇し蒸発
器6の蒸発コイルに流入する。室外機(吸収式冷熱発生
装置)は冷房モードで運転されているから、蒸発器6の
蒸発コイルは、その表面に滴下される水冷媒の蒸発によ
り冷却され、蒸発コイルに流入してきた冷媒蒸気(HF
C−134a)は、凝縮液化する。この凝縮液化によ
り、蒸発コイル内部の圧力が低下し、室内機の熱交換器
で蒸発した冷媒蒸気は蒸発器に吸引される。蒸発コイル
内部で凝縮液化した冷媒液は重力で室内機に流入するか
ら、冷房時の冷媒(HFC−134a)は、自然循環
し、ポンプによる冷媒の駆動を行う必要がない。
The operation of the air conditioner shown in FIG. 5 during cooling is as follows. The cooling / heating switching valve 56 is opened during cooling. The refrigerant vapor (HFC-134a) is cooled and condensed by the evaporator coil of the evaporator 6 to become a refrigerant liquid, flows downward through the refrigerant liquid pipe 50 by gravity, passes through expansion valves 54 and 55, and flows through the indoor units 52 and 53. Flow into heat exchanger. The refrigerant liquid that has flowed into the heat exchanger evaporates by removing the heat of the air in the air-conditioned space, becomes refrigerant vapor, rises through the refrigerant vapor pipe 51, and flows into the evaporation coil of the evaporator 6. Since the outdoor unit (absorption type cold heat generating device) is operated in the cooling mode, the evaporation coil of the evaporator 6 is cooled by the evaporation of the water refrigerant dropped on its surface, and the refrigerant vapor (flowing into the evaporation coil) ( HF
C-134a) is condensed and liquefied. Due to this condensation and liquefaction, the pressure inside the evaporating coil decreases, and the refrigerant vapor evaporated in the heat exchanger of the indoor unit is sucked into the evaporator. Since the refrigerant liquid condensed and liquefied inside the evaporation coil flows into the indoor unit by gravity, the refrigerant (HFC-134a) during cooling naturally circulates, and it is not necessary to drive the refrigerant by the pump.

【0012】冷房運転が開始されると、先に述べたよう
に、蒸発コイル内部の圧力が低下し、冷媒蒸気管内の飽
和冷媒蒸気が圧力差により蒸発コイル内に流入する。蒸
発コイル内で凝縮して生成された冷媒液は、冷媒液管5
0内を自重で流下し、冷媒液のヘッド(液柱)が上昇し
てくる。先に述べた冷媒の自然循環が成立するために
は、(冷媒の液ヘッド−冷媒ガスヘッド)が冷媒循環経
路の全圧力損失以上であればよい。つまり、次式を満足
する液ヘッドが形成されるまでは冷媒の自然循環は開始
されない。このことは、冷房運転開始時点で蒸発器6に
供給される熱負荷が少ないことを意味する。
When the cooling operation is started, as described above, the pressure inside the evaporation coil decreases, and the saturated refrigerant vapor in the refrigerant vapor pipe flows into the evaporation coil due to the pressure difference. The refrigerant liquid condensed and generated in the evaporation coil is the refrigerant liquid pipe 5
The head (liquid column) of the refrigerant liquid rises as it flows down in 0 by its own weight. In order for the above-mentioned natural circulation of the refrigerant to be established, it is sufficient that (refrigerant liquid head-refrigerant gas head) is not less than the total pressure loss of the refrigerant circulation path. That is, the natural circulation of the refrigerant is not started until the liquid head satisfying the following equation is formed. This means that the heat load supplied to the evaporator 6 at the start of the cooling operation is small.

【0013】[0013]

【数1】 [Equation 1]

【0014】暖房時には、冷暖切換弁56は閉じられて
いる。冷媒液(HFC−134a)は、蒸発器6の蒸発
コイルで加熱されて冷媒蒸気となり、冷媒蒸気管51を
下方に流れ、各室内機52,53の熱交換器に流入す
る。熱交換器に流入した冷媒蒸気は、空調対象空間の空
気に熱を奪われて凝縮液化し、冷媒液となって冷媒液管
51を下方に流れて冷媒ポンプ57入り側に流入する。
冷媒液は冷媒ポンプ57で加圧され、蒸発器6の蒸発コ
イルに流入して上記のサイクルを繰り返す。このとき、
室外機は暖房モードで運転され、蒸発器6には分離器2
で分離された高温の溶液が導かれ、蒸発コイルはこの熱
により加熱される。
During heating, the cooling / heating switching valve 56 is closed. The refrigerant liquid (HFC-134a) is heated by the evaporator coil of the evaporator 6 to become refrigerant vapor, flows down the refrigerant vapor pipe 51, and flows into the heat exchangers of the indoor units 52 and 53. The refrigerant vapor flowing into the heat exchanger is deprived of heat by the air in the air-conditioned space to be condensed and liquefied, and becomes a refrigerant liquid that flows downward through the refrigerant liquid pipe 51 and flows into the refrigerant pump 57 inlet side.
The refrigerant liquid is pressurized by the refrigerant pump 57, flows into the evaporation coil of the evaporator 6, and repeats the above cycle. At this time,
The outdoor unit is operated in the heating mode, and the evaporator 6 has the separator 2
The high temperature solution separated by is introduced and the evaporation coil is heated by this heat.

【0015】上述の吸収式冷媒自然循環冷房装置の室外
機に、図3,4を参照して説明した蒸発器温度による制
御(LT制御)をそのまま適用して冷房運転を行うと、
次のような問題がある。 1)LT0とLT1の温度幅が狭く、蒸発器温度が急降
下によりオーバーシュートしてLT1作動温度(凍結防
止弁開温度)にまで低下し、凍結防止弁12を作動させ
るため、蒸発器6の水冷媒中に濃溶液が混入し、蒸発器
の冷却能力が著しく低下する。蒸発器の冷却能力が低下
すると蒸発コイル内の圧力が上がり、室内機との間での
冷媒の自然循環が阻害される。冷媒分配器に混入した濃
溶液がほぼなくなるまで蒸発器の冷却能力が回復せず、
また冷媒分配器に混入した濃溶液がほぼなくなるまでに
時間がかかる。このため、蒸発器の冷却能力が回復し、
冷房運転が立ち上がるのに時間がかかることになる。蒸
発器温度が急降下するのは、室内機側の冷媒回路に冷房
時に冷媒を強制循環させるポンプがないため、冷房立上
り時に冷媒の循環量が少なく、したがって負荷との熱交
換量が少ないし冷媒によって蒸発器6の蒸発コイルに供
給される熱量も少ないことによる。このため、室外機の
冷房運転開始時の蒸発器の冷却能力が蒸発コイルに供給
される負荷に対して過大となり、蒸発器温度の急降下を
招くことになる。このような蒸発器温度の急降下は、吸
収器5を冷却する冷却水の温度がひくいとき、一層著し
い。冷却水温度が低いと吸収器5の吸収能力が高まり、
それに伴って蒸発器6の蒸発能力すなわち冷却能力が増
大するのである。
When the control by the evaporator temperature (LT control) described with reference to FIGS. 3 and 4 is directly applied to the outdoor unit of the above-mentioned absorption type refrigerant natural circulation cooling device, the cooling operation is performed.
There are the following problems. 1) The temperature range of LT0 and LT1 is narrow, and the evaporator temperature overshoots due to a sudden drop and drops to the LT1 operating temperature (freezing prevention valve opening temperature), and the freezing prevention valve 12 is operated. The concentrated solution is mixed in the refrigerant, and the cooling capacity of the evaporator is significantly reduced. When the cooling capacity of the evaporator decreases, the pressure inside the evaporation coil rises, and the natural circulation of the refrigerant with the indoor unit is hindered. The cooling capacity of the evaporator does not recover until there is almost no concentrated solution mixed in the refrigerant distributor,
In addition, it takes time for the concentrated solution mixed in the refrigerant distributor to almost disappear. Therefore, the cooling capacity of the evaporator is restored,
It will take time for the cooling operation to start up. The evaporator temperature drops sharply because the refrigerant circuit on the indoor unit side does not have a pump that forcibly circulates the refrigerant during cooling, so the amount of refrigerant circulated at the start of cooling is small, so the amount of heat exchange with the load is small and This is because the amount of heat supplied to the evaporation coil of the evaporator 6 is also small. Therefore, the cooling capacity of the evaporator at the start of the cooling operation of the outdoor unit becomes excessive with respect to the load supplied to the evaporation coil, which causes a rapid drop in the evaporator temperature. Such a sharp drop in the evaporator temperature is more remarkable when the temperature of the cooling water for cooling the absorber 5 is low. When the cooling water temperature is low, the absorption capacity of the absorber 5 increases,
Along with this, the evaporation capacity, that is, the cooling capacity of the evaporator 6 increases.

【0016】2)蒸発器温度がLT1作動温度に低下す
る前に、LT0制御により溶液バイパス弁13を開い
て、濃溶液を吸収器上部に導く代わりに吸収器底部にバ
イパスし、吸収能力を低下させて蒸発器での水冷媒の蒸
発を抑制しているが、フロン冷媒(HFC−134a)
は温度変化が早く、従来採用されているオン−オフ制御
の溶液バイパス弁13の分流比(10〜20%程度のバ
イパス量)では、LT1作動を止めらない。
2) Before the evaporator temperature decreases to the LT1 operating temperature, the solution bypass valve 13 is opened by LT0 control, and the concentrated solution is bypassed to the upper part of the absorber instead of being guided to the upper part of the absorber, thereby lowering the absorption capacity. To suppress the evaporation of the water refrigerant in the evaporator, but the CFC refrigerant (HFC-134a)
The temperature changes rapidly, and the LT1 operation is not stopped at the diversion ratio of the conventionally used on / off control solution bypass valve 13 (bypass amount of about 10 to 20%).

【0017】なお、LT1制御は、室外機内の水冷媒の
凍結防止に有効であるが、設定温度を下げると、凍結防
止効果が損なわれる。すなわち、蒸発器温度1℃で凍結
防止弁を開としているが、例えば0℃で開とすると、実
質的に水冷媒は凍結を始めており、蒸発器温度センサ1
7の精度、ばらつきを考えると、0℃では水冷媒回路の
凍結により晶析運転につながる可能性が高い。
The LT1 control is effective in preventing freezing of the water refrigerant in the outdoor unit, but if the set temperature is lowered, the antifreezing effect is impaired. That is, the freezing prevention valve is opened at the evaporator temperature of 1 ° C., but when it is opened at 0 ° C., for example, the water refrigerant is substantially starting to freeze, and the evaporator temperature sensor 1
Considering the accuracy and variation of No. 7, at 0 ° C, there is a high possibility that freezing of the water refrigerant circuit will lead to crystallization operation.

【0018】上述のように、二次冷媒として相変化する
流体を用い、冷房時に二次冷媒に自然循環させる場合、
冷房運転開始時、特に冷却水温度が計画温度より低い場
合、吸収器の吸収能力が負荷に対応して必要な能力より
も大きくなり、蒸発器温度が急降下してLT1制御が作
動し、冷房立上りに長時間を要するという問題がある。
一方、水冷媒比例弁11は、先に述べたように機内の溶
液濃度の調整を行うため、蒸発器温度に基づいてその開
度が制御されている。図6は、蒸発器温度と、蒸発器温
度に対応する水冷媒比例弁の開度の例を示している。通
常外気条件の変化に伴う冷却水温度変動に対応して蒸発
器温度も変動するため、蒸発器温度の2℃〜6℃の変動
は、図7に示すように、吸収器5の冷却水入り口での冷
却水温度変動24℃〜32℃にほぼ対応する。水冷媒比
例弁の開度は蒸発器温度に基づいて制御され、冷房運転
の立上りにあっては、図6に示したように、当初の全閉
状態から蒸発器温度が6℃にまで低下して初めて開き始
める。これは運転が開始されてからそれまでの間、凝縮
器4から蒸発器6への水冷媒の供給が制限され、凝縮器
4での水冷媒の貯蔵量が増加することを意味する。つま
り、吸収溶液に溶解されずに循環サイクルから除外され
る水冷媒の量が増え、循環する吸収溶液の濃度が増加す
る。従って、水冷媒比例弁が冷房立上り時に閉じたまま
であることは、吸収器5の吸収能力を増加させ、先に述
べた蒸発器の冷却能力と蒸発コイルに供給される負荷の
アンバランスを増幅するように作用する。すなわち、L
T1が作動しやすくなる原因として働く。
As described above, when a fluid that changes in phase is used as the secondary refrigerant and is naturally circulated through the secondary refrigerant during cooling,
At the start of the cooling operation, especially when the cooling water temperature is lower than the planned temperature, the absorption capacity of the absorber becomes larger than the necessary capacity corresponding to the load, the evaporator temperature drops sharply, the LT1 control operates, and the cooling rises. There is a problem that it takes a long time.
On the other hand, the opening degree of the water-refrigerant proportional valve 11 is controlled based on the evaporator temperature in order to adjust the solution concentration inside the machine as described above. FIG. 6 shows an example of the evaporator temperature and the opening degree of the water-refrigerant proportional valve corresponding to the evaporator temperature. Since the evaporator temperature also fluctuates in accordance with the fluctuation of the cooling water temperature that normally accompanies the change of the outside air condition, the fluctuation of the evaporator temperature of 2 ° C. to 6 ° C. is caused by the cooling water inlet of the absorber 5 as shown in FIG. Almost corresponds to the cooling water temperature fluctuation of 24 ° C to 32 ° C. The opening degree of the water-refrigerant proportional valve is controlled based on the evaporator temperature, and at the start of the cooling operation, as shown in FIG. 6, the evaporator temperature decreases from the initial fully closed state to 6 ° C. Start opening for the first time. This means that the supply of the water refrigerant from the condenser 4 to the evaporator 6 is restricted and the storage amount of the water refrigerant in the condenser 4 increases from the start of the operation until that time. That is, the amount of water refrigerant that is not dissolved in the absorption solution and is excluded from the circulation cycle increases, and the concentration of the circulating absorption solution increases. Therefore, the fact that the water-refrigerant proportional valve remains closed at the start of cooling increases the absorption capacity of the absorber 5 and amplifies the imbalance between the cooling capacity of the evaporator and the load supplied to the evaporation coil described above. Acts like. That is, L
It works as a cause of T1 becoming easy to operate.

【0019】本発明の目的は、二次冷媒として相変化す
る流体を用い、冷房時に二次冷媒に自然循環させる場合
でも、負荷率に対応して冷房運転をスムースに立上らせ
ることにある。
An object of the present invention is to use a fluid that changes in phase as a secondary refrigerant and smoothly start the cooling operation in accordance with the load factor even when the secondary refrigerant is naturally circulated during cooling. .

【0020】[0020]

【課題を解決するための手段】上記の目的は、吸収器5
上部に濃溶液を導く濃溶液管8Aと蒸発器6に内装され
た冷媒分配器6Bとを凍結防止弁12を介して連通する
管路と、凝縮器から前記冷媒分配器6Bに水冷媒を導く
水冷媒管11Bと、該水冷媒管に並列に接続され蒸発器
温度に基づいて開度制御される水冷媒比例弁11を介装
した管路11Aと、前記吸収器に内装された冷却水コイ
ルに冷却水を供給する冷却水管と、前記冷却水に冷却用
空気を送風する送風機42Aを有して該冷却水を冷却す
るクーリングタワー42と、を含んでなり、前記送風機
は前記クーリングタワーに流入する冷却水の温度があら
かじめ設定された第1の温度以下に低下したとき送風を
停止するように構成され、前記蒸発器と負荷との間で循
環する二次冷媒として相変化する流体が用いられる吸収
式冷熱発生装置において、前記冷却水管の吸収器5入り
口付近に冷却水入り口温度を検出して出力する冷却水入
口温度センサ25を設け、前記水冷媒比例弁11を、前
記冷却水入口温度センサ25が出力する冷却水温度が前
記第1の温度より低く設定された第2の温度未満である
とき蒸発器温度と無関係に全開するように構成すること
により達成される。第2の温度の設定に際しては、第1
の温度との温度差が2℃〜5.5℃になるように設定す
るのが望ましい。
The above-mentioned object is to achieve the absorber 5
A conduit that connects the concentrated solution pipe 8A that guides the concentrated solution to the upper part and the refrigerant distributor 6B installed in the evaporator 6 via the antifreezing valve 12, and the water refrigerant from the condenser to the refrigerant distributor 6B. A water-refrigerant pipe 11B, a pipe line 11A connected in parallel with the water-refrigerant pipe and having a water-refrigerant proportional valve 11 whose opening is controlled based on the evaporator temperature, and a cooling water coil installed in the absorber. A cooling water pipe for supplying cooling water to the cooling water; and a cooling tower 42 having a blower 42A for blowing cooling air to the cooling water to cool the cooling water, the cooling fan flowing into the cooling tower. An absorption type that is configured to stop blowing air when the temperature of water drops below a preset first temperature and uses a phase-change fluid as a secondary refrigerant that circulates between the evaporator and the load. For cold heat generator In addition, a cooling water inlet temperature sensor 25 that detects and outputs the cooling water inlet temperature is provided near the inlet of the absorber 5 of the cooling water pipe, and the water-refrigerant proportional valve 11 is cooled by the cooling water inlet temperature sensor 25. This is achieved by arranging to open fully regardless of the evaporator temperature when the water temperature is lower than the second temperature which is set lower than the first temperature. When setting the second temperature,
It is desirable to set the temperature difference from the temperature of 2 ° C to 5.5 ° C.

【0021】[0021]

【作用】冷房運転開始時点では、水冷媒比例弁は閉じら
れており、凝縮器の水冷媒は、水冷媒管を経て蒸発器に
供給される。蒸発器の温度があらかじめ設定された温度
に低下するまでは水冷媒比例弁は閉じたままであり、そ
の間、水冷媒の一部は凝縮器に蓄えられ、作動流体とし
ての循環サイクルから除外された状態となり、吸収溶液
の濃度は高められる。すなわち、吸収器の吸収能力が増
大する傾向にある。また、冷却水温度が計画温度よりも
低い場合、これはさらに吸収器の吸収能力を高め、冷房
立上り時点での蒸発器冷却能力と蒸発器に供給される負
荷のアンバランスを増幅し、蒸発器温度を凍結防止弁の
作動温度に近付けることを意味する。
When the cooling operation is started, the water-refrigerant proportional valve is closed, and the water-refrigerant in the condenser is supplied to the evaporator via the water-refrigerant pipe. The water-refrigerant proportional valve remains closed until the temperature of the evaporator drops to a preset temperature, during which part of the water-refrigerant is stored in the condenser and excluded from the circulation cycle as a working fluid. And the concentration of the absorbing solution is increased. That is, the absorption capacity of the absorber tends to increase. Also, when the cooling water temperature is lower than the planned temperature, this further enhances the absorption capacity of the absorber, amplifies the imbalance between the evaporator cooling capacity and the load supplied to the evaporator at the start of cooling, and the evaporator is cooled. It means bringing the temperature close to the operating temperature of the antifreezing valve.

【0022】しかし、冷却水温度があらかじめ設定され
た第2の温度、クーリングタワーに還流した冷却水が十
分に低温で送風機による冷却が必要でないと判断される
第1の温度よりも低く設定された第2の温度未満である
場合、蒸発器温度に関係なく水冷媒比例弁が全開され、
凝縮器に蓄えられていた水冷媒が蒸発器の冷媒分配器に
供給される。水冷媒比例弁を経て冷媒分配器に供給され
た水冷媒は過剰な水冷媒であり、大部分は蒸発すること
なく蒸発器底部に流下し、吸収器で冷媒蒸気を吸収した
吸収溶液と混合されて希溶液となる。すなわち、それま
で循環サイクル外にあった水冷媒が循環サイクルに戻さ
れることによって吸収溶液の濃度が低下し、吸収器にお
ける吸収能力が低下する。吸収能力の低下により、蒸発
器冷却能力と蒸発器に供給される負荷のアンバランスが
縮小され、蒸発器の温度が凍結防止弁の作動温度に低下
するのが防がれるから、冷房運転開始時のLT1作動
(凍結防止弁開)を回避することができる。
However, the cooling water temperature is set to a preset second temperature and the cooling water temperature returned to the cooling tower is set to a temperature lower than the first temperature which is determined to be sufficiently low that cooling by a blower is not necessary. When the temperature is lower than 2, the water-refrigerant proportional valve is fully opened regardless of the evaporator temperature,
The water refrigerant stored in the condenser is supplied to the refrigerant distributor of the evaporator. The water refrigerant supplied to the refrigerant distributor through the water refrigerant proportional valve is excess water refrigerant, and most of it flows down to the bottom of the evaporator without being evaporated and is mixed with the absorbing solution that has absorbed the refrigerant vapor in the absorber. Becomes a dilute solution. That is, the water refrigerant that has been outside the circulation cycle is returned to the circulation cycle, so that the concentration of the absorbing solution decreases, and the absorption capacity of the absorber decreases. Since the imbalance between the cooling capacity of the evaporator and the load supplied to the evaporator is reduced due to the reduction of the absorption capacity, it is possible to prevent the temperature of the evaporator from decreasing to the operating temperature of the antifreezing valve. The LT1 operation (opening of the antifreezing valve) can be avoided.

【0023】[0023]

【実施例】以下、本発明の実施例を図1を参照して説明
する。図1の実施例が図6に示したものと異なるのは、
冷却水管41の吸収器5との接続部近傍に冷却水入り口
温度を検出、出力する冷却水入口温度センサ25を設け
た点、水冷媒比例弁11が、蒸発器温度センサ17の出
力に基づいて無段階に開度制御されるだけでなく、前記
冷却水入口温度センサ25が出力する冷却水入り口温度
によっても制御される構成としてある点、コントローラ
59は、水冷媒比例弁11を蒸発器温度センサ17の出
力及び冷却水入口温度センサ25に基づいて開度制御す
るように構成されている点、及び、冷媒蒸気管51の蒸
発コイル出側立上り部と冷媒液管50の蒸発コイル接続
部とを電磁弁60を介して連通する点であり、他の構成
は図6のものと同じであるので、構成の詳細説明を省略
する。なお、クーリングタワー42の送風機42Aは、
クーリングタワー入り口における冷却水温度が24℃以
上であるとき、運転されるようになっている。本実施例
における蒸発器の計画運転温度は5℃であり、LT制御
は前記図4により説明したものと同じに行われる。
An embodiment of the present invention will be described below with reference to FIG. The embodiment of FIG. 1 differs from that shown in FIG. 6 in that
The cooling water inlet temperature sensor 25 for detecting and outputting the cooling water inlet temperature is provided near the connection portion of the cooling water pipe 41 with the absorber 5, and the water-refrigerant proportional valve 11 is based on the output of the evaporator temperature sensor 17. The controller 59 controls the water-refrigerant proportional valve 11 to the evaporator temperature sensor as well as the stepwise control of the opening degree as well as the control by the cooling water inlet temperature output from the cooling water inlet temperature sensor 25. A point configured to control the opening based on the output of 17 and the cooling water inlet temperature sensor 25, and the evaporation coil outlet rising part of the refrigerant vapor pipe 51 and the evaporation coil connection part of the refrigerant liquid pipe 50. Other points are the same as those in FIG. 6 in that they communicate with each other via the solenoid valve 60, and thus detailed description of the configuration will be omitted. The blower 42A of the cooling tower 42 is
When the cooling water temperature at the entrance of the cooling tower is 24 ° C or higher, the cooling tower is operated. The planned operating temperature of the evaporator in this embodiment is 5 ° C., and LT control is performed in the same manner as described with reference to FIG.

【0024】本実施例における水冷媒比例弁11の開度
制御の温度条件を図2に示す。図2はX軸に蒸発器温
度、Y軸に冷却水入口温度、Z軸に水冷媒比例弁開度を
とって、蒸発器温度、冷却水入口温度と水冷媒比例弁開
度の関係を示しており、コントローラ59はこの関係を
満たすように水冷媒比例弁11の開度を制御する。水冷
媒比例弁11は、冷却水入口温度が22℃未満の場合は
蒸発器温度に関係なく全開され、冷却水入口温度が22
℃以上の場合は、蒸発器温度が6℃以下になったら開き
始め、2℃で全開する。冷却水入り口温度が22℃以上
で蒸発器温度が6℃〜2℃の間にあるときは、開度が
(6−蒸発器温度)÷4×100%になるように制御さ
れ、6℃以上では全閉、2℃以下では全開を維持する。
FIG. 2 shows temperature conditions for controlling the opening of the water-refrigerant proportional valve 11 in this embodiment. FIG. 2 shows the relationship between the evaporator temperature, the cooling water inlet temperature, and the water-refrigerant proportional valve opening by taking the evaporator temperature on the X-axis, the cooling water inlet temperature on the Y-axis, and the water-refrigerant proportional valve opening on the Z-axis. Therefore, the controller 59 controls the opening degree of the water-refrigerant proportional valve 11 so as to satisfy this relationship. When the cooling water inlet temperature is lower than 22 ° C, the water-refrigerant proportional valve 11 is fully opened regardless of the evaporator temperature, and the cooling water inlet temperature is 22 ° C.
In the case of ℃ or more, start to open when the evaporator temperature becomes 6 ℃ or less, and fully open at 2 ℃. When the cooling water inlet temperature is 22 ° C or higher and the evaporator temperature is between 6 ° C and 2 ° C, the opening is controlled to be (6- evaporator temperature) ÷ 4 x 100%, and 6 ° C or higher. Fully closed at 2 ° C or less.

【0025】図1に示す実施例の冷房運転開始時の動作
を説明する。まず、冷房運転が開始されると蒸発器温度
が低下し始める。コントローラ59は、入力される冷却
水入口温度が22℃以上であれば水冷媒比例弁11の開
度を蒸発器温度センサ17の出力に基づいて制御し、冷
却水入口温度が22℃未満であれば蒸発器温度に関係な
く直ちに水冷媒比例弁11を全開する。水冷媒比例弁1
1が全開されると、凝縮器4に蓄えられていた水冷媒が
蒸発器6の冷媒分配器6Bに供給される。水冷媒比例弁
11を経て冷媒分配器6Bに供給された水冷媒は過剰な
水冷媒であり、大部分は蒸発することなく蒸発器6底部
に流下し、吸収器5で冷媒蒸気を吸収した吸収溶液と混
合されて希溶液となる。すなわち、それまで循環サイク
ル外にあった水冷媒が循環サイクルに戻されることによ
って吸収溶液の濃度が低下し、吸収器5における吸収能
力が低下する。吸収能力の低下により、蒸発器冷却能力
が低下して蒸発器6に供給される負荷のアンバランスが
縮小され、冷房運転開始時の蒸発器温度の急激な低下が
少なくなる。蒸発器の温度降下が少なくなって凍結防止
弁の作動温度に低下するのが防がれるから、冷房運転開
始時のLT1作動(凍結防止弁開)を回避することがで
きる。
The operation at the start of the cooling operation of the embodiment shown in FIG. 1 will be described. First, when the cooling operation is started, the evaporator temperature starts to drop. The controller 59 controls the opening degree of the water-refrigerant proportional valve 11 based on the output of the evaporator temperature sensor 17 if the input cooling water inlet temperature is 22 ° C. or higher. For example, the water-refrigerant proportional valve 11 is fully opened immediately regardless of the evaporator temperature. Water refrigerant proportional valve 1
When 1 is fully opened, the water refrigerant stored in the condenser 4 is supplied to the refrigerant distributor 6B of the evaporator 6. The water refrigerant supplied to the refrigerant distributor 6B via the water-refrigerant proportional valve 11 is an excess water refrigerant, and most of it flows down to the bottom of the evaporator 6 without being evaporated, and the absorption of the refrigerant vapor absorbed by the absorber 5 Mix with the solution to form a dilute solution. That is, the water refrigerant that has been outside the circulation cycle is returned to the circulation cycle, so that the concentration of the absorbing solution decreases, and the absorption capacity of the absorber 5 decreases. Due to the decrease in the absorption capacity, the evaporator cooling capacity is decreased, the unbalance of the load supplied to the evaporator 6 is reduced, and the rapid decrease in the evaporator temperature at the start of the cooling operation is reduced. Since it is prevented that the temperature drop of the evaporator is small and the operating temperature of the antifreezing valve is lowered, it is possible to avoid the LT1 operation (opening of the antifreezing valve) at the start of the cooling operation.

【0026】冷却水入口温度が22℃以上の場合は、コ
ントローラ59は入力される蒸発器温度に基づいて水冷
媒比例弁の開度を制御するが、冷却水入口温度が22℃
以上の場合は、冷却水温度に起因する蒸発器の過剰な冷
却能力は大きくなく、冷却水入り口温度が22℃未満の
場合に比べて、LT1作動の恐れは比較的少ない。
When the cooling water inlet temperature is 22 ° C. or higher, the controller 59 controls the opening of the water-refrigerant proportional valve based on the input evaporator temperature, but the cooling water inlet temperature is 22 ° C.
In the above cases, the excessive cooling capacity of the evaporator due to the cooling water temperature is not large, and the risk of LT1 operation is relatively small compared to the case where the cooling water inlet temperature is less than 22 ° C.

【0027】上述のように、冷却水入り口温度が22℃
未満という低い温度の場合に生じる吸収器の吸収能力の
増大が、水冷媒比例弁を開いて吸収溶液の濃度を低下さ
せることで抑制されるので、低冷却水温度に起因する冷
房運転開始時のLT1作動(凍結防止弁開)を回避する
ことができ、その結果、蒸発器の冷却能力を回復し冷媒
自然循環に必要な液ヘッド形成に要する時間、つまり、
冷房運転立上りに要する時間が長くなるのを防止でき
る。
As described above, the cooling water inlet temperature is 22 ° C.
The increase in the absorption capacity of the absorber that occurs when the temperature is as low as less than is suppressed by opening the water-refrigerant proportional valve to reduce the concentration of the absorption solution. The LT1 operation (opening of the antifreezing valve) can be avoided, and as a result, the time required for recovering the cooling capacity of the evaporator and forming the liquid head necessary for the natural circulation of the refrigerant, that is,
It is possible to prevent the time required to start the cooling operation from increasing.

【0028】上記実施例では、クーリングタワー42の
送風機42Aが停止される冷却水の温度(第1の温度)
と水冷媒比例弁11が全開される冷却水の温度(第2の
温度)の差が2℃となるように第2の温度が設定されて
いるが、第2の温度の設定にあたってはこの差は2℃〜
5.5℃程度になるようにするのが望ましい。差が2℃
よりも少ないと吸収能力を無駄に低下させて冷房能力の
余裕をなくす可能性があり、5.5℃よりも大きくする
と、LT1作動を抑制する効果が少なくなる。
In the above embodiment, the temperature of the cooling water at which the blower 42A of the cooling tower 42 is stopped (first temperature)
The second temperature is set so that the difference between the temperature (second temperature) of the cooling water at which the water-refrigerant proportional valve 11 is fully opened is 2 ° C., and this difference is set when setting the second temperature. Is 2 ℃ ~
It is desirable to set the temperature to about 5.5 ° C. The difference is 2 ℃
When it is less than 5.5 ° C., the absorption capacity may be unnecessarily reduced and the margin of the cooling capacity may be lost, and when it is higher than 5.5 ° C., the effect of suppressing the LT1 operation becomes small.

【0029】[0029]

【発明の効果】本発明によれば、蒸発器で冷却される二
次側冷媒として相変化する流体を自然循環させる場合、
冷却水温度が計画温度に比べて低い時にでも、冷房運転
起動時に蒸発器の温度の過大な降下が抑止され、蒸発器
に供給される水冷媒への濃溶液の混入が防がれるので、
冷房の立上りに要する時間が長くなるのを回避できる。
According to the present invention, when a phase-changing fluid is naturally circulated as a secondary side refrigerant cooled by an evaporator,
Even when the cooling water temperature is lower than the planned temperature, an excessive drop in the temperature of the evaporator is suppressed when the cooling operation is started, and it is possible to prevent the concentrated solution from mixing with the water refrigerant supplied to the evaporator.
It is possible to avoid a long time required for the cooling to rise.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の要部構成を示す系統図であ
る。
FIG. 1 is a system diagram showing a main configuration of an embodiment of the present invention.

【図2】図1に示す実施例の水冷媒比例弁の開度と蒸発
器温度、冷却水入口温度の関係の例を示すグラフであ
る。
2 is a graph showing an example of the relationship between the opening degree of the water-refrigerant proportional valve, the evaporator temperature, and the cooling water inlet temperature in the embodiment shown in FIG.

【図3】蒸発器温度に基づく保護制御の例を示す概念図
である。
FIG. 3 is a conceptual diagram showing an example of protection control based on evaporator temperature.

【図4】従来技術の例を示す系統図である。FIG. 4 is a system diagram showing an example of a conventional technique.

【図5】従来技術の他の例を示す系統図である。FIG. 5 is a system diagram showing another example of the conventional technique.

【図6】蒸発器温度と水冷媒比例弁開度の関係の例を示
すグラフである。
FIG. 6 is a graph showing an example of the relationship between evaporator temperature and water-refrigerant proportional valve opening.

【図7】蒸発器温度と冷却水入口温度の相関関係の例を
示すグラフである。
FIG. 7 is a graph showing an example of the correlation between the evaporator temperature and the cooling water inlet temperature.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 分離器 3 低温再生器 4 凝縮器 5 吸収器 6 蒸発器 6B 冷媒分配器 7 高温溶液熱交
換器 8 低温溶液熱交換器 8A 濃溶液管 9 溶液循環ポンプ 10 冷暖切換弁 10A 管路 11 水冷媒比例
弁 11A 管路 11B 水冷媒管 12 凍結防止弁 12A 管路 13 溶液バイパス弁 13A 管路 14 冷却水循環ポンプ 15 冷温水循環
ポンプ 16 冷水出口温度センサ 17 蒸発器温度
センサ 21 冷媒液温度センサ 22 溶液バイパ
ス弁 25 冷却水入口温度センサ 40,41 冷却
水管 42 クーリングタワー 42A 送風機 43,44 冷温水管 50 冷媒液管 51 冷媒蒸気管 52,53 室内
機 54,55 膨張弁 56 冷暖切換弁 57 冷媒ポンプ 58 逆止弁 59 コントローラ 60 電磁弁
1 High Temperature Regenerator 2 Separator 3 Low Temperature Regenerator 4 Condenser 5 Absorber 6 Evaporator 6B Refrigerant Distributor 7 High Temperature Solution Heat Exchanger 8 Low Temperature Solution Heat Exchanger 8A Concentrated Solution Pipe 9 Solution Circulation Pump 10 Cooling / heating Switching Valve 10A Pipe Channel 11 Water-refrigerant proportional valve 11A Pipeline 11B Water-refrigerant pipe 12 Antifreeze valve 12A Pipeline 13 Solution bypass valve 13A Pipeline 14 Cooling water circulation pump 15 Cold / hot water circulation pump 16 Cold water outlet temperature sensor 17 Evaporator temperature sensor 21 Refrigerant liquid temperature sensor 22 Solution bypass valve 25 Cooling water inlet temperature sensor 40, 41 Cooling water pipe 42 Cooling tower 42A Blower 43, 44 Cold / hot water pipe 50 Refrigerant liquid pipe 51 Refrigerant vapor pipe 52, 53 Indoor unit 54, 55 Expansion valve 56 Cooling / heating switching valve 57 Refrigerant pump 58 Check valve 59 Controller 60 Solenoid valve

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年7月18日[Submission date] July 18, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸収器5上部に濃溶液を導く濃溶液管8
Aと蒸発器6に内装された冷媒分配器6Bとを凍結防止
弁12を介して連通する管路12Aと、凝縮器4から前
記冷媒分配器6Bに水冷媒を導く水冷媒管11Bと、該
水冷媒管11Bに並列に接続され蒸発器温度に基づいて
開度制御される水冷媒比例弁11を介装した管路11A
と、前記吸収器5に内装された冷却水コイルに冷却水を
供給する冷却水管41と、冷却水に冷却用空気を送風す
る送風機42Aを有して該冷却水を冷却するクーリング
タワー42と、を含んでなり、前記送風機42Aは前記
クーリングタワー42に流入する冷却水の温度があらか
じめ設定された第1の温度以下に低下したとき送風を停
止するように構成され、前記蒸発器6と負荷との間で循
環する二次冷媒として相変化する流体が用いられる吸収
式冷熱発生装置において、前記冷却水管41の吸収器5
入り口付近に冷却水入り口温度を検出して出力する冷却
水入口温度センサ25が設けられ、前記水冷媒比例弁1
1は、前記冷却水入口温度センサ25が出力する冷却水
温度が前記第1の温度より低く設定された第2の温度未
満であるとき蒸発器温度と無関係に全開するように構成
されていることを特徴とする吸収式冷熱発生装置。
1. A concentrated solution pipe 8 for guiding a concentrated solution to the upper part of the absorber 5.
A conduit 12A for communicating A and a refrigerant distributor 6B installed in the evaporator 6 via an antifreezing valve 12, a water refrigerant pipe 11B for guiding a water refrigerant from the condenser 4 to the refrigerant distributor 6B, Pipeline 11A connected in parallel to the water-refrigerant pipe 11B and having a water-refrigerant proportional valve 11 whose opening is controlled based on the evaporator temperature
And a cooling water pipe 41 for supplying cooling water to a cooling water coil installed in the absorber 5, and a cooling tower 42 having a blower 42A for blowing cooling air to the cooling water to cool the cooling water. The blower 42A is configured to stop blowing air when the temperature of the cooling water flowing into the cooling tower 42 falls below a preset first temperature, and the blower 42A is provided between the evaporator 6 and the load. In the absorption type cold heat generator in which a fluid that changes in phase is used as a secondary refrigerant that circulates in the absorber, the absorber 5 of the cooling water pipe 41 is used.
A cooling water inlet temperature sensor 25 that detects and outputs the cooling water inlet temperature is provided near the inlet, and the water-refrigerant proportional valve 1 is provided.
1 is configured to be fully opened irrespective of the evaporator temperature when the cooling water temperature output by the cooling water inlet temperature sensor 25 is lower than the second temperature set lower than the first temperature. An absorption-type cold heat generator characterized by.
【請求項2】 前記第2の温度と前記第1の温度との温
度差が、2〜5.5℃の範囲内であることを特徴とする
請求項1に記載の吸収式冷熱発生装置。
2. The absorption-type cold heat generator according to claim 1, wherein a temperature difference between the second temperature and the first temperature is within a range of 2 to 5.5 ° C.
【請求項3】 前記第2の温度が22℃であることを特
徴とする請求項1または2に記載の吸収式冷熱発生装
置。
3. The absorption type cold heat generating device according to claim 1, wherein the second temperature is 22 ° C.
JP17835795A 1995-07-14 1995-07-14 Absorption type cold heat generator Expired - Fee Related JP3175040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17835795A JP3175040B2 (en) 1995-07-14 1995-07-14 Absorption type cold heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17835795A JP3175040B2 (en) 1995-07-14 1995-07-14 Absorption type cold heat generator

Publications (2)

Publication Number Publication Date
JPH0926223A true JPH0926223A (en) 1997-01-28
JP3175040B2 JP3175040B2 (en) 2001-06-11

Family

ID=16047083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17835795A Expired - Fee Related JP3175040B2 (en) 1995-07-14 1995-07-14 Absorption type cold heat generator

Country Status (1)

Country Link
JP (1) JP3175040B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058161A (en) * 2007-08-30 2009-03-19 Yazaki Corp Absorption type water cooler/heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058161A (en) * 2007-08-30 2009-03-19 Yazaki Corp Absorption type water cooler/heater

Also Published As

Publication number Publication date
JP3175040B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
US20170184314A1 (en) Heat pump heating system
JPH05231724A (en) Refrigerator and operation thereof
JP2000018762A (en) Absorption refrigerating machine
JP2002295917A (en) Control method for absorption freezer
JP3175040B2 (en) Absorption type cold heat generator
JP2985513B2 (en) Absorption cooling and heating system and its control method
JP3448680B2 (en) Absorption air conditioner
JP4090262B2 (en) Absorption refrigerator
JP3289235B2 (en) Absorption type cold heat generator
JP3451539B2 (en) Absorption type cold heat generator
JP3393398B2 (en) Absorption type cold heat generator
JP3383898B2 (en) Absorption type cold heat generator
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP2639969B2 (en) Absorption refrigerator
JP3407182B2 (en) Absorption type cold heat generator
JP3289236B2 (en) Absorption type cold heat generator
JP3594453B2 (en) Operating method of air conditioner
JP3448681B2 (en) Absorption type cold heat generator
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP6605975B2 (en) Absorption refrigerator
JP3451538B2 (en) Absorption type cold heat generator
JPH11257782A (en) Absorption cold heat generator
KR200308240Y1 (en) Absorption refrigerator with preventing the crystallization of a solution
JP2984459B2 (en) Absorption chiller / heater
JPH09287850A (en) Absorption type cold/hot heat generating device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees