JP2009024944A - Absorption type water cooling and heating apparatus - Google Patents

Absorption type water cooling and heating apparatus Download PDF

Info

Publication number
JP2009024944A
JP2009024944A JP2007189113A JP2007189113A JP2009024944A JP 2009024944 A JP2009024944 A JP 2009024944A JP 2007189113 A JP2007189113 A JP 2007189113A JP 2007189113 A JP2007189113 A JP 2007189113A JP 2009024944 A JP2009024944 A JP 2009024944A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
evaporator
solution
load fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007189113A
Other languages
Japanese (ja)
Inventor
Tomoharu Kudo
智春 久土
Wataru Nagamoto
渡 永本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2007189113A priority Critical patent/JP2009024944A/en
Publication of JP2009024944A publication Critical patent/JP2009024944A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of an absorption type water cooling and heating apparatus, variably setting a preset temperature of load fluid. <P>SOLUTION: An absorption refrigerating cycle is formed by connecting the followings: regenerators 12, 16 for heating a diluted solution to generate refrigerant steam and a concentrated solution; a condenser 18 for condensing the refrigerant steam generated in the regenerators; an evaporator 20 for performing heat exchange between the refrigerant liquid condensed by the condenser and load fluid to cool the load fluid; an absorber 22 for absorbing the refrigerant evaporated in the evaporators in the concentrated solution generated in the regenerators; and a solution circulating pump 24 for sending the diluted solution generated in the absorber to the regenerators. A refrigerant passage 36 connecting the condenser and the evaporator to each other is provided with a liquid refrigerant proportional valve 38 for adjusting a refrigerant flow rate. A control means 40 controls the valve opening of the liquid refrigerant proportional valve so that the detected temperature of the evaporator reaches a target temperature of the evaporator, and variably sets the target temperature of the evaporator according to the preset temperature of the load fluid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、吸収式冷温水機に係り、特に蒸発器温度に応じて蒸発器に送る液冷媒流量を制御する液冷媒比例弁を備えた吸収式冷温水機に関する。   The present invention relates to an absorption chiller / heater, and more particularly to an absorption chiller / heater equipped with a liquid refrigerant proportional valve that controls the flow rate of liquid refrigerant sent to the evaporator according to the evaporator temperature.

吸収式冷温水機は、再生器、凝縮器、蒸発器、及び吸収器などを配管接続して吸収冷凍サイクルを形成し、例えば蒸発器で液冷媒と負荷流体とを熱交換して液冷媒の蒸発潜熱により負荷流体を冷却するものである。   An absorption chiller / heater forms an absorption refrigeration cycle by connecting a regenerator, a condenser, an evaporator, an absorber, and the like. For example, the liquid refrigerant and the load fluid are exchanged in the evaporator to exchange the liquid refrigerant. The load fluid is cooled by latent heat of vaporization.

このような吸収式冷温水機では、特許文献1に記載されているように、凝縮器と蒸発器との間の冷媒流路に液冷媒比例弁を設け、蒸発器の検出温度に応じて液冷媒比例弁の弁開度を制御して蒸発器への冷媒流量を制御し、これにより蒸発潜熱を制御して負荷流体の冷却量を制御することが知られている。   In such an absorption chiller / heater, as described in Patent Document 1, a liquid refrigerant proportional valve is provided in the refrigerant flow path between the condenser and the evaporator, and the liquid is proportional to the detected temperature of the evaporator. It is known that the flow rate of refrigerant to the evaporator is controlled by controlling the valve opening degree of the refrigerant proportional valve, thereby controlling the latent heat of vaporization and the cooling amount of the load fluid.

例えば、冷却水温度の低下に起因して吸収器の温度が低下して吸収力が増加し、これにより蒸発器の圧力及び温度が低下した場合には、蒸発器温度の低下に応じて液冷媒比例弁の弁開度を大きくすることにより、液冷媒流量を増加させる。すると、吸収器における溶液濃度が低下するので吸収器の吸収力が小さくなり、蒸発器温度が高くなって所定の蒸発器温度となる。   For example, when the temperature of the absorber decreases due to a decrease in the cooling water temperature and the absorption capacity increases, thereby reducing the pressure and temperature of the evaporator, the liquid refrigerant is changed according to the decrease in the evaporator temperature. The liquid refrigerant flow rate is increased by increasing the valve opening of the proportional valve. Then, since the solution density | concentration in an absorber falls, the absorptive power of an absorber becomes small, evaporator temperature becomes high and it becomes predetermined evaporator temperature.

このように、蒸発器温度を検出しながら検出温度が目標温度(蒸発器目標温度)になるように液冷媒比例弁の弁開度を制御することにより、蒸発器への液冷媒流量を調整して吸収器での吸収力を一定に保っている。   In this way, the flow rate of the liquid refrigerant to the evaporator is adjusted by controlling the valve opening of the liquid refrigerant proportional valve so that the detected temperature becomes the target temperature (evaporator target temperature) while detecting the evaporator temperature. Therefore, the absorbing power in the absorber is kept constant.

特開平8−247569号公報JP-A-8-247469

しかしながら、特許文献1に記載されている技術には、負荷流体の設定温度(目標温度)を可変に設定する吸収式冷温水機において、冷却効率を向上させることについて改善の余地が残されている。   However, the technique described in Patent Document 1 leaves room for improvement in improving the cooling efficiency in the absorption chiller / heater that variably sets the set temperature (target temperature) of the load fluid. .

すなわち、例えば負荷流体の設定温度が変更されているにもかかわらず、蒸発器目標温度を一定に保ったまま弁開度の制御を行っていると、設定温度が上昇した場合に蒸発器目標温度が必要以上に低く設定されることになる。すると、弁開度を必要以上に低く抑えて冷媒貯蔵室に冷媒を貯めることとなり、その結果、溶液サイクル濃度が高く維持されてしまう。溶液サイクル濃度が低いほど再生器への入熱量が少なく冷温水機としての効率が上がることから、負荷流体の設定温度が高い運転において効率が抑制される場合があった。   That is, for example, when the valve opening degree is controlled while the evaporator target temperature is kept constant even though the set temperature of the load fluid is changed, the evaporator target temperature is increased when the set temperature rises. Will be set lower than necessary. Then, the valve opening degree is suppressed to be lower than necessary, and the refrigerant is stored in the refrigerant storage chamber. As a result, the solution cycle concentration is kept high. As the solution cycle concentration is lower, the amount of heat input to the regenerator is less and the efficiency as a chiller / heater is increased. Therefore, the efficiency may be suppressed in an operation where the set temperature of the load fluid is high.

そこで、本発明は、負荷流体の設定温度を可変に設定する吸収式冷温水機の効率を向上することを課題とする。   Then, this invention makes it a subject to improve the efficiency of the absorption-type cold / hot water machine which variably sets the preset temperature of load fluid.

上記課題を解決するため、本発明の吸収式冷温水機は、希溶液を加熱して冷媒蒸気と濃溶液とを生成する再生器と、再生器で生成された冷媒蒸気を凝縮する凝縮器と、凝縮器で凝縮された冷媒液と負荷流体とを熱交換して負荷流体を冷却する蒸発器と、蒸発器で蒸発した冷媒を再生器で生成された濃溶液に吸収させて希溶液を生成する吸収器と、吸収器で生成された希溶液を再生器へ送る溶液循環ポンプとを接続して吸収冷凍サイクルを形成しており、凝縮器と蒸発器とを接続する冷媒流路に設けられ冷媒流量を調整する液冷媒比例弁と、蒸発器の温度を検出して温度が蒸発器目標温度になるように液冷媒比例弁の弁開度を制御する制御手段とを備えている。そして、制御手段は、負荷流体の設定温度に応じて蒸発器目標温度を可変設定することを特徴とする。   In order to solve the above problems, an absorption chiller / heater of the present invention includes a regenerator that heats a dilute solution to generate refrigerant vapor and a concentrated solution, and a condenser that condenses the refrigerant vapor generated in the regenerator. The evaporator liquid that cools the load fluid by exchanging heat between the refrigerant liquid condensed by the condenser and the load fluid, and the diluted solution generated by the regenerator absorbs the refrigerant evaporated by the evaporator to produce a dilute solution An absorption refrigeration cycle is formed by connecting an absorber that absorbs the diluted solution generated in the absorber to a regenerator, and is provided in a refrigerant flow path that connects the condenser and the evaporator. A liquid refrigerant proportional valve that adjusts the refrigerant flow rate and a control unit that detects the temperature of the evaporator and controls the valve opening degree of the liquid refrigerant proportional valve so that the temperature becomes the evaporator target temperature. The control means variably sets the evaporator target temperature according to the set temperature of the load fluid.

これによれば、例えば負荷流体の設定温度が高くなれば、これに対応させて蒸発器目標温度が高くなり、蒸発器目標温度を一定ではなく、負荷流体の設定温度に応じて可変設定することができる。したがって、負荷流体の設定温度が高くなれば弁開度を大きくして冷媒貯蔵室の冷媒量を減らし、溶液のサイクル濃度を下げることができ、その結果、再生器への入熱量を抑制して冷温水機の効率を向上させることができる。   According to this, for example, if the set temperature of the load fluid increases, the target temperature of the evaporator increases correspondingly, and the target temperature of the evaporator is not constant but is variably set according to the set temperature of the load fluid. Can do. Therefore, if the set temperature of the load fluid increases, the valve opening can be increased to reduce the amount of refrigerant in the refrigerant storage chamber, and the cycle concentration of the solution can be lowered. As a result, the amount of heat input to the regenerator can be suppressed. The efficiency of the hot and cold water machine can be improved.

この場合において、制御手段は、負荷流体の設定温度より一定温度低い値に蒸発器目標温度を設定することが望ましい。例えば負荷流体の設定温度より2℃程度低ければ十分に冷却能力はでることから、蒸発器目標温度を負荷流体の設定温度より2℃低い値とすることができる。   In this case, it is desirable that the control means sets the evaporator target temperature to a value lower than the set temperature of the load fluid by a certain temperature. For example, if the temperature is about 2 ° C. lower than the set temperature of the load fluid, the cooling capacity is sufficiently obtained, so that the evaporator target temperature can be set to a value 2 ° C. lower than the set temperature of the load fluid.

本発明によれば、負荷流体の設定温度を可変に設定する吸収式冷温水機の効率を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, the efficiency of the absorption-type cold / hot water machine which variably sets the preset temperature of load fluid can be improved.

以下、本発明を適用してなる吸収式冷温水機の実施形態を説明する。なお、本実施形態は、いわゆる二重効用吸収式冷温水機を一例として説明するが、本発明はこれに限らず、単効用、或いは三重効用の吸収式冷温水機に適用することも可能である。   Hereinafter, an embodiment of an absorption chiller / heater to which the present invention is applied will be described. In addition, although this embodiment demonstrates as what is called a double effect absorption chiller / heater as an example, this invention is not limited to this, It is also possible to apply to a single effect or a triple effect absorption chiller / heater. is there.

図1は、本実施形態の吸収式冷温水機の全体構成を示す図である。吸収式冷温水機10は、高温再生器12と、分離器14と、低温再生器16と、凝縮器18と、蒸発器20と、吸収器22と、溶液循環ポンプ24と、高温及び低温溶液熱交換器26,28などを配管接続して吸収冷凍サイクルを形成して構成されている。   FIG. 1 is a diagram illustrating an overall configuration of an absorption chiller / heater according to the present embodiment. The absorption chiller / heater 10 includes a high temperature regenerator 12, a separator 14, a low temperature regenerator 16, a condenser 18, an evaporator 20, an absorber 22, a solution circulation pump 24, a high temperature and a low temperature solution. The heat exchangers 26, 28 and the like are connected by piping to form an absorption refrigeration cycle.

高温再生器12は、例えば冷媒としての水と吸収剤としての臭化リチウム(LiBr)などからなる希溶液を外部から与えられる熱源により加熱し、分離器14は、加熱された希溶液を冷媒蒸気と中間濃溶液とに分離する。高温溶液熱交換器26は、分離された中間濃溶液を溶液循環ポンプ24により送られる希溶液と熱交換させて降温し、低温再生器16は、降温した中間濃溶液を分離器14で分離された冷媒蒸気で再度加熱し濃溶液を生成する。低温溶液熱交換器28は、この濃溶液を溶液循環ポンプ24により送られる希溶液と熱交換させて降温する。   The high temperature regenerator 12 heats a dilute solution made of, for example, water as a refrigerant and lithium bromide (LiBr) as an absorbent by a heat source given from the outside, and the separator 14 converts the heated dilute solution into a refrigerant vapor. And an intermediate concentrated solution. The high temperature solution heat exchanger 26 cools the separated intermediate concentrated solution by heat exchange with the diluted solution sent by the solution circulation pump 24, and the low temperature regenerator 16 separates the cooled intermediate concentrated solution by the separator 14. Reheated with the refrigerated refrigerant vapor to produce a concentrated solution. The low temperature solution heat exchanger 28 lowers the temperature by exchanging heat of this concentrated solution with the dilute solution sent by the solution circulation pump 24.

凝縮器18には、冷却水が通流されており、これにより冷媒蒸気が凝縮され、凝縮した液冷媒は、凝縮器18に設けられた液冷媒貯蔵室30に貯留される。蒸発器20には液冷媒分配器32が設けられており、凝縮器18から流入した液冷媒を液冷媒分配器32から液冷媒を滴下して蒸発器伝熱管に散布する。これにより、蒸発器伝熱管内を流れる被冷却対象の例えば水などの負荷流体から熱を奪って液冷媒が蒸発し、その蒸発潜熱で負荷流体が冷却される。   Cooling water is passed through the condenser 18, whereby the refrigerant vapor is condensed, and the condensed liquid refrigerant is stored in a liquid refrigerant storage chamber 30 provided in the condenser 18. The evaporator 20 is provided with a liquid refrigerant distributor 32, and the liquid refrigerant flowing from the condenser 18 is dropped from the liquid refrigerant distributor 32 and sprayed onto the evaporator heat transfer tube. Thereby, the liquid refrigerant evaporates by taking heat from the load fluid such as water to be cooled flowing in the evaporator heat transfer tube, and the load fluid is cooled by the latent heat of evaporation.

吸収器22は、低温再生器16で生成された後、低温溶液熱交換器28で熱交換された濃溶液を滴下することにより蒸発器20で蒸発した冷媒を吸収させ、希溶液を生成する。溶液循環ポンプ24は、吸収器22で生成された希溶液を低温溶液熱交換器28,高温溶液熱交換器26を介して高温再生器12に送る。   The absorber 22 absorbs the refrigerant evaporated by the evaporator 20 by dropping the concentrated solution generated by the low-temperature regenerator 16 and then heat-exchanged by the low-temperature solution heat exchanger 28 to generate a diluted solution. The solution circulation pump 24 sends the dilute solution generated by the absorber 22 to the high temperature regenerator 12 through the low temperature solution heat exchanger 28 and the high temperature solution heat exchanger 26.

また、液冷媒貯蔵室30と液冷媒分配器32とが冷媒流路34,36を介して接続されており、冷媒流路36には、冷媒流量を調整する液冷媒比例弁38が設けられている。さらに、蒸発器20の温度を検出しながら、検出温度が蒸発器目標温度になるように液冷媒比例弁38の弁開度を制御する制御手段40が設けられている。液冷媒比例弁38は、制御手段40からの指令に応じて弁開度が制御され、これにより液冷媒貯蔵室30内の液冷媒の液面高さHが制御される。制御手段40は、蒸発器温度に比例して弁開度を演算するものである。   Further, the liquid refrigerant storage chamber 30 and the liquid refrigerant distributor 32 are connected via refrigerant flow paths 34 and 36, and the refrigerant flow path 36 is provided with a liquid refrigerant proportional valve 38 for adjusting the refrigerant flow rate. Yes. Furthermore, control means 40 is provided for controlling the valve opening degree of the liquid refrigerant proportional valve 38 so that the detected temperature becomes the evaporator target temperature while detecting the temperature of the evaporator 20. The valve opening degree of the liquid refrigerant proportional valve 38 is controlled according to a command from the control means 40, and thereby the liquid level height H of the liquid refrigerant in the liquid refrigerant storage chamber 30 is controlled. The control means 40 calculates the valve opening degree in proportion to the evaporator temperature.

続いて、図2を用いて液冷媒比例弁38の具体的な構成を説明する。図2に示すように、液冷媒比例弁(比例弁)38は、円環状のコイル42と、コイル42内に対向して収容され上下動可能な中空円筒状のローター44と、ローター44の下端に固着された円環状の雌ねじ46と、雌ねじ46に歯合する中空円筒状の雄ねじ48と、ローター44の上端に固定され雄ねじ48を挿通する弁棒50と、弁棒50の下端に固定された弁52と、弁52の上下動により開閉されるノズル54と、ノズル54の下側に設けられ液冷媒貯蔵室に接続される流体入口56と、ノズル54の上側に設けられ液冷媒分配器に接続される流体出口58などにより形成されている。   Next, a specific configuration of the liquid refrigerant proportional valve 38 will be described with reference to FIG. As shown in FIG. 2, the liquid refrigerant proportional valve (proportional valve) 38 includes an annular coil 42, a hollow cylindrical rotor 44 that is accommodated in the coil 42 and can be moved up and down, and a lower end of the rotor 44. An annular female screw 46 fixed to the inner screw 46, a hollow cylindrical male screw 48 meshing with the female screw 46, a valve rod 50 fixed to the upper end of the rotor 44 and inserted through the male screw 48, and fixed to the lower end of the valve rod 50. A valve 52, a nozzle 54 opened and closed by the vertical movement of the valve 52, a fluid inlet 56 provided below the nozzle 54 and connected to the liquid refrigerant storage chamber, and a liquid refrigerant distributor provided above the nozzle 54 Formed by a fluid outlet 58 or the like connected to the.

制御手段40からの指令に応じたパルス電流がコイル42に印加されると、ローター44が回転するとともに雄ねじ48にガイドされて上下動し、弁52がノズル54を開閉するようになっている。弁52は、例えば円錐形状の頂点を下側に位置させ、その上下動量に対して、弁52とノズル54との間の流通面積を直線的に比例するように形成することにより、蒸発器温度に比例して液冷媒流量を制御し、液面高さHを制御している。   When a pulse current corresponding to a command from the control means 40 is applied to the coil 42, the rotor 44 rotates and is guided by the male screw 48 to move up and down, so that the valve 52 opens and closes the nozzle 54. For example, the valve 52 is formed such that the apex of the conical shape is positioned on the lower side, and the flow area between the valve 52 and the nozzle 54 is linearly proportional to the amount of vertical movement thereof. The liquid refrigerant flow rate is controlled in proportion to the liquid level, and the liquid level height H is controlled.

次に、本実施形態の吸収式冷温水機の特徴部である制御手段について説明する。制御手段40は、図3に示すように、負荷流体設定温度Ts、及び蒸発器温度Tを入力する入力I/F(入力する手段)60と、入力I/F60から入力される負荷流体設定温度Ts,蒸発器温度Tに基づいて液冷媒比例弁38の弁開度を演算する中央処理装置(演算する手段)64と、演算された弁開度を出力する出力I/F(出力する手段)66などによって構成されている。中央処理装置64は、図示していない記憶手段に格納されたソフトウェアプログラムによる演算式を実行することにより負荷流体設定温度Ts,蒸発器温度Tに応じた弁開度を演算する。   Next, the control means that is a characteristic part of the absorption chiller / heater of this embodiment will be described. As shown in FIG. 3, the control means 40 includes an input I / F (input means) 60 for inputting the load fluid set temperature Ts and the evaporator temperature T, and a load fluid set temperature input from the input I / F 60. A central processing unit (calculating means) 64 for calculating the valve opening degree of the liquid refrigerant proportional valve 38 based on Ts and the evaporator temperature T, and an output I / F (output means) for outputting the calculated valve opening degree. 66 or the like. The central processing unit 64 calculates a valve opening degree corresponding to the load fluid set temperature Ts and the evaporator temperature T by executing an arithmetic expression by a software program stored in a storage means (not shown).

制御手段40の基本的な弁開度の制御を、図4を用いて説明する。この図では横軸が蒸発器の温度、縦軸が液冷媒比例弁の弁開度を示している。図に示すように、弁開度は蒸発器温度に比例して制御される。つまり、蒸発器20の目標温度が設定されており、この目標温度に対して検出された蒸発器の温度が低くなれば、弁開度を大きくして液冷媒流量を増加させることにより、溶液濃度を低下させるとともに吸収器の吸収力を小さくして、蒸発器温度を高める。   The basic control of the valve opening degree of the control means 40 will be described with reference to FIG. In this figure, the horizontal axis represents the evaporator temperature, and the vertical axis represents the valve opening of the liquid refrigerant proportional valve. As shown in the figure, the valve opening is controlled in proportion to the evaporator temperature. That is, when the target temperature of the evaporator 20 is set and the detected temperature of the evaporator is lower than the target temperature, the solution concentration is increased by increasing the valve opening and increasing the liquid refrigerant flow rate. And lowering the absorption capacity of the absorber to increase the evaporator temperature.

一方、検出された蒸発器の温度が目標温度より高くなれば、逆に弁開度を小さくして液冷媒流量を低下させることにより、吸収器の吸収力を大きくして蒸発器温度を低下させる。このようにして蒸発器温度は常に目標温度になるように制御される。   On the other hand, if the detected evaporator temperature is higher than the target temperature, the valve opening is decreased and the liquid refrigerant flow rate is decreased, thereby increasing the absorption capacity of the absorber and lowering the evaporator temperature. . In this way, the evaporator temperature is controlled so as to always reach the target temperature.

ここで、吸収式冷温水機によっては、負荷流体の設定温度が一定ではなく、例えば5℃〜12℃などといった所定の範囲内で変更可能なものもある。このような吸収式冷温水機において、従来は図5に示すように、負荷流体の設定温度が例えば5℃〜12℃の間で変更されているにもかかわらず、蒸発器目標温度を例えば4℃に一定に保ったまま弁開度の制御を行っていた。   Here, depending on the absorption chiller / heater, there is a set temperature of the load fluid that is not constant and can be changed within a predetermined range such as 5 ° C to 12 ° C. In such an absorption chiller / heater, conventionally, as shown in FIG. 5, the target temperature of the evaporator is set to 4 for example even though the set temperature of the load fluid is changed between 5 ° C. and 12 ° C., for example. The valve opening was controlled while maintaining a constant temperature.

蒸発器の温度は負荷流体の温度に対して例えば2℃程度低ければ十分に冷却能力を満たすことができるので、従来技術では、設定温度が上昇した場合に、必要以上に蒸発器目標温度を低く設定していることになる。すると、弁開度を必要以上に低く抑えて冷媒貯蔵室に冷媒を貯めることとなり、その結果、溶液サイクル濃度が高く維持されてしまう。溶液サイクル濃度が低いほど再生器への入熱量が少なく冷温水機としての効率が上がることから、負荷流体の設定温度が高い運転において効率が抑制される場合がある。   If the temperature of the evaporator is lower than the temperature of the load fluid by about 2 ° C., for example, the cooling capacity can be sufficiently satisfied. It is set. Then, the valve opening degree is suppressed to be lower than necessary, and the refrigerant is stored in the refrigerant storage chamber. As a result, the solution cycle concentration is kept high. As the solution cycle concentration is lower, the amount of heat input to the regenerator is less and the efficiency as a chiller / heater is increased. Therefore, the efficiency may be suppressed in an operation where the set temperature of the load fluid is high.

そこで、本実施形態では、図6に示すように、負荷流体の設定温度に応じて蒸発器目標温度を可変設定するようにしている。つまり、負荷流体の設定温度よりt1℃低い値を蒸発器目標温度として設定している。例えばt1を2℃とすると、負荷流体の設定温度が5℃なら蒸発器目標温度は3℃となり、負荷流体の設定温度が12℃なら蒸発器目標温度は10℃となる。   Therefore, in this embodiment, as shown in FIG. 6, the evaporator target temperature is variably set according to the set temperature of the load fluid. That is, a value lower by t1 ° C. than the set temperature of the load fluid is set as the evaporator target temperature. For example, if t1 is 2 ° C., the target evaporator temperature is 3 ° C. if the set temperature of the load fluid is 5 ° C., and the target evaporator temperature is 10 ° C. if the set temperature of the load fluid is 12 ° C.

次に、制御手段40の制御フローチャートを、図7を用いて説明する。負荷流体の設定温度Tsが設定されると(S1)、液冷媒比例弁の弁開度制御における蒸発器目標温度Teが、Te=Ts−t1により演算される(S2)。続いて、蒸発器20の温度が検出されて(S3)、この温度と、S2で演算された蒸発器目標温度に基づいて、図4に示す弁開度比例制御により弁開度が演算される(S4)。S4で演算された弁開度の指令信号が液冷媒比例弁38に出力され(S5)、液冷媒比例弁38はこの指令信号に基づいて冷媒流量を制御する。   Next, a control flowchart of the control means 40 will be described with reference to FIG. When the set temperature Ts of the load fluid is set (S1), the evaporator target temperature Te in the valve opening control of the liquid refrigerant proportional valve is calculated by Te = Ts−t1 (S2). Subsequently, the temperature of the evaporator 20 is detected (S3), and the valve opening is calculated by the valve opening proportional control shown in FIG. 4 based on this temperature and the evaporator target temperature calculated in S2. (S4). The valve opening command signal calculated in S4 is output to the liquid refrigerant proportional valve 38 (S5), and the liquid refrigerant proportional valve 38 controls the refrigerant flow rate based on this command signal.

以上、本実施形態によれば、負荷流体の設定温度に対応させて液冷媒比例弁の弁開度制御における蒸発器目標温度を可変させているので、設定温度が高いときには、これに応じて冷媒貯蔵室の冷媒量を減らし、溶液のサイクル濃度を下げることにより吸収式冷温水機の性能向上を図ることができる。   As described above, according to the present embodiment, the evaporator target temperature in the valve opening control of the liquid refrigerant proportional valve is varied in accordance with the set temperature of the load fluid, so when the set temperature is high, the refrigerant is The performance of the absorption chiller / heater can be improved by reducing the amount of refrigerant in the storage chamber and lowering the cycle concentration of the solution.

本実施形態の吸収式冷温水機の全体構成を示す図である。It is a figure which shows the whole structure of the absorption-type cold / hot water machine of this embodiment. 液冷媒比例弁の構成を示す図である。It is a figure which shows the structure of a liquid refrigerant proportional valve. 制御手段の構成を示す図である。It is a figure which shows the structure of a control means. 制御手段の基本的な弁開度の制御内容を説明する図である。It is a figure explaining the control content of the basic valve opening degree of a control means. 制御手段の従来の制御態様を示す図である。It is a figure which shows the conventional control aspect of a control means. 本実施形態の制御手段の制御態様を示す図である。It is a figure which shows the control aspect of the control means of this embodiment. 制御手段の弁開度の制御フローチャートである。It is a control flowchart of the valve opening degree of a control means.

符号の説明Explanation of symbols

10 吸収式冷温水機
12 高温再生器
14 分離器
16 低温再生器
18 凝縮器
20 蒸発器
22 吸収器
24 溶液循環ポンプ
26 高温溶液熱交換器
28 低温溶液熱交換器
30 液冷媒貯蔵室
32 液冷媒分配器
34,36 冷媒流路
38 液冷媒比例弁
40 制御手段
DESCRIPTION OF SYMBOLS 10 Absorption type cold / hot water machine 12 High temperature regenerator 14 Separator 16 Low temperature regenerator 18 Condenser 20 Evaporator 22 Absorber 24 Solution circulation pump 26 High temperature solution heat exchanger 28 Low temperature solution heat exchanger 30 Liquid refrigerant storage chamber 32 Liquid refrigerant Distributors 34, 36 Refrigerant flow path 38 Liquid refrigerant proportional valve 40 Control means

Claims (3)

希溶液を加熱して冷媒蒸気と濃溶液とを生成する再生器と、該再生器で生成された冷媒蒸気を凝縮する凝縮器と、該凝縮器で凝縮された冷媒液と負荷流体とを熱交換して負荷流体を冷却する蒸発器と、該蒸発器で蒸発した冷媒を前記再生器で生成された濃溶液に吸収させて前記希溶液を生成する吸収器と、該吸収器で生成された希溶液を前記再生器へ送る溶液循環ポンプとを接続して吸収冷凍サイクルを形成するとともに、前記凝縮器と前記蒸発器とを接続する冷媒流路に設けられ冷媒流量を調整する液冷媒比例弁と、前記蒸発器の温度を検出して該温度が蒸発器目標温度になるように前記液冷媒比例弁の弁開度を制御する制御手段とを備えてなる吸収式冷温水機であって、
前記制御手段は、前記負荷流体の設定温度に応じて前記蒸発器目標温度を可変設定することを特徴とする吸収式冷温水機。
A regenerator that heats a dilute solution to generate refrigerant vapor and a concentrated solution, a condenser that condenses the refrigerant vapor generated in the regenerator, and a refrigerant liquid and a load fluid condensed in the condenser are heated. The evaporator that exchanges and cools the load fluid, the absorber that absorbs the refrigerant evaporated in the evaporator into the concentrated solution generated in the regenerator and generates the dilute solution, and the absorber that is generated in the absorber A liquid refrigerant proportional valve that is connected to a solution circulation pump that sends a dilute solution to the regenerator to form an absorption refrigeration cycle and that is provided in a refrigerant flow path that connects the condenser and the evaporator to adjust the refrigerant flow rate And an absorption chiller / heater comprising control means for detecting the temperature of the evaporator and controlling the valve opening degree of the liquid refrigerant proportional valve so that the temperature becomes the evaporator target temperature,
The said control means variably sets the said evaporator target temperature according to the preset temperature of the said load fluid, The absorption-type cold / hot water machine characterized by the above-mentioned.
前記制御手段は、前記負荷流体の設定温度より一定温度低い値に前記蒸発器目標温度を設定する請求項1の吸収式冷温水機。   The absorption chiller / heater according to claim 1, wherein the control unit sets the evaporator target temperature to a value lower than a set temperature of the load fluid by a certain temperature. 希溶液を加熱する高温再生器と、該希溶液を冷媒蒸気と中間濃溶液とに分離する分離器と、該中間濃溶液を前記希溶液と熱交換させて降温する高温溶液熱交換器と、降温した前記中間濃溶液を前記冷媒蒸気で再度加熱し濃溶液を生成する低温再生器と、該濃溶液を前記希溶液と熱交換させて降温する低温溶液熱交換器と、前記冷媒蒸気を液冷媒に凝縮するとともに該液冷媒の液冷媒貯蔵室を付設する凝縮器と、該液冷媒貯蔵室に冷媒流路を介して接続された液冷媒分配器を有し、該液冷媒分配器より前記液冷媒を滴下して該液冷媒と負荷流体とを熱交換する蒸発器と、前記低温溶液熱交換器からの前記濃溶液を滴下して前記蒸発器で蒸発した冷媒を吸収させて希溶液を生成する吸収器と、該吸収器で生成された希溶液を前記高温再生器へ送る溶液循環ポンプとを備えてなり、前記冷媒流路に冷媒流量を調整する液冷媒比例弁を設けるとともに、前記蒸発器の温度を検出して該温度が蒸発器目標温度になるように前記液冷媒比例弁の弁開度を制御する制御手段を具備した吸収式冷温水機であって、
前記制御手段は、前記負荷流体の設定温度に応じて前記蒸発器目標温度を可変設定することを特徴とする吸収式冷温水機。
A high temperature regenerator for heating the dilute solution, a separator for separating the dilute solution into refrigerant vapor and an intermediate concentrated solution, a high temperature solution heat exchanger for lowering the temperature by heat exchange of the intermediate concentrated solution with the diluted solution, A low-temperature regenerator that reheats the cooled intermediate concentrated solution with the refrigerant vapor to generate a concentrated solution, a low-temperature solution heat exchanger that cools the concentrated solution with the dilute solution, and cools the refrigerant vapor. A condenser that condenses into a refrigerant and has a liquid refrigerant storage chamber for the liquid refrigerant, and a liquid refrigerant distributor that is connected to the liquid refrigerant storage chamber via a refrigerant flow path. An evaporator for dripping liquid refrigerant to exchange heat between the liquid refrigerant and the load fluid; and dropping the concentrated solution from the low-temperature solution heat exchanger to absorb the refrigerant evaporated by the evaporator to form a diluted solution Absorber to be generated and dilute solution generated by the absorber are sent to the high temperature regenerator A liquid circulation pump, and a liquid refrigerant proportional valve for adjusting a refrigerant flow rate is provided in the refrigerant flow path, and the temperature of the evaporator is detected so that the temperature becomes the evaporator target temperature. An absorption chiller / heater equipped with a control means for controlling the valve opening of the proportional valve,
The said control means variably sets the said evaporator target temperature according to the preset temperature of the said load fluid, The absorption-type cold / hot water machine characterized by the above-mentioned.
JP2007189113A 2007-07-20 2007-07-20 Absorption type water cooling and heating apparatus Pending JP2009024944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007189113A JP2009024944A (en) 2007-07-20 2007-07-20 Absorption type water cooling and heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189113A JP2009024944A (en) 2007-07-20 2007-07-20 Absorption type water cooling and heating apparatus

Publications (1)

Publication Number Publication Date
JP2009024944A true JP2009024944A (en) 2009-02-05

Family

ID=40396906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189113A Pending JP2009024944A (en) 2007-07-20 2007-07-20 Absorption type water cooling and heating apparatus

Country Status (1)

Country Link
JP (1) JP2009024944A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219964A (en) * 1989-02-22 1990-09-03 Sanyo Electric Co Ltd Method for controlling absorption refrigerator
JPH06147680A (en) * 1992-09-18 1994-05-27 Hitachi Ltd Multiple type absorption air conditioning system and absorption tye cold/hot water machine
JPH08110115A (en) * 1994-10-14 1996-04-30 Yazaki Corp Absorption type refrigerating machine
JPH08247569A (en) * 1995-03-14 1996-09-27 Yazaki Corp Absorption chilled/warm water generator and liquid refrigerant controller
JPH09236354A (en) * 1996-02-28 1997-09-09 Matsushita Electric Ind Co Ltd Absorption type heat pump
JPH1054622A (en) * 1996-08-09 1998-02-24 Katsura Seiki Seisakusho:Kk Ammonia-water air cooling absorption freezer having air volume control function
JPH11132590A (en) * 1997-10-29 1999-05-21 Mitsubishi Heavy Ind Ltd Absorption refrigerating machine
JP2000205692A (en) * 1999-01-11 2000-07-28 Hitachi Building Equipment Engineering Co Ltd Method and apparatus for controlling operation of lithium bromide absorption refrigerating machine
JP2001263851A (en) * 2000-03-16 2001-09-26 Sanyo Electric Co Ltd Method for controlling absorption refrigerating machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219964A (en) * 1989-02-22 1990-09-03 Sanyo Electric Co Ltd Method for controlling absorption refrigerator
JPH06147680A (en) * 1992-09-18 1994-05-27 Hitachi Ltd Multiple type absorption air conditioning system and absorption tye cold/hot water machine
JPH08110115A (en) * 1994-10-14 1996-04-30 Yazaki Corp Absorption type refrigerating machine
JPH08247569A (en) * 1995-03-14 1996-09-27 Yazaki Corp Absorption chilled/warm water generator and liquid refrigerant controller
JPH09236354A (en) * 1996-02-28 1997-09-09 Matsushita Electric Ind Co Ltd Absorption type heat pump
JPH1054622A (en) * 1996-08-09 1998-02-24 Katsura Seiki Seisakusho:Kk Ammonia-water air cooling absorption freezer having air volume control function
JPH11132590A (en) * 1997-10-29 1999-05-21 Mitsubishi Heavy Ind Ltd Absorption refrigerating machine
JP2000205692A (en) * 1999-01-11 2000-07-28 Hitachi Building Equipment Engineering Co Ltd Method and apparatus for controlling operation of lithium bromide absorption refrigerating machine
JP2001263851A (en) * 2000-03-16 2001-09-26 Sanyo Electric Co Ltd Method for controlling absorption refrigerating machine

Similar Documents

Publication Publication Date Title
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP6434730B2 (en) Absorption heat source machine
JP3753356B2 (en) Triple effect absorption refrigerator
JP2000018762A (en) Absorption refrigerating machine
JP5091590B2 (en) Absorption type water heater
JP2009024944A (en) Absorption type water cooling and heating apparatus
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP2015031440A (en) Absorption type refrigerator
JP2011094910A (en) Absorption refrigerating machine
JPH062982A (en) Absorption room cooling/heating system and controlling method therefor
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JP2708809B2 (en) Control method of absorption refrigerator
JP3163411B2 (en) Absorption chiller / heater and liquid refrigerant controller
JP5456368B2 (en) Absorption refrigerator
JP4330522B2 (en) Absorption refrigerator operation control method
JP2883372B2 (en) Absorption chiller / heater
JPS6135890Y2 (en)
JP2009085507A (en) Control method of absorption type refrigerating machine
JPH0914785A (en) Heat input controlling method for absorption refrigerator
JP4278315B2 (en) Absorption refrigerator
JPH04110572A (en) Control device for absorption type freezer
JP2020046128A (en) Absorption refrigerator
JPS6223229B2 (en)
JPS5818139Y2 (en) Double effect absorption chiller
JP2009085446A (en) Absorption type water cooler/heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121005