JP5091590B2 - Absorption type water heater - Google Patents

Absorption type water heater Download PDF

Info

Publication number
JP5091590B2
JP5091590B2 JP2007224888A JP2007224888A JP5091590B2 JP 5091590 B2 JP5091590 B2 JP 5091590B2 JP 2007224888 A JP2007224888 A JP 2007224888A JP 2007224888 A JP2007224888 A JP 2007224888A JP 5091590 B2 JP5091590 B2 JP 5091590B2
Authority
JP
Japan
Prior art keywords
temperature
evaporator
valve opening
cooling water
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007224888A
Other languages
Japanese (ja)
Other versions
JP2009058161A (en
Inventor
那加博 稲垣
修 檜山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2007224888A priority Critical patent/JP5091590B2/en
Publication of JP2009058161A publication Critical patent/JP2009058161A/en
Application granted granted Critical
Publication of JP5091590B2 publication Critical patent/JP5091590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、吸収式冷温水機に係り、特に、凝縮器から蒸発器に送る液冷媒の流量を制御する液冷媒比例弁を備えた吸収式冷温水機に関する。   The present invention relates to an absorption chiller / heater, and more particularly, to an absorption chiller / heater equipped with a liquid refrigerant proportional valve that controls the flow rate of liquid refrigerant sent from a condenser to an evaporator.

吸収式冷温水機は、再生器、凝縮器、蒸発器、及び吸収器などを配管接続して吸収冷凍サイクルを形成し、例えば蒸発器で液冷媒と負荷流体とを熱交換して液冷媒の蒸発潜熱により負荷流体を冷却する構成を有している。   An absorption chiller / heater forms an absorption refrigeration cycle by connecting a regenerator, a condenser, an evaporator, an absorber, and the like. For example, the liquid refrigerant and the load fluid are exchanged in the evaporator to exchange the liquid refrigerant. The load fluid is cooled by latent heat of vaporization.

このような吸収式冷温水機では、特許文献1に記載されているように、冷房モードにおいて、凝縮器と蒸発器との間の冷媒流路に液冷媒比例弁を設け、蒸発器の検出温度に応じて液冷媒比例弁の弁開度を制御することが知られている。これは、弁開度の制御により蒸発器への冷媒流量を調整して液冷媒貯蔵室の冷媒量を調整し、これにより、溶液濃度及びこれに起因する吸収器での吸収力を制御するものである。   In such an absorption chiller / heater, as described in Patent Document 1, in the cooling mode, a liquid refrigerant proportional valve is provided in the refrigerant flow path between the condenser and the evaporator, and the detected temperature of the evaporator It is known to control the valve opening of the liquid refrigerant proportional valve according to the above. This is to control the amount of refrigerant in the liquid refrigerant storage chamber by adjusting the flow rate of refrigerant to the evaporator by controlling the valve opening, thereby controlling the solution concentration and the absorption capacity in the absorber due to this. It is.

例えば、吸収器で溶液と熱交換する冷却水の温度の低下に起因して吸収器の温度が低下して吸収力が増加し、これにより蒸発器の圧力及び温度が低下した場合には、冷媒凍結などを抑制するため、蒸発器温度の低下に応じて液冷媒比例弁の弁開度を大きくして液冷媒流量を増加させる。すると、液冷媒貯蔵室の冷媒量が減少することで溶液濃度が低下するので吸収器の吸収力が小さくなり、蒸発器温度が高くなって所定の蒸発器温度となる。   For example, if the temperature of the absorber decreases due to a decrease in the temperature of the cooling water that exchanges heat with the solution in the absorber and the absorption power increases, thereby reducing the pressure and temperature of the evaporator, In order to suppress freezing or the like, the liquid refrigerant flow rate is increased by increasing the valve opening of the liquid refrigerant proportional valve in accordance with a decrease in the evaporator temperature. Then, since the solution concentration is lowered by reducing the amount of refrigerant in the liquid refrigerant storage chamber, the absorption capacity of the absorber is reduced, the evaporator temperature is increased, and the predetermined evaporator temperature is reached.

一方、例えば冷却水の温度の上昇に起因して蒸発器の温度が上昇した場合は、冷却能力を維持するために、液冷媒比例弁開度を絞って液冷媒流量を減少させて液冷媒貯蔵室の冷媒量を増加させる。これにより、溶液濃度が上昇し吸収器の吸収力が増加して蒸発器温度が低下する。   On the other hand, for example, when the temperature of the evaporator rises due to an increase in the temperature of the cooling water, in order to maintain the cooling capacity, the liquid refrigerant flow rate is reduced by reducing the liquid refrigerant flow rate by reducing the liquid refrigerant proportional valve opening. Increase the amount of refrigerant in the chamber. As a result, the solution concentration increases, the absorption capacity of the absorber increases, and the evaporator temperature decreases.

特開平8−247569号公報JP-A-8-247469

しかしながら、特許文献1に記載されている技術には、冷却能力を安定させることについて、さらなる改善の余地を残している。   However, the technique described in Patent Document 1 leaves room for further improvement in stabilizing the cooling capacity.

すなわち、冷却水の温度は、例えば夏期と春や秋などの中間期とで異なるものであり、冷却水の温度が異なれば吸収器における吸収力も異なるので、冷却水の温度が高い時と低い時とでは、蒸発器の目標温度が同一であっても適切な弁開度は異なるものである。   That is, the temperature of the cooling water is different between, for example, summer and intermediate periods such as spring and autumn, and if the cooling water temperature is different, the absorption capacity of the absorber is also different. Thus, even if the target temperature of the evaporator is the same, the appropriate valve opening is different.

これに対して、特許文献1の技術は、吸収器の吸収力を蒸発器温度のみにより捉え、検出された蒸発器温度に対応する弁開度を、予め設定された蒸発器温度と弁開度との相関関係に基づいて制御している。しかし、冷却水温度が高い時に冷却能力を確保し、冷却水温度が低い時に冷媒凍結を起こさないように適切な制御をするためには、蒸発器の温度変化に対する弁開度の変化(制御の感度)が大きくなり、蒸発器温度の変化で液冷媒比例弁開度が大きく変化して安定性が悪く、結果として冷却能力が安定しない場合がある。   On the other hand, the technique of Patent Document 1 captures the absorption power of the absorber only by the evaporator temperature, and sets the valve opening corresponding to the detected evaporator temperature to the preset evaporator temperature and valve opening. Control is based on the correlation with. However, in order to ensure the cooling capacity when the cooling water temperature is high and to perform appropriate control so that the refrigerant does not freeze when the cooling water temperature is low, the change in the valve opening relative to the evaporator temperature change (control (Sensitivity) increases, and the liquid refrigerant proportional valve opening greatly changes due to a change in the evaporator temperature, resulting in poor stability. As a result, the cooling capacity may not be stable.

そこで、本発明は、吸収式冷温水機の冷却能力の安定度を向上させることを課題とする。   Then, this invention makes it a subject to improve the stability of the cooling capability of an absorption-type cold / hot water machine.

上記課題を解決するため、本発明の吸収式冷温水機は、希溶液を加熱して冷媒蒸気と濃溶液とを生成する再生器と、この再生器で生成された冷媒蒸気を凝縮する凝縮器と、この凝縮器で凝縮された冷媒液と負荷流体とを熱交換して負荷流体を冷却する蒸発器と、この蒸発器で蒸発した冷媒を再生器で生成された濃溶液に吸収させて希溶液を生成する吸収器と、この吸収器で生成された希溶液を再生器へ送る溶液循環ポンプとを接続して吸収冷凍サイクルを形成している。また、凝縮器と蒸発器とを接続する冷媒流路に設けられ冷媒流量を調整する液冷媒比例弁と、蒸発器の温度を検出し、検出温度に対応する弁開度を予め蒸発器温度に対応づけて弁開度が設定された相関関係に基づいて液冷媒比例弁の弁開度を制御する制御手段とを備えている。   In order to solve the above problems, an absorption chiller / heater of the present invention includes a regenerator that heats a dilute solution to generate refrigerant vapor and a concentrated solution, and a condenser that condenses the refrigerant vapor generated by the regenerator. And an evaporator that cools the load fluid by exchanging heat between the refrigerant liquid condensed in the condenser and the load fluid, and the refrigerant evaporated in the evaporator is absorbed by the concentrated solution generated in the regenerator. An absorption refrigeration cycle is formed by connecting an absorber that generates a solution and a solution circulation pump that sends a dilute solution generated by the absorber to a regenerator. In addition, a liquid refrigerant proportional valve that is provided in the refrigerant flow path connecting the condenser and the evaporator and adjusts the refrigerant flow rate, detects the temperature of the evaporator, and sets the valve opening corresponding to the detected temperature to the evaporator temperature in advance. Control means for controlling the valve opening degree of the liquid refrigerant proportional valve based on the correlation in which the valve opening degree is set in correspondence.

そして、蒸発器温度に対応づけて弁開度が設定された相関関係は、吸収器の濃溶液と熱交換する冷却水の温度に相関させて設定されるものであり、制御手段は、蒸発器の検出温度に対応する弁開度を、冷却水の検出温度に応じた相関関係に基づいて液冷媒比例弁の弁開度を制御することを特徴とする。   The correlation in which the valve opening is set in association with the evaporator temperature is set in correlation with the temperature of the cooling water that exchanges heat with the concentrated solution in the absorber. The valve opening degree of the liquid refrigerant proportional valve is controlled based on the correlation according to the detected temperature of the cooling water.

すなわち、本発明は、液冷媒比例弁の弁開度の制御を、蒸発器の温度のみならず吸収器の濃溶液と熱交換する冷却水の温度をも考慮して行うものである。言い換えれば、蒸発器温度と弁開度との相関関係は、吸収器の濃溶液と熱交換する冷却水の温度に相関させて設定されるものであり、また、蒸発器の温度変化に対する弁開度の変化(制御の感度)が適切に設定されるものである。そのため、蒸発器の検出温度と、冷却水の検出温度に応じた適切な蒸発器温度と弁開度との相関関係とに基づいた制御をすることによって、蒸発器温度の変化で液冷媒比例弁開度が大きく変化して安定性が悪化することを抑制でき、その結果、冷却能力の安定度を向上させることができる。   That is, in the present invention, the valve opening degree of the liquid refrigerant proportional valve is controlled in consideration of not only the temperature of the evaporator but also the temperature of the cooling water that exchanges heat with the concentrated solution of the absorber. In other words, the correlation between the evaporator temperature and the valve opening is set in correlation with the temperature of the coolant that exchanges heat with the concentrated solution of the absorber, and the valve opening with respect to the temperature change of the evaporator. The degree of change (control sensitivity) is appropriately set. Therefore, by controlling based on the detected temperature of the evaporator and the correlation between the appropriate evaporator temperature corresponding to the detected temperature of the cooling water and the valve opening, the liquid refrigerant proportional valve It can suppress that the opening degree changes greatly and the stability deteriorates, and as a result, the stability of the cooling capacity can be improved.

この場合において、蒸発器温度と弁開度との相関関係は、蒸発器温度が設定温度(tIn this case, the correlation between the evaporator temperature and the valve opening is that the evaporator temperature is the set temperature (t 1 )以下では弁開度が予め設定された最大値に設定され、設定温度(t) Below, the valve opening is set to a preset maximum value, and the set temperature (t 1 )以上では弁開度が最大値から蒸発器温度が高くなるにつれて小さくなる相関関係に設定され、さらに、吸収器の濃溶液と熱交換する冷却水温度に相関させて、冷却水温度が高い場合は最大値が小さく設定され、冷却水温度が低い場合は最大値が大きく設定されている。) In the above, the valve opening is set to a correlation that decreases as the evaporator temperature increases from the maximum value, and when the coolant temperature is high in correlation with the coolant temperature that exchanges heat with the concentrated solution of the absorber The maximum value is set small, and the maximum value is set large when the cooling water temperature is low.

つまり、例えば夏期などに冷却水の温度が高くなればなるほど、濃溶液の冷却能力は低くなり、溶液濃度をより高くしなければならないので、弁開度は小さく設定する。これに加えて、冷却水温度の変化時における蒸発器圧力の変化は例えば5〜7mmHg程度であるのに対して、凝縮器圧力の変化は例えば35〜55mmHg程度となり、冷却水の温度が高くなるにつれて凝縮器−蒸発器間の差圧が大きくなるので、弁開度は小さく設定する。   That is, for example, the higher the temperature of the cooling water in summer, the lower the cooling capacity of the concentrated solution and the higher the solution concentration, so the valve opening is set smaller. In addition to this, the change in the evaporator pressure when the cooling water temperature is changed is, for example, about 5 to 7 mmHg, whereas the change in the condenser pressure is, for example, about 35 to 55 mmHg, and the temperature of the cooling water is increased. As the differential pressure between the condenser and the evaporator increases, the valve opening is set small.

また、蒸発器温度に対応づけて弁開度が設定された相関関係は、蒸発器の温度が高くなるにつれて一定の傾きで弁開度が小さくなる傾き部分を有し、冷却水の温度に相関させて設定された相関関係は、冷却水の温度が低くなるにつれて傾きが小さくなるよう設定されることが望ましい。   In addition, the correlation in which the valve opening is set in correspondence with the evaporator temperature has a slope where the valve opening decreases with a constant slope as the evaporator temperature increases, and is correlated with the coolant temperature. The correlation thus set is desirably set so that the inclination becomes smaller as the temperature of the cooling water becomes lower.

冷却水の温度が低くなるにつれて吸収器の能力は大きくなる。吸収器の能力が高いことと、凝縮器−蒸発器間の差圧が小さいことから、蒸発器の温度変化に対する弁開度の変化の感度が高いと、弁開度の急激な変化に追従して蒸発器温度が大きく変化するため安定性が悪く、結果として冷却能力が安定しない。そこで、冷却水の温度が低くなるにつれて、蒸発器温度と弁開度との相関関係における傾きを小さく、つまり感度を低くすることで、弁開度の急激な変化及び蒸発器の急激な温度変化を抑制して冷却能力を安定させることができる。   The capacity of the absorber increases as the temperature of the cooling water decreases. Since the capacity of the absorber is high and the differential pressure between the condenser and the evaporator is small, if the sensitivity of the change in the valve opening relative to the temperature change of the evaporator is high, it will follow a sudden change in the valve opening. Since the evaporator temperature changes greatly, the stability is poor, and as a result, the cooling capacity is not stable. Therefore, as the cooling water temperature decreases, the gradient in the correlation between the evaporator temperature and the valve opening becomes smaller, that is, the sensitivity is lowered, so that the rapid change in the valve opening and the rapid temperature change in the evaporator. Can be suppressed to stabilize the cooling capacity.

また、上記課題を解決するため、本発明の吸収式冷温水機の他の態様は、上述の態様と同様の吸収冷凍サイクルを形成しており、凝縮器と蒸発器とを接続する冷媒流路に設けられ冷媒流量を調整する液冷媒比例弁と、この液冷媒比例弁の弁開度を制御する制御手段とを備えている。そして、制御手段は、蒸発器の温度及び吸収器の濃溶液と熱交換する冷却水の温度を検出し、検出された蒸発器温度及び冷却水温度に基づいて液冷媒比例弁の弁開度を制御することを特徴とする。   Moreover, in order to solve the said subject, the other aspect of the absorption chiller-heater of this invention forms the absorption refrigeration cycle similar to the above-mentioned aspect, and the refrigerant | coolant flow path which connects a condenser and an evaporator A liquid refrigerant proportional valve for adjusting the refrigerant flow rate, and a control means for controlling the valve opening degree of the liquid refrigerant proportional valve. The control means detects the temperature of the evaporator and the temperature of the cooling water that exchanges heat with the concentrated solution of the absorber, and determines the valve opening degree of the liquid refrigerant proportional valve based on the detected evaporator temperature and cooling water temperature. It is characterized by controlling.

本発明によれば、吸収式冷温水機の冷却能力の安定度を向上させることができる。   According to the present invention, the stability of the cooling capacity of the absorption chiller / heater can be improved.

以下、本発明を適用してなる吸収式冷温水機の実施形態を説明する。なお、本実施形態は、いわゆる二重効用吸収式冷温水機を一例として説明するが、本発明はこれに限らず、単効用、或いは三重効用の吸収式冷温水機に適用することも可能である。   Hereinafter, an embodiment of an absorption chiller / heater to which the present invention is applied will be described. In addition, although this embodiment demonstrates as what is called a double effect absorption chiller / heater as an example, this invention is not limited to this, It is also possible to apply to a single effect or a triple effect absorption chiller / heater. is there.

図1は、本実施形態の吸収式冷温水機の全体構成を示す図である。吸収式冷温水機10は、高温再生器12と、分離器14と、低温再生器16と、凝縮器18と、蒸発器20と、吸収器22と、溶液循環ポンプ24と、高温及び低温溶液熱交換器26,28などを配管接続して吸収冷凍サイクルを形成して構成されている。   FIG. 1 is a diagram illustrating an overall configuration of an absorption chiller / heater according to the present embodiment. The absorption chiller / heater 10 includes a high temperature regenerator 12, a separator 14, a low temperature regenerator 16, a condenser 18, an evaporator 20, an absorber 22, a solution circulation pump 24, a high temperature and a low temperature solution. The heat exchangers 26, 28 and the like are connected by piping to form an absorption refrigeration cycle.

冷房運転モードにおいて、高温再生器12は、例えば冷媒としての水と吸収剤としての臭化リチウム(LiBr)などからなる希溶液を外部から与えられる熱源により加熱し、分離器14は、加熱された希溶液を冷媒蒸気と中間濃溶液とに分離する。高温溶液熱交換器26は、分離された中間濃溶液を溶液循環ポンプ24により送られる希溶液と熱交換させて降温し、低温再生器16は、降温した中間濃溶液を分離器14で分離された冷媒蒸気で再度加熱して冷媒蒸気を発生させ濃溶液を生成する。低温溶液熱交換器28は、この濃溶液を溶液循環ポンプ24により送られる希溶液と熱交換させて降温する。   In the cooling operation mode, the high-temperature regenerator 12 heats a dilute solution composed of, for example, water as a refrigerant and lithium bromide (LiBr) as an absorbent by a heat source supplied from the outside, and the separator 14 is heated. The dilute solution is separated into refrigerant vapor and intermediate concentrated solution. The high temperature solution heat exchanger 26 cools the separated intermediate concentrated solution by heat exchange with the diluted solution sent by the solution circulation pump 24, and the low temperature regenerator 16 separates the cooled intermediate concentrated solution by the separator 14. The refrigerant vapor is heated again to generate refrigerant vapor to produce a concentrated solution. The low temperature solution heat exchanger 28 lowers the temperature by exchanging heat of this concentrated solution with the dilute solution sent by the solution circulation pump 24.

凝縮器18には、低温再生器16で中間濃溶液を再度加熱して発生した冷媒蒸気と、低温再生器16で中間濃溶液と熱交換して降温した冷媒蒸気とが流入される。また、凝縮器18には、後述する吸収器22を通流した後の冷却水が通流されており、これにより冷媒蒸気が凝縮され、凝縮した液冷媒は、凝縮器18に設けられた液冷媒貯蔵室30に貯留される。蒸発器20には液冷媒分配器32と温度センサ33が設けられており、凝縮器18から流入した液冷媒を液冷媒分配器32から液冷媒を滴下して蒸発器伝熱管に散布する。これにより、蒸発器伝熱管内を流れる被冷却対象の例えば水などの負荷流体から熱を奪って液冷媒が蒸発し、その蒸発潜熱で負荷流体が冷却される。   Refrigerant vapor generated by heating the intermediate concentrated solution again in the low temperature regenerator 16 and refrigerant vapor lowered in temperature by exchanging heat with the intermediate concentrated solution in the low temperature regenerator 16 flow into the condenser 18. Further, the condenser 18 is supplied with cooling water after passing through an absorber 22 described later, whereby the refrigerant vapor is condensed, and the condensed liquid refrigerant is a liquid provided in the condenser 18. The refrigerant is stored in the refrigerant storage chamber 30. The evaporator 20 is provided with a liquid refrigerant distributor 32 and a temperature sensor 33, and the liquid refrigerant that has flowed in from the condenser 18 is dropped from the liquid refrigerant distributor 32 and sprayed onto the evaporator heat transfer tube. Thereby, the liquid refrigerant evaporates by taking heat from the load fluid such as water to be cooled flowing in the evaporator heat transfer tube, and the load fluid is cooled by the latent heat of evaporation.

吸収器22は、低温再生器16で生成された後、低温溶液熱交換器28で熱交換された濃溶液を、吸収器22に供給された冷却水で冷却しながら滴下することにより蒸発器20で蒸発した冷媒を吸収させ、希溶液を生成する。溶液循環ポンプ24は、吸収器22で生成された希溶液を低温溶液熱交換器28,高温溶液熱交換器26を介して高温再生器12に送る。なお、吸収器22に通流される冷却水の入口温度が温度センサ35により検出されている。   The absorber 22 is produced by the low-temperature regenerator 16 and then dripped while the concentrated solution heat-exchanged by the low-temperature solution heat exchanger 28 is cooled with the cooling water supplied to the absorber 22, thereby evaporating the evaporator 20. The refrigerant evaporated in step 1 is absorbed to form a dilute solution. The solution circulation pump 24 sends the dilute solution generated by the absorber 22 to the high temperature regenerator 12 through the low temperature solution heat exchanger 28 and the high temperature solution heat exchanger 26. In addition, the temperature sensor 35 detects the inlet temperature of the cooling water flowing through the absorber 22.

また、液冷媒貯蔵室30と液冷媒分配器32とが冷媒流路34,36を介して接続されており、冷媒流路36には、冷媒流量を調整する液冷媒比例弁38が設けられている。さらに、蒸発器20の温度、及び冷却水入口の温度を検出しながら、液冷媒比例弁38の弁開度を制御する制御手段40が設けられている。液冷媒比例弁38は、制御手段40からの指令に応じて弁開度が制御され、これにより液冷媒貯蔵室30内の液冷媒の液面高さHが制御される。制御手段40は、蒸発器温度、及び冷却水入口温度に基づいて弁開度を演算するものである。   Further, the liquid refrigerant storage chamber 30 and the liquid refrigerant distributor 32 are connected via refrigerant flow paths 34 and 36, and the refrigerant flow path 36 is provided with a liquid refrigerant proportional valve 38 for adjusting the refrigerant flow rate. Yes. Furthermore, a control means 40 for controlling the valve opening degree of the liquid refrigerant proportional valve 38 while detecting the temperature of the evaporator 20 and the temperature of the cooling water inlet is provided. The valve opening degree of the liquid refrigerant proportional valve 38 is controlled according to a command from the control means 40, and thereby the liquid level height H of the liquid refrigerant in the liquid refrigerant storage chamber 30 is controlled. The control means 40 calculates the valve opening based on the evaporator temperature and the cooling water inlet temperature.

続いて、図2を用いて液冷媒比例弁38の具体的な構成を説明する。図2に示すように、液冷媒比例弁(比例弁)38は、円環状のコイル42と、コイル42内に対向して収容され上下動可能な中空円筒状のローター44と、ローター44の下端に固着された円環状の雌ねじ46と、雌ねじ46に歯合する中空円筒状の雄ねじ48と、ローター44の上端に固定され雄ねじ48を挿通する弁棒50と、弁棒50の下端に固定された弁52と、弁52の上下動により開閉されるノズル54と、ノズル54の下側に設けられ液冷媒貯蔵室に接続される流体入口56と、ノズル54の上側に設けられ液冷媒分配器に接続される流体出口58などにより形成されている。   Next, a specific configuration of the liquid refrigerant proportional valve 38 will be described with reference to FIG. As shown in FIG. 2, the liquid refrigerant proportional valve (proportional valve) 38 includes an annular coil 42, a hollow cylindrical rotor 44 that is accommodated in the coil 42 and can be moved up and down, and a lower end of the rotor 44. An annular female screw 46 fixed to the inner screw 46, a hollow cylindrical male screw 48 meshing with the female screw 46, a valve rod 50 fixed to the upper end of the rotor 44 and inserted through the male screw 48, and fixed to the lower end of the valve rod 50. A valve 52, a nozzle 54 opened and closed by the vertical movement of the valve 52, a fluid inlet 56 provided below the nozzle 54 and connected to the liquid refrigerant storage chamber, and a liquid refrigerant distributor provided above the nozzle 54 Formed by a fluid outlet 58 or the like connected to the.

制御手段40からの指令に応じたパルス電流がコイル42に印加されると、ローター44が回転するとともに雄ねじ48にガイドされて上下動し、弁52がノズル54を開閉するようになっている。弁52は、例えば円錐形状の頂点を下側に位置させ、その上下動量に対して、弁52とノズル54との間の流通面積を直線的に比例するように形成することにより、蒸発器温度に比例して液冷媒流量を制御し、液面高さHを制御している。ただし、液冷媒比例弁(比例弁)38の構成は、これに限らず、種々の公知の比例弁を採用することができる。   When a pulse current corresponding to a command from the control means 40 is applied to the coil 42, the rotor 44 rotates and is guided by the male screw 48 to move up and down, so that the valve 52 opens and closes the nozzle 54. For example, the valve 52 is formed such that the apex of the conical shape is positioned on the lower side, and the flow area between the valve 52 and the nozzle 54 is linearly proportional to the amount of vertical movement thereof. The liquid refrigerant flow rate is controlled in proportion to the liquid level, and the liquid level height H is controlled. However, the configuration of the liquid refrigerant proportional valve (proportional valve) 38 is not limited to this, and various known proportional valves can be employed.

次に、本実施形態の吸収式冷温水機の特徴部である制御手段40について説明する。まず、制御手段40の従来の基本的な弁開度の制御を、図3を用いて説明する。この図では横軸が蒸発器の温度、縦軸が液冷媒比例弁の弁開度を示している。図に示すように、従来技術では、弁開度は蒸発器温度に比例して制御される。つまり、予め蒸発器温度と弁開度の相関関係が定められており、設定された蒸発器20の目標温度に対して検出された蒸発器の温度が低くなれば、弁開度を大きくして液冷媒流量を増加させることにより、液冷媒貯蔵室30内の液面高さHを低くすることで溶液濃度を低下させるとともに吸収器の吸収力を小さくして、蒸発器温度を高める。   Next, the control means 40 which is a characteristic part of the absorption chiller / heater of this embodiment will be described. First, conventional basic control of the valve opening degree of the control means 40 will be described with reference to FIG. In this figure, the horizontal axis represents the evaporator temperature, and the vertical axis represents the valve opening of the liquid refrigerant proportional valve. As shown in the figure, in the prior art, the valve opening is controlled in proportion to the evaporator temperature. That is, the correlation between the evaporator temperature and the valve opening is determined in advance, and if the detected evaporator temperature becomes lower than the set target temperature of the evaporator 20, the valve opening is increased. By increasing the liquid refrigerant flow rate, the liquid level height H in the liquid refrigerant storage chamber 30 is lowered to lower the solution concentration and reduce the absorption capacity of the absorber, thereby raising the evaporator temperature.

一方、検出された蒸発器の温度が目標温度より高くなれば、逆に弁開度を小さくして液冷媒流量を低下させることにより、液冷媒貯蔵室30内の液面高さHを高くすることで吸収器の吸収力を大きくして蒸発器温度を低下させる。このようにして蒸発器温度は常に目標温度になるように制御される。   On the other hand, if the detected evaporator temperature is higher than the target temperature, the liquid level height H in the liquid refrigerant storage chamber 30 is increased by reducing the valve opening and lowering the liquid refrigerant flow rate. This increases the absorption capacity of the absorber and lowers the evaporator temperature. In this way, the evaporator temperature is controlled so as to always reach the target temperature.

しかしながら、このような液冷媒比例弁開度制御では、蒸発器の温度変化に対する弁開度の変化(制御の感度)が大きくなり、蒸発器温度の変化で液冷媒比例弁開度が大きく変化して安定性が悪く、結果として冷却能力が安定しない場合がある。   However, in such liquid refrigerant proportional valve opening control, the change in valve opening (control sensitivity) with respect to the temperature change of the evaporator increases, and the liquid refrigerant proportional valve opening greatly changes due to the change in evaporator temperature. The stability may be poor, and as a result, the cooling capacity may not be stable.

つまり、冷却水の温度は、例えば夏期と春や秋などの中間期とで異なるものであり、冷却水の温度が異なれば吸収器の吸収力も異なるので、冷却水の温度が高い時と低い時とでは、蒸発器の目標温度が同一であっても適切な弁開度は異なるものである。また、冷却水温度の変化時における蒸発器圧力の変化は例えば5〜7mmHg程度であるのに対して、凝縮器圧力の変化は例えば35〜55mmHg程度となるため、冷却水温度の変動により凝縮器−蒸発器間の差圧は大きく変動するものである。   In other words, the temperature of the cooling water is different between the summer season and the intermediate period such as spring or autumn, and the absorption capacity of the absorber is different if the cooling water temperature is different. Thus, even if the target temperature of the evaporator is the same, the appropriate valve opening is different. Further, the change in the evaporator pressure when the cooling water temperature changes is, for example, about 5 to 7 mmHg, whereas the change in the condenser pressure is, for example, about 35 to 55 mmHg. -The pressure difference between the evaporators varies greatly.

冷却水温度が高い場合は差圧が大きくて冷媒が流れやすく、冷却能力を維持するためには、液冷媒比例弁開度をより小さくする必要があり蒸発器温度は高めで安定する。一方、冷却水温度が低い場合は差圧が小さくて冷媒が流れにくいので、冷媒凍結を防ぐためには、液冷媒比例弁開度をより大きくする必要があり蒸発器温度は低めで安定する。   When the cooling water temperature is high, the differential pressure is large and the refrigerant flows easily. In order to maintain the cooling capacity, it is necessary to make the liquid refrigerant proportional valve opening smaller, and the evaporator temperature becomes high and stable. On the other hand, when the cooling water temperature is low, the differential pressure is small and the refrigerant hardly flows. Therefore, in order to prevent the refrigerant from freezing, it is necessary to increase the liquid refrigerant proportional valve opening, and the evaporator temperature is low and stable.

そして、冷却水温度が高い場合と低い場合における蒸発器の安定温度の差は狭いので、冷却水温度が高い時に冷却能力を確保し、冷却水温度が低い時に冷媒凍結を起こさないためには、弁開度0〜100%に相当する蒸発器温度範囲(図3のt〜t間)は狭くする必要がある。すると、蒸発器の温度変化に対する弁開度の制御感度(傾き)は大きくなるので、蒸発器温度の変化で液冷媒比例弁開度が大きく変化して安定性が悪く、結果として冷却能力が安定しない。このような問題を踏まえた本実施形態の制御手段40の態様について以下説明する。 And since the difference in the stable temperature of the evaporator when the cooling water temperature is high and low is narrow, in order to ensure the cooling capacity when the cooling water temperature is high and not cause refrigerant freezing when the cooling water temperature is low, It is necessary to narrow the evaporator temperature range (between t 1 and t 2 in FIG. 3) corresponding to the valve opening degree of 0 to 100%. Then, since the control sensitivity (slope) of the valve opening with respect to the temperature change of the evaporator becomes large, the liquid refrigerant proportional valve opening greatly changes with the change of the evaporator temperature and the stability is deteriorated. As a result, the cooling capacity is stabilized. do not do. The aspect of the control means 40 of this embodiment based on such a problem is demonstrated below.

制御手段40は、図4に示すように、吸収器22で濃溶液と熱交換する冷却水温度Ts、及び蒸発器温度Tを入力する入力I/F(入力インターフェイス)60と、入力I/F60から入力される冷却水温度Ts,蒸発器温度Tに基づいて液冷媒比例弁38の弁開度を演算する中央処理装置64と、演算された弁開度を出力する出力I/F(出力インターフェイス)66などによって構成されている。中央処理装置64は、図示していない記憶手段に格納されたソフトウェアプログラムによる演算式を実行することにより冷却水温度Ts,蒸発器温度Tに応じた弁開度を演算する。   As shown in FIG. 4, the control means 40 includes an input I / F (input interface) 60 for inputting the cooling water temperature Ts for exchanging heat with the concentrated solution in the absorber 22 and the evaporator temperature T, and an input I / F 60. A central processing unit 64 that calculates the valve opening degree of the liquid refrigerant proportional valve 38 based on the coolant temperature Ts and the evaporator temperature T that are input from the output, and an output I / F (output interface) that outputs the calculated valve opening degree ) 66 and the like. The central processing unit 64 calculates the valve opening according to the cooling water temperature Ts and the evaporator temperature T by executing an arithmetic expression by a software program stored in a storage means (not shown).

なお、演算式の実行に代えて、記憶手段に冷却水温度Ts、及び蒸発器温度Tに対応する弁開度のテーブルを予め格納しておき、入力された冷却水温度Ts、及び蒸発器温度Tから対応する弁開度を読み出してもよい。弁開度テーブルの設定値間の値が検出された場合には、適宜補間するよう構成することもできる。   Instead of executing the arithmetic expression, a table of the valve opening degree corresponding to the cooling water temperature Ts and the evaporator temperature T is stored in the storage means in advance, and the input cooling water temperature Ts and the evaporator temperature are stored. The corresponding valve opening may be read from T. When a value between the set values in the valve opening table is detected, it may be configured to appropriately interpolate.

つまり、制御手段40は、液冷媒比例弁の弁開度の制御を、蒸発器温度と、吸収器の濃溶液と熱交換する冷却水とに基づいて行うものである。具体的には、図5に示すように、蒸発器温度と弁開度との相関関係を、冷却水温度Tsに相関させて設定するものである。図5は、説明の便宜のために、冷却水温度が高い場合と低い場合を代表例として蒸発器温度と弁開度との相関関係を示す図である。   That is, the control means 40 controls the valve opening degree of the liquid refrigerant proportional valve based on the evaporator temperature and the cooling water that exchanges heat with the concentrated solution in the absorber. Specifically, as shown in FIG. 5, the correlation between the evaporator temperature and the valve opening is set in correlation with the cooling water temperature Ts. FIG. 5 is a diagram showing a correlation between the evaporator temperature and the valve opening degree as a representative example when the cooling water temperature is high and low for convenience of explanation.

このように、冷却水の温度に相関させて設定される相関関係は、冷却水の温度が高くなるにつれて蒸発器温度に対応づけられた弁開度が小さくなるよう設定されている。つまり、例えば、冷却水温度が高い場合は、図5に示すように液冷媒比例弁開度の最大値を50%としている。これは、例えば夏期などに冷却水の温度が高くなればなるほど、濃溶液の冷却能力は低くなり、溶液濃度をより高くしなければならないためである。また、これに加えて、冷却水温度の変化時における蒸発器圧力の変化は例えば5〜7mmHg程度であるのに対して、凝縮器圧力の変化は例えば35〜55mmHg程度となり、冷却水の温度が高くなるにつれて凝縮器−蒸発器間の差圧が大きくなるため、弁開度を小さく設定している。   Thus, the correlation set in correlation with the temperature of the cooling water is set so that the valve opening degree associated with the evaporator temperature decreases as the temperature of the cooling water increases. That is, for example, when the coolant temperature is high, the maximum value of the liquid refrigerant proportional valve opening is set to 50% as shown in FIG. This is because, for example, the higher the temperature of the cooling water in summer, the lower the cooling capacity of the concentrated solution and the higher the solution concentration. In addition to this, the change in the evaporator pressure when the cooling water temperature is changed is, for example, about 5 to 7 mmHg, whereas the change in the condenser pressure is, for example, about 35 to 55 mmHg. As the pressure increases, the differential pressure between the condenser and the evaporator increases, so the valve opening is set small.

さらに、蒸発器温度と弁開度との相関関係は、蒸発器の温度が高くなるにつれて一定の傾きで弁開度が小さくなる傾き部分(図5のt〜t間、及びt〜t間)を有するものであるが、図5に示すように、冷却水の温度が低い場合の傾きが、冷却水の温度が高い場合に比べて小さくなるよう設定されている。これは、冷却水の温度が低くなるにつれて濃溶液の冷却能力は大きくなるので、吸収力が大きくなり蒸発器の冷却能力は充分得られ、この場合に、蒸発器の温度変化に対する弁開度の変化の感度が高いと、弁開度が急激に変化して蒸発器温度も大きく変化するため安定性が悪く、結果として冷却能力が安定しないからである。 Furthermore, the evaporator correlation between the temperature and the valve opening is between t 1 ~t 2 slope portion (FIG. 5 where the valve opening degree at a constant gradient as the temperature of the evaporator is high is reduced, and t 1 ~ Although those having a t between 3), as shown in FIG. 5, the gradient when the temperature of the cooling water is low, the temperature of the cooling water is set to be smaller than in the case high. This is because the cooling capacity of the concentrated solution increases as the temperature of the cooling water decreases, so that the absorption capacity increases and sufficient cooling capacity of the evaporator is obtained. In this case, the valve opening degree with respect to the temperature change of the evaporator is increased. If the sensitivity of the change is high, the valve opening degree changes abruptly and the evaporator temperature also changes greatly, so the stability is poor, and as a result, the cooling capacity is not stable.

そこで、冷却水の温度が低くなるにつれて、蒸発器温度と弁開度との相関関係における傾きを小さく、つまり感度を低くすることで、弁開度の急激な変化及び蒸発器の急激な温度変化を抑制して冷却能力を安定させることができる。   Therefore, as the cooling water temperature decreases, the gradient in the correlation between the evaporator temperature and the valve opening becomes smaller, that is, the sensitivity is lowered, so that the rapid change in the valve opening and the rapid temperature change in the evaporator. Can be suppressed to stabilize the cooling capacity.

次に、制御手段40の制御フローチャートを、図6を用いて説明する。冷却水入口温度Tsが検出されると(S1)、これに基づいて蒸発器温度と弁開度との相関関係が求められる(S2)。続いて、蒸発器20の温度が検出されて(S3)、この温度と、S2で演算された蒸発器温度と弁開度との相関関係に基づいて、弁開度比例制御により弁開度が演算される(S4)。S4で演算された弁開度の指令信号が液冷媒比例弁38に出力され(S5)、液冷媒比例弁38はこの指令信号に基づいて冷媒流量を制御する。   Next, the control flowchart of the control means 40 is demonstrated using FIG. When the cooling water inlet temperature Ts is detected (S1), the correlation between the evaporator temperature and the valve opening is obtained based on this (S2). Subsequently, the temperature of the evaporator 20 is detected (S3), and based on this temperature and the correlation between the evaporator temperature calculated in S2 and the valve opening, the valve opening is controlled by the valve opening proportional control. Calculated (S4). The valve opening command signal calculated in S4 is output to the liquid refrigerant proportional valve 38 (S5), and the liquid refrigerant proportional valve 38 controls the refrigerant flow rate based on this command signal.

以上のように、本実施形態によれば、蒸発器温度と弁開度との相関関係は、吸収器の濃溶液と熱交換する冷却水の温度に相関させて設定されるものであるため、冷却水の検出温度に応じた適切な蒸発器温度と弁開度との相関関係を用いることができる。この相関関係は、蒸発器の温度変化に対する弁開度の変化(制御の感度)が適切に設定されるものであるので、蒸発器温度の変化で液冷媒比例弁開度が大きく変化して安定性が悪化することを抑制でき、その結果、冷却能力の安定度を向上させることができる。   As described above, according to the present embodiment, the correlation between the evaporator temperature and the valve opening is set in correlation with the temperature of the cooling water that exchanges heat with the concentrated solution of the absorber. An appropriate correlation between the evaporator temperature corresponding to the detected temperature of the cooling water and the valve opening can be used. In this correlation, the change in the valve opening (control sensitivity) with respect to the change in the evaporator temperature is set appropriately, so that the liquid refrigerant proportional valve opening changes greatly with the change in the evaporator temperature and is stable. As a result, the stability of the cooling capacity can be improved.

本実施形態の吸収式冷温水機の全体構成を示す図である。It is a figure which shows the whole structure of the absorption-type cold / hot water machine of this embodiment. 液冷媒比例弁の構成を示す図である。It is a figure which shows the structure of a liquid refrigerant proportional valve. 制御手段の従来の弁開度の制御内容を説明する図である。It is a figure explaining the control content of the conventional valve opening degree of a control means. 制御手段の構成を示す図である。It is a figure which shows the structure of a control means. 冷却水温度が高い場合と低い場合の蒸発器温度と弁開度との相関関係を示す図である。It is a figure which shows the correlation with the evaporator temperature and valve opening degree when a cooling water temperature is high and low. 制御手段の弁開度の制御フローチャートである。It is a control flowchart of the valve opening degree of a control means.

符号の説明Explanation of symbols

10 吸収式冷温水機
12 高温再生器
14 分離器
16 低温再生器
18 凝縮器
20 蒸発器
22 吸収器
24 溶液循環ポンプ
26 高温溶液熱交換器
28 低温溶液熱交換器
30 液冷媒貯蔵室
32 液冷媒分配器
33,35 温度センサ
34,36 冷媒流路
38 液冷媒比例弁
40 制御手段
DESCRIPTION OF SYMBOLS 10 Absorption type cold / hot water machine 12 High temperature regenerator 14 Separator 16 Low temperature regenerator 18 Condenser 20 Evaporator 22 Absorber 24 Solution circulation pump 26 High temperature solution heat exchanger 28 Low temperature solution heat exchanger 30 Liquid refrigerant storage chamber 32 Liquid refrigerant Distributors 33 and 35 Temperature sensors 34 and 36 Refrigerant flow path 38 Liquid refrigerant proportional valve 40 Control means

Claims (3)

希溶液を加熱して冷媒蒸気と濃溶液とを生成する再生器と、該再生器で生成された冷媒蒸気を凝縮する凝縮器と、該凝縮器で凝縮された冷媒液と負荷流体とを熱交換して負荷流体を冷却する蒸発器と、該蒸発器で蒸発した冷媒を前記再生器で生成された濃溶液に吸収させて前記希溶液を生成する吸収器と、該吸収器で生成された希溶液を前記再生器へ送る溶液循環ポンプとを接続して吸収冷凍サイクルを形成し、前記凝縮器と前記蒸発器とを接続する冷媒流路に設けられ冷媒流量を調整する液冷媒比例弁と、前記蒸発器の温度を検出し、該検出温度に対応する弁開度を予め蒸発器温度に対応づけて弁開度が設定された相関関係に基づいて前記液冷媒比例弁の弁開度を制御する制御手段とを備えてなる吸収式冷温水機であって、
前記蒸発器温度と前記弁開度との相関関係は、前記蒸発器温度が設定温度(t )以下では前記弁開度が予め設定された最大値に設定され、前記設定温度(t )以上では前記弁開度が前記最大値から前記蒸発器温度が高くなるにつれて小さくなる相関関係に設定され、さらに、前記吸収器の濃溶液と熱交換する冷却水温度に相関させて、冷却水温度が高い場合は前記最大値が小さく設定され、前記冷却水温度が低い場合は前記最大値が大きく設定されていることを特徴とする吸収式冷温水機。
A regenerator that heats a dilute solution to generate refrigerant vapor and a concentrated solution, a condenser that condenses the refrigerant vapor generated in the regenerator, and a refrigerant liquid and a load fluid condensed in the condenser are heated. The evaporator that exchanges and cools the load fluid, the absorber that absorbs the refrigerant evaporated in the evaporator into the concentrated solution generated in the regenerator and generates the dilute solution, and the absorber that is generated in the absorber A liquid refrigerant proportional valve that is connected to a solution circulation pump that sends a dilute solution to the regenerator to form an absorption refrigeration cycle, and that is provided in a refrigerant flow path that connects the condenser and the evaporator; The temperature of the evaporator is detected, and the valve opening degree of the liquid refrigerant proportional valve is determined based on a correlation in which the valve opening degree is set in advance by associating the valve opening degree corresponding to the detected temperature with the evaporator temperature. An absorption chiller / heater comprising control means for controlling,
The correlation between the evaporator temperature and the valve opening is such that when the evaporator temperature is equal to or lower than a set temperature (t 1 ), the valve opening is set to a preset maximum value, and the set temperature (t 1 ). In the above, the valve opening is set to a correlation that decreases as the evaporator temperature increases from the maximum value, and further, the cooling water temperature is correlated with the cooling water temperature for heat exchange with the concentrated solution of the absorber. When the temperature is high, the maximum value is set small, and when the cooling water temperature is low, the maximum value is set large .
前記弁開度が、前記最大値から前記蒸発器温度が高くなるにつれて小さくなる相関関係は、一定の傾きで前記弁開度が小さくなるように設定され、かつ前記冷却水の温度が低くなるにつれて前記傾きが小さくなるよう設定されていることを特徴とする請求項の吸収式冷温水機。 The correlation in which the valve opening decreases as the evaporator temperature increases from the maximum value is set so that the valve opening decreases with a constant slope, and as the cooling water temperature decreases. The absorption chiller-heater according to claim 1 , wherein the inclination is set to be small. 希溶液を加熱して冷媒蒸気と濃溶液とを生成する再生器と、該再生器で生成された冷媒蒸気を凝縮する凝縮器と、該凝縮器で凝縮された冷媒液と負荷流体とを熱交換して負荷流体を冷却する蒸発器と、該蒸発器で蒸発した冷媒を前記再生器で生成された濃溶液に吸収させて前記希溶液を生成する吸収器と、該吸収器で生成された希溶液を前記再生器へ送る溶液循環ポンプとを接続して吸収冷凍サイクルを形成するとともに、前記凝縮器と前記蒸発器とを接続する冷媒流路に設けられ冷媒流量を調整する液冷媒比例弁と、該液冷媒比例弁の弁開度を制御する制御手段とを備えてなる吸収式冷温水機であって、
前記制御手段は、前記蒸発器の温度及び前記吸収器の濃溶液と熱交換する冷却水の温度を検出し、検出された蒸発器温度及び冷却水温度に基づいて前記液冷媒比例弁の弁開度を制御するように構成され、前記蒸発器温度が設定温度(t )以下では前記弁開度を予め設定された最大値に制御し、前記設定温度(t )以上では前記弁開度を前記最大値から前記蒸発器温度が高くなるにつれて小さくするように制御し、さらに、前記冷却水温度が高い場合は前記最大値を小さくし、前記冷却水の検出温度が低い場合は前記最大値を大きくすることを特徴とする吸収式冷温水機。
A regenerator that heats a dilute solution to generate refrigerant vapor and a concentrated solution, a condenser that condenses the refrigerant vapor generated in the regenerator, and a refrigerant liquid and a load fluid condensed in the condenser are heated. The evaporator that exchanges and cools the load fluid, the absorber that absorbs the refrigerant evaporated in the evaporator into the concentrated solution generated in the regenerator and generates the dilute solution, and the absorber that is generated in the absorber A liquid refrigerant proportional valve that is connected to a solution circulation pump that sends a dilute solution to the regenerator to form an absorption refrigeration cycle and that is provided in a refrigerant flow path that connects the condenser and the evaporator to adjust the refrigerant flow rate And an absorption chiller / heater comprising a control means for controlling the valve opening of the liquid refrigerant proportional valve,
The control means detects the temperature of the evaporator and the temperature of cooling water that exchanges heat with the concentrated solution of the absorber, and opens the liquid refrigerant proportional valve based on the detected evaporator temperature and cooling water temperature. The valve opening is controlled to a preset maximum value when the evaporator temperature is equal to or lower than a set temperature (t 1 ), and the valve opening is equal to or higher than the set temperature (t 1 ). Is controlled so as to decrease from the maximum value as the evaporator temperature increases, and the maximum value is decreased when the cooling water temperature is high, and the maximum value when the detected temperature of the cooling water is low. Absorption chiller / heater characterized by increasing the size .
JP2007224888A 2007-08-30 2007-08-30 Absorption type water heater Active JP5091590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007224888A JP5091590B2 (en) 2007-08-30 2007-08-30 Absorption type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007224888A JP5091590B2 (en) 2007-08-30 2007-08-30 Absorption type water heater

Publications (2)

Publication Number Publication Date
JP2009058161A JP2009058161A (en) 2009-03-19
JP5091590B2 true JP5091590B2 (en) 2012-12-05

Family

ID=40554058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007224888A Active JP5091590B2 (en) 2007-08-30 2007-08-30 Absorption type water heater

Country Status (1)

Country Link
JP (1) JP5091590B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7123988B2 (en) 2020-01-24 2022-08-23 矢崎エナジーシステム株式会社 Absorption chiller

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2816790B2 (en) * 1992-12-02 1998-10-27 矢崎総業株式会社 Absorption chiller / heater
JPH08110115A (en) * 1994-10-14 1996-04-30 Yazaki Corp Absorption type refrigerating machine
JP3175040B2 (en) * 1995-07-14 2001-06-11 矢崎総業株式会社 Absorption type cold heat generator
JP4166037B2 (en) * 2002-05-24 2008-10-15 三洋電機株式会社 Absorption chiller / heater

Also Published As

Publication number Publication date
JP2009058161A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
KR100716706B1 (en) Operating Method of Single or Double Effect Absorption Refrigerator
WO1999039140A1 (en) Absorption type refrigerating machine
JP6434730B2 (en) Absorption heat source machine
JP5091590B2 (en) Absorption type water heater
JP4157723B2 (en) Triple effect absorption refrigerator
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP2009024944A (en) Absorption type water cooling and heating apparatus
JP3163411B2 (en) Absorption chiller / heater and liquid refrigerant controller
JP5456368B2 (en) Absorption refrigerator
JP2708809B2 (en) Control method of absorption refrigerator
JP2011094910A (en) Absorption refrigerating machine
JPS6135890Y2 (en)
JP3146408B2 (en) Absorption chiller / heater and concentrated solution controller
JP2883372B2 (en) Absorption chiller / heater
JPH0868572A (en) Dual-effect absorption refrigerator
JP2520974Y2 (en) Proportional control absorption chiller / heater
JPH11230633A (en) Absorption refrigerator
JPH08145494A (en) Absorption type heat pump
JPS6223229B2 (en)
JP2011033261A (en) Absorption type refrigerating machine
JPS5810941Y2 (en) Water ↓ - Lithium salt absorption refrigerator
JPS6113888Y2 (en)
JP2009085446A (en) Absorption type water cooler/heater
JP3241624B2 (en) Absorption air conditioner
JP2916866B2 (en) Absorption chiller / heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120926

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121005

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20130219

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250