JP2015031440A - Absorption type refrigerator - Google Patents

Absorption type refrigerator Download PDF

Info

Publication number
JP2015031440A
JP2015031440A JP2013160926A JP2013160926A JP2015031440A JP 2015031440 A JP2015031440 A JP 2015031440A JP 2013160926 A JP2013160926 A JP 2013160926A JP 2013160926 A JP2013160926 A JP 2013160926A JP 2015031440 A JP2015031440 A JP 2015031440A
Authority
JP
Japan
Prior art keywords
concentrated solution
temperature
absorber
solution
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013160926A
Other languages
Japanese (ja)
Inventor
浩伸 川村
Hironobu Kawamura
浩伸 川村
藤居 達郎
Tatsuro Fujii
達郎 藤居
武田 伸之
Nobuyuki Takeda
伸之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013160926A priority Critical patent/JP2015031440A/en
Publication of JP2015031440A publication Critical patent/JP2015031440A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absorption type refrigerator capable of improving efficiency by suppressing self-evaporation of a refrigerant from a concentrated solution flowing into an absorber.SOLUTION: An absorption type refrigerator includes a regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, a refrigerant pump, a concentrated solution pump for supplying a concentrated solution concentrated by the regenerator to the absorber, and a diluted solution pump for supplying a diluted solution diluted by the absorber to the regenerator. A flow rate of the concentrated solution flowing into the absorber is controlled so that a superheating degree of the concentrated solution flowing into the absorber becomes a prescribed value or less. By controlling the superheating degree of the concentrated solution flowing into the absorber to the prescribed value or less, self-evaporation of the refrigerant from the concentrated solution can be suppressed, and thus heat loss by refrigerant vapor is reduced and efficiency of the absorption type refrigerator can be improved.

Description

本発明は吸収式冷凍機に関する。   The present invention relates to an absorption refrigerator.

吸収式冷凍機では、再生器への入熱量を削減するために、吸収器で低温となった濃度の薄い希溶液と再生器で高温になった濃度の濃い濃溶液を熱交換する溶液熱交換器を備える。溶液熱交換器では、再生器で濃度が薄い希溶液が沸騰するまでの温度上昇のみに使われた熱量を回収する。このとき、サイクルの状態が変化し熱回収が不十分になると、吸収器に流入する濃溶液の温度が、吸収器内の圧力と平衡する濃溶液飽和温度より高い過熱度の状態になる。吸収器に流入した濃溶液が過熱度になると、濃溶液飽和温度まで温度を下げようと、濃溶液中の冷媒が自己蒸発し、吸収器内の濃溶液に再度吸収される。このため、自己蒸発した分の冷媒が熱損失となり、効率低下の一因となる。   In absorption refrigerators, in order to reduce the amount of heat input to the regenerator, solution heat exchange is performed to exchange heat between a dilute dilute solution at a low temperature in the absorber and a concentrated dilute solution at a high temperature in the regenerator. Equipped with a bowl. In the solution heat exchanger, the amount of heat used only for the temperature rise until the dilute solution having a low concentration is boiled in the regenerator is recovered. At this time, if the state of the cycle changes and heat recovery becomes insufficient, the temperature of the concentrated solution flowing into the absorber becomes a state of superheat higher than the concentrated solution saturation temperature that balances with the pressure in the absorber. When the concentrated solution flowing into the absorber becomes superheated, the refrigerant in the concentrated solution self-evaporates and is absorbed again by the concentrated solution in the absorber, in order to lower the temperature to the concentrated solution saturation temperature. For this reason, the self-evaporated refrigerant becomes a heat loss, which contributes to a decrease in efficiency.

また、吸収式冷凍機において、吸収器を垂直配置した伝熱管と空冷フィンからなる空冷吸収器とした場合には、濃溶液が過熱度で流入すると、蒸発器からの冷媒蒸気に、濃溶液中から自己蒸発した冷媒蒸気が加算される。このため、伝熱管内への冷媒蒸気の入口流速が増加することによって伝熱管内の圧力損失も増加し、効率低下の一因となる。   In addition, in the absorption refrigerator, when the absorber is an air-cooled absorber composed of vertically arranged heat transfer tubes and air-cooled fins, if the concentrated solution flows in with superheat, the refrigerant vapor from the evaporator The self-evaporated refrigerant vapor is added. For this reason, when the inlet flow velocity of the refrigerant vapor into the heat transfer tube increases, the pressure loss in the heat transfer tube also increases, which contributes to a decrease in efficiency.

特許文献1は、空冷吸収器に流入する濃溶液の過熱度の影響を抑えるために、空冷吸収器内に濃溶液を一旦溜める吸収液用トレーに供給し、液ヘッドを利用して分配管から濃溶液を垂直配置した伝熱管に供給する構成を開示する。空冷吸収器に流入する濃溶液を一旦上面が解放された吸収液用トレーの供給することによって、濃溶液が過熱度であっても、吸収液用トレー内で濃溶液中からの自己蒸発による冷媒蒸気の発生を終了させて、伝熱管内での冷媒蒸気が吸収できる表面積の拡大を図る。   In Patent Document 1, in order to suppress the influence of the superheat degree of the concentrated solution flowing into the air-cooled absorber, the concentrated solution is temporarily stored in the air-cooled absorber, and then supplied to the absorption liquid tray. The structure which supplies a concentrated solution to the heat exchanger tube arranged vertically is disclosed. Even if the concentrated solution is superheated by supplying the concentrated solution flowing into the air-cooled absorber to the absorbing solution tray whose upper surface is released once, the refrigerant by self-evaporation from the concentrated solution in the absorbing solution tray The generation of the steam is terminated, and the surface area capable of absorbing the refrigerant vapor in the heat transfer tube is increased.

特開平10−300268号公報Japanese Patent Laid-Open No. 10-300268

上述したように、吸収式冷凍機では、吸収器に流入する濃溶液中からの自己蒸発を抑えることにより、より一層の効率向上となる。しかしながら、特許文献1の空冷吸収器では、過熱度が生じることにより濃溶液中からの自己蒸発による冷媒蒸気が発生し、蒸発器からの冷媒蒸気とともに垂直配置した伝熱管内に流入して、伝熱管内の圧力損失が増加してしまう。   As described above, in the absorption refrigerator, the efficiency is further improved by suppressing self-evaporation from the concentrated solution flowing into the absorber. However, in the air-cooled absorber of Patent Document 1, due to the degree of superheat, refrigerant vapor is generated by self-evaporation from the concentrated solution, and flows into the heat transfer tube arranged vertically together with the refrigerant vapor from the evaporator, Pressure loss in the heat pipe will increase.

本発明は、吸収器に流入する濃溶液中からの冷媒の自己蒸発を抑え、効率向上を図る吸収式冷凍機を提供することを課題とする。   An object of the present invention is to provide an absorption refrigerator that suppresses the self-evaporation of the refrigerant from the concentrated solution flowing into the absorber and improves the efficiency.

本発明の吸収式冷凍機は、再生器、凝縮器、蒸発器、吸収器、溶液熱交換器、冷媒ポンプ、再生器で濃縮された濃溶液を吸収器に供給するための濃溶液ポンプ、吸収器で希釈された希溶液を再生器に供給するための希溶液ポンプを備え、吸収器に流入する濃溶液の過熱度が所定値以下になるように、吸収器に流入する濃溶液の流量を制御する。   The absorption refrigerator of the present invention includes a regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, a refrigerant pump, a concentrated solution pump for supplying a concentrated solution concentrated in the regenerator to the absorber, and absorption. Equipped with a dilute solution pump for supplying the dilute solution diluted in the vessel to the regenerator, and the flow rate of the concentrated solution flowing into the absorber is adjusted so that the superheat degree of the concentrated solution flowing into the absorber is below a predetermined value. Control.

本発明によれば、吸収器に流入する濃溶液の過熱度を所定値以下に抑えることにより、濃溶液からの冷媒の自己蒸発を抑制することができるので、冷媒蒸気による熱損失を低減し、吸収式冷凍機の効率を向上させることができる。   According to the present invention, it is possible to suppress the self-evaporation of the refrigerant from the concentrated solution by suppressing the degree of superheat of the concentrated solution flowing into the absorber to a predetermined value or less, thereby reducing the heat loss due to the refrigerant vapor, The efficiency of the absorption refrigerator can be improved.

実施例1の吸収式冷凍機のサイクル系統図Cycle system diagram of absorption refrigerator of Example 1 実施例2の吸収式冷凍機のサイクル系統図Cycle system diagram of absorption refrigerator of Example 2 実施例3の吸収式冷凍機のサイクル系統図Cycle system diagram of the absorption refrigerator of Example 3

本実施例の吸収式冷凍機は、再生器、凝縮器、蒸発器、吸収器、溶液熱交換器、冷媒ポンプ、再生器で濃縮された濃溶液を吸収器に供給するための濃溶液ポンプ、吸収器で希釈された希溶液を再生器に供給するための希溶液ポンプを備え、吸収器に流入する濃溶液の過熱度が所定値以下になるように、吸収器に流入する濃溶液の流量を制御する。本実施例の吸収式冷凍機によれば、吸収器に流入する濃溶液の過熱度を所定値以下に抑えることにより、濃溶液からの冷媒の自己蒸発を抑制することができるので、冷媒蒸気による熱損失を低減し、吸収式冷凍機の効率を向上させることができる。また、垂直配置した伝熱管と空冷フィンから構成される空冷吸収器の場合、伝熱管内に流入する冷媒蒸気量のほぼ全量を蒸発器からの冷媒蒸気とすることができるので、伝熱管内に生じる圧力損失を最小限に抑えることができ、より一層の効率向上を図ることができる。   The absorption refrigerator of the present embodiment includes a regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, a refrigerant pump, a concentrated solution pump for supplying a concentrated solution concentrated in the regenerator to the absorber, A dilute solution pump for supplying the dilute solution diluted in the absorber to the regenerator is provided, and the flow rate of the concentrated solution flowing into the absorber so that the superheat degree of the concentrated solution flowing into the absorber is below a predetermined value. To control. According to the absorption refrigerator of the present embodiment, the self-evaporation of the refrigerant from the concentrated solution can be suppressed by suppressing the superheat degree of the concentrated solution flowing into the absorber to a predetermined value or less. Heat loss can be reduced and the efficiency of the absorption refrigerator can be improved. In the case of an air-cooled absorber composed of vertically arranged heat transfer tubes and air-cooling fins, almost the entire amount of refrigerant vapor flowing into the heat transfer tubes can be used as refrigerant vapor from the evaporator. The generated pressure loss can be minimized, and the efficiency can be further improved.

本発明の吸収式冷凍機の第1の実施例を図1により説明する。図1は本発明の実施例1を示すサイクル系統図である。   A first embodiment of the absorption refrigerator according to the present invention will be described with reference to FIG. FIG. 1 is a cycle system diagram showing Embodiment 1 of the present invention.

図1により本実施例1の全体構成を説明する。吸収式冷凍機は、再生器1、空冷凝縮器3、蒸発器6、空冷吸収器3、溶液熱交換器7、濃溶液ポンプ8、希溶液ポンプ9、冷媒ポンプ10等を備える。   The overall configuration of the first embodiment will be described with reference to FIG. The absorption refrigerator includes a regenerator 1, an air-cooled condenser 3, an evaporator 6, an air-cooled absorber 3, a solution heat exchanger 7, a concentrated solution pump 8, a diluted solution pump 9, a refrigerant pump 10, and the like.

再生器1は、散布装置1aと複数本の伝熱管からなる熱交換器1bで構成される。熱交換器1b内を加熱源から熱媒体配管1cを介して供給される加熱源媒体が流れる。濃度の薄い希溶液が散布装置1aから熱交換器1bに向かって散布される。熱交換器1bを構成する伝熱管外を流下する希溶液を、加熱源媒体で加熱して冷媒蒸気を発生させ、希溶液を濃度の濃い濃溶液に濃縮して再生する。   The regenerator 1 is comprised of a heat exchanger 1b composed of a spreading device 1a and a plurality of heat transfer tubes. A heat source medium supplied from the heat source through the heat medium pipe 1c flows in the heat exchanger 1b. A dilute solution having a low concentration is sprayed from the spraying device 1a toward the heat exchanger 1b. The dilute solution flowing outside the heat transfer tube constituting the heat exchanger 1b is heated by a heating source medium to generate refrigerant vapor, and the dilute solution is concentrated to a concentrated solution to be regenerated.

再生器1には、加熱源媒体として、例えば90℃の温水が供給され、熱交換器1bの伝熱管外を流れる希溶液を加熱することで、温水は85℃まで冷却される。一方、希溶液を加熱濃縮することで発生する冷媒蒸気は空冷凝縮器3に流入する。空冷凝縮器3の上部ヘッダ3aは再生器1と冷媒蒸気配管2で接続される。   For example, 90 ° C. warm water is supplied to the regenerator 1 as a heating source medium, and the hot water is cooled to 85 ° C. by heating the dilute solution flowing outside the heat transfer tube of the heat exchanger 1b. On the other hand, the refrigerant vapor generated by heating and concentrating the dilute solution flows into the air-cooled condenser 3. The upper header 3 a of the air-cooled condenser 3 is connected to the regenerator 1 by the refrigerant vapor pipe 2.

空冷凝縮器3は、上部ヘッダ3aと、伝熱管と空冷フィンからなる空冷熱交換器3bと、下部ヘッダ3cで構成される。再生器1からの冷媒蒸気は、冷媒蒸気配管2を介して空冷凝縮器3の上部ヘッダ3aに導かれる。空冷熱交換器3bにおいては、伝熱管内の冷媒蒸気が伝熱管外を流れる冷却空気で冷却され、凝縮液化して液冷媒(水)となる。   The air-cooled condenser 3 includes an upper header 3a, an air-cooling heat exchanger 3b composed of heat transfer tubes and air-cooling fins, and a lower header 3c. Refrigerant vapor from the regenerator 1 is guided to the upper header 3 a of the air-cooled condenser 3 through the refrigerant vapor pipe 2. In the air-cooled heat exchanger 3b, the refrigerant vapor in the heat transfer tube is cooled by the cooling air flowing outside the heat transfer tube, condensates and becomes liquid refrigerant (water).

空冷凝縮器3で凝縮液化した液冷媒は冷媒配管13を通り、蒸発器6に導かれる。   The liquid refrigerant condensed and liquefied by the air-cooled condenser 3 passes through the refrigerant pipe 13 and is led to the evaporator 6.

蒸発器6は、散布装置6aと複数の伝熱管からなる熱交換器6bで構成される。蒸発器6に導かれた液冷媒は、冷媒ポンプ10により冷媒配管14を流れて、蒸発器6の散布装置6aに導かれて、熱交換器6bの伝熱管外に散布される。   The evaporator 6 includes a spraying device 6a and a heat exchanger 6b including a plurality of heat transfer tubes. The liquid refrigerant guided to the evaporator 6 flows through the refrigerant pipe 14 by the refrigerant pump 10, is guided to the spraying device 6a of the evaporator 6, and is sprayed outside the heat transfer tube of the heat exchanger 6b.

冷水は、冷水配管6cから蒸発器6の熱交換器6bに通水される。この冷水は、蒸発器6の熱交換器6bの伝熱管外を流下する液冷媒を加熱して冷媒蒸気を発生させ、このときの蒸発潜熱を利用して冷却される。冷水は、冷熱として室内に配置されたファンコイルユニット等に供給することにより、冷房等に利用される。   The cold water is passed from the cold water pipe 6 c to the heat exchanger 6 b of the evaporator 6. The cold water heats the liquid refrigerant flowing outside the heat transfer tube of the heat exchanger 6b of the evaporator 6 to generate refrigerant vapor, and is cooled by using latent heat of evaporation at this time. The cold water is used for cooling or the like by supplying it to a fan coil unit or the like disposed indoors as cold heat.

一方、再生器1で濃縮された濃溶液は、濃溶液ポンプ8及び溶液配管11により、溶液熱交換器7を通過後、空冷吸収器4に導かれる。空冷吸収器4は、上部ヘッダ4a、散布装置4b、空冷熱交換器4c、下部ヘッダ4dから構成される。空冷熱交換器4cは、垂直配置された伝熱管と空冷フィンで構成される。再生器1からの濃溶液は、空冷吸収器4の上部ヘッダ4a内に設けられた散布装置4bを介して、空冷熱交換器4cの伝熱管内を流下し、下部ヘッダ4dに導かれる。   On the other hand, the concentrated solution concentrated in the regenerator 1 is guided to the air-cooled absorber 4 after passing through the solution heat exchanger 7 by the concentrated solution pump 8 and the solution pipe 11. The air-cooled absorber 4 includes an upper header 4a, a spreading device 4b, an air-cooled heat exchanger 4c, and a lower header 4d. The air-cooling heat exchanger 4c is composed of heat transfer tubes and air-cooling fins arranged vertically. The concentrated solution from the regenerator 1 flows down in the heat transfer tube of the air-cooled heat exchanger 4c via the spraying device 4b provided in the upper header 4a of the air-cooled absorber 4, and is guided to the lower header 4d.

また、蒸発器6からの冷媒蒸気は、冷媒蒸気配管5を介して上部ヘッダ4aに供給される。上部ヘッダ4aに導かれた冷媒蒸気は、空冷熱交換器4cに導かれ、空冷熱交換器4cの伝熱管内を流下する濃溶液に吸収される。濃溶液が冷媒蒸気を吸収する際に発生する吸収熱は、空冷ファン(図示せず)により空冷熱交換器4cの伝熱管外に通風される冷却空気に空冷フィンを介して伝達され、外気へ放出される。   The refrigerant vapor from the evaporator 6 is supplied to the upper header 4 a via the refrigerant vapor pipe 5. The refrigerant vapor guided to the upper header 4a is guided to the air-cooling heat exchanger 4c and absorbed by the concentrated solution flowing down in the heat transfer tube of the air-cooling heat exchanger 4c. The absorption heat generated when the concentrated solution absorbs the refrigerant vapor is transmitted to the cooling air that is ventilated outside the heat transfer tube of the air cooling heat exchanger 4c by an air cooling fan (not shown) via the air cooling fins, to the outside air. Released.

空冷吸収器4の下部ヘッダ4dの希溶液は、希溶液ポンプ9により溶液配管12を介して溶液熱交換器7を通過後、再生器1の散布装置1aに導かれる。溶液熱交換器7では、再生器1からの高温の濃溶液と空冷吸収器4からの低温の希溶液とが熱交換し、高温の濃溶液の顕熱を回収し、低温の希溶液の温度上昇に利用される。   The dilute solution in the lower header 4 d of the air-cooled absorber 4 is guided by the dilute solution pump 9 to the spraying device 1 a of the regenerator 1 after passing through the solution heat exchanger 7 via the solution pipe 12. In the solution heat exchanger 7, the hot concentrated solution from the regenerator 1 exchanges heat with the low temperature dilute solution from the air-cooled absorber 4, and the sensible heat of the high temperature concentrated solution is recovered, and the temperature of the low temperature dilute solution is recovered. Used for climbing.

なお、本実施例においては、溶液(吸収剤)として臭化リチウムを使用し、また、冷媒として水を使用する。   In this embodiment, lithium bromide is used as the solution (absorbent), and water is used as the refrigerant.

次に、過熱度による濃溶液ポンプ8の回転数の制御方法について説明する。   Next, a method for controlling the rotational speed of the concentrated solution pump 8 based on the degree of superheat will be described.

空冷吸収器4に流入する濃溶液の過熱度は、空冷吸収器4の濃溶液の入口部となる溶液配管11に設けたT2温度センサ16と、空冷吸収器4の散布装置4b内に設けたT1温度センサ15との差で算出される。T2温度センサ16では、空冷吸収器4へ流入する濃溶液の温度T2が検出される。また、T1温度センサ15では、空冷吸収器4の散布装置4bの濃溶液の飽和温度T1が検出される。制御装置17により、過熱度が(T2−T1)として算出される。空冷吸収器4の散布装置4bは、気相部が上部ヘッダ4a内の気相部と連通されているので、散布装置4bに供給された濃溶液は、上部ヘッダ4a内圧力と平衡する飽和温度となる。従って、T1温度センサ15で検出される散布装置4b内の濃溶液の温度T1と、T2温度センサ16で検出される温度T2との差から、過熱度を算出できる。   The degree of superheat of the concentrated solution flowing into the air-cooled absorber 4 is provided in the T2 temperature sensor 16 provided in the solution pipe 11 serving as the inlet of the concentrated solution of the air-cooled absorber 4 and in the spraying device 4b of the air-cooled absorber 4. Calculated by the difference from the T1 temperature sensor 15. The T2 temperature sensor 16 detects the temperature T2 of the concentrated solution flowing into the air-cooled absorber 4. The T1 temperature sensor 15 detects the saturation temperature T1 of the concentrated solution of the spraying device 4b of the air-cooled absorber 4. The degree of superheat is calculated as (T2-T1) by the control device 17. The spraying device 4b of the air-cooled absorber 4 has a gas phase portion communicating with the gas phase portion in the upper header 4a, so that the concentrated solution supplied to the spraying device 4b has a saturation temperature that balances with the pressure in the upper header 4a. It becomes. Therefore, the degree of superheat can be calculated from the difference between the temperature T1 of the concentrated solution in the spraying device 4b detected by the T1 temperature sensor 15 and the temperature T2 detected by the T2 temperature sensor 16.

溶液熱交換器7において、空冷吸収器4からの希溶液により、再生器1からの濃溶液の熱エネルギーの回収が不十分となった場合、濃溶液の温度が下がりきらずに、過熱度の状態で空冷吸収器4の上部ヘッダ4a内の散布装置4bに流入する。具体的には、低圧側となる蒸発器6及び空冷吸収器4と、高圧側となる凝縮器3及び再生器1側との圧力差が大きくなり、希溶液ポンプ9の回転数と濃溶液ポンプ8の回転数がそのまま維持されると、希溶液側の流量が減少し、濃溶液側の流量が増加することによって、空冷吸収器4に流入する溶液に過熱度が生じる。定格運転状態に対して加熱源媒体の温度や冷却空気の温度が上昇した場合に、このような過熱度が生じる。   In the solution heat exchanger 7, when the recovery of the thermal energy of the concentrated solution from the regenerator 1 becomes insufficient due to the diluted solution from the air-cooled absorber 4, the temperature of the concentrated solution is not lowered and the superheated state The air-cooled absorber 4 flows into the spraying device 4b in the upper header 4a. Specifically, the pressure difference between the evaporator 6 and the air-cooled absorber 4 on the low pressure side and the condenser 3 and the regenerator 1 side on the high pressure side becomes large, and the rotational speed of the dilute solution pump 9 and the concentrated solution pump If the rotational speed of 8 is maintained as it is, the flow rate on the dilute solution side decreases and the flow rate on the concentrated solution side increases, thereby causing superheat to the solution flowing into the air-cooled absorber 4. Such a degree of superheat occurs when the temperature of the heating source medium or the temperature of the cooling air rises with respect to the rated operating state.

そこで、希溶液ポンプ9の回転数は固定し、T1温度センサ15とT2温度センサ16が接続された制御装置17により一定周期で空冷吸収器4に流入する溶液の過熱度を算出し、算出された過熱度と第一所定値とを比較し、過熱度が第一所定値より高くなった場合には、制御装置17と接続された濃溶液ポンプ8の回転数を低めに制御する(濃溶液ポンプ8の回転数を低下させる。)。過熱度が第一所定値より高い場合には、再生器1からの濃溶液の流量を少なくすることで、濃溶液側の交換熱量を減少させて溶液熱交換器7での出入口温度差を小さくできるので、過熱度を徐々に小さくできる。さらに、希溶液と濃溶液の流量のアンバランスを解消することができる。   Therefore, the number of rotations of the dilute solution pump 9 is fixed, and the degree of superheat of the solution flowing into the air-cooled absorber 4 at a constant cycle is calculated by the control device 17 to which the T1 temperature sensor 15 and the T2 temperature sensor 16 are connected. When the superheat degree is higher than the first predetermined value, the rotational speed of the concentrated solution pump 8 connected to the control device 17 is controlled to be lower (concentrated solution). Reduce the rotational speed of the pump 8). When the degree of superheat is higher than the first predetermined value, the flow rate of the concentrated solution from the regenerator 1 is decreased, thereby reducing the exchange heat amount on the concentrated solution side and reducing the inlet / outlet temperature difference in the solution heat exchanger 7. Since it is possible, the degree of superheat can be gradually reduced. Furthermore, the imbalance between the flow rates of the dilute solution and the concentrated solution can be eliminated.

一方、低圧側と高圧側の圧力差が大きい運転状態から定格運転状態に戻る場合や、低圧側となる蒸発器6及び空冷吸収器4と高圧側となる凝縮器3及び再生器1側との圧力差が小さくなる場合には、濃溶液側の流量が減少し、希溶液側の流量が増加する。その結果、希溶液で回収できる熱量が増加するので、濃溶液の温度は十分下がって空冷吸収器4の上部ヘッダ4a内の散布装置4bに流入する。これにより、過熱度が第一所定値より小さくなった場合には、制御装置17と接続された濃溶液ポンプ8の回転数を高めに制御する(濃溶液ポンプ8の回転数を増加させる。)。   On the other hand, when the operating state where the pressure difference between the low pressure side and the high pressure side is large is returned to the rated operating state, or when the evaporator 6 and air cooling absorber 4 on the low pressure side and the condenser 3 and regenerator 1 side on the high pressure side are connected. When the pressure difference becomes small, the flow rate on the concentrated solution side decreases and the flow rate on the dilute solution side increases. As a result, the amount of heat that can be recovered with the dilute solution increases, so that the temperature of the concentrated solution decreases sufficiently and flows into the spraying device 4b in the upper header 4a of the air-cooled absorber 4. Thereby, when the superheat degree becomes smaller than the first predetermined value, the rotational speed of the concentrated solution pump 8 connected to the control device 17 is controlled to be higher (the rotational speed of the concentrated solution pump 8 is increased). .

尚、この第一所定値は、各種条件から予め求めておいてもよいし、運転中に制御装置17が都度算出するようにしてもよい。他の所定値についても同様である。   The first predetermined value may be obtained in advance from various conditions, or may be calculated by the control device 17 each time during operation. The same applies to other predetermined values.

過熱度が第一所定値より小さくなった運転状態では、空冷吸収器4には過熱度による熱損失は低減できるが、濃溶液の散布量減少による管内熱伝達率の低下や、希溶液と濃溶液の流量のアンバランスを生じることから、第一所定値の過熱度になるように濃溶液ポンプ8の回転数を制御することにより、吸収式冷凍機を連続して効率的に運転することができる。   In the operating state in which the degree of superheat is smaller than the first predetermined value, the air-cooled absorber 4 can reduce the heat loss due to the degree of superheat, but the reduction in the heat transfer coefficient in the pipe due to the decrease in the amount of concentrated solution sprayed, Since the flow rate of the solution is unbalanced, the absorption refrigerator can be operated continuously and efficiently by controlling the rotational speed of the concentrated solution pump 8 so that the degree of superheat of the first predetermined value is obtained. it can.

以上のように、空冷吸収器4へ流入する濃溶液の過熱度を制御することにより、熱損失を低減できるとともに、希溶液と濃溶液の流量のバランスを良好にでき、効率的な運転が可能となる。   As described above, by controlling the degree of superheat of the concentrated solution flowing into the air-cooled absorber 4, heat loss can be reduced and the balance between the flow rate of the diluted solution and the concentrated solution can be improved, and efficient operation is possible. It becomes.

本発明の第2の実施例を図2により説明する。図2は本発明の実施例2を示すサイクル系統図である。本実施例では、空冷吸収器4へ流入する濃溶液の過熱度の検出手段が実施例1と異なる。以下、実施例1と異なる構成について説明する。   A second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a cycle system diagram showing Embodiment 2 of the present invention. In this embodiment, the means for detecting the degree of superheat of the concentrated solution flowing into the air-cooled absorber 4 is different from that in the first embodiment. Hereinafter, a configuration different from that of the first embodiment will be described.

蒸発器6にP1圧力センサ20、空冷凝縮器3にP2圧力センサ21、再生器1の濃溶液出口部の溶液配管11にT3温度センサ22を設け、それぞれが制御装置17に接続される。   A P1 pressure sensor 20 is provided in the evaporator 6, a P2 pressure sensor 21 is provided in the air-cooled condenser 3, and a T3 temperature sensor 22 is provided in the solution pipe 11 at the concentrated solution outlet of the regenerator 1, and each is connected to the control device 17.

実施例1と同様に、T2温度センサ16では、空冷吸収器4へ流入する濃溶液の温度T2が検出される。また、T3温度センサ22では、再生器1から流出する濃溶液の温度T3が検出される。P1圧力センサ20では、蒸発器内の冷媒の飽和圧力P1が検出される。P2圧力センサ21では、凝縮器内の冷媒の飽和圧力P2が検出される。   Similar to the first embodiment, the T2 temperature sensor 16 detects the temperature T2 of the concentrated solution flowing into the air-cooled absorber 4. The T3 temperature sensor 22 detects the temperature T3 of the concentrated solution flowing out from the regenerator 1. The P1 pressure sensor 20 detects the saturation pressure P1 of the refrigerant in the evaporator. The P2 pressure sensor 21 detects the saturation pressure P2 of the refrigerant in the condenser.

ここで、溶液濃度は、溶液飽和温度と圧力(水の飽和温度)の関数で算出することができ、溶液飽和温度は、溶液濃度と圧力(水の飽和温度)の関数で算出することができる。そこで、空冷吸収器4に流入する濃溶液の過熱度は次の手順で算出する。   Here, the solution concentration can be calculated as a function of the solution saturation temperature and pressure (water saturation temperature), and the solution saturation temperature can be calculated as a function of the solution concentration and pressure (water saturation temperature). . Therefore, the superheat degree of the concentrated solution flowing into the air-cooled absorber 4 is calculated by the following procedure.

(1)T3温度センサ22で検出される再生器から流出する濃溶液の温度T3を再生器1出口の溶液飽和温度とし、P2圧力センサ21で検出される空冷凝縮器内の冷媒の飽和圧力P2から、空冷吸収器4に流入する濃溶液の濃度を算出する。尚、“再生器から流出する濃溶液”の温度T3を検出するT3温度センサ22は、溶液飽和温度として検出できれば、再生器から流出した後の濃溶液の温度を測定してもよいし、再生器から流出する前の濃溶液(例えば、再生器1下部に濃溶液を溜めている場合に、再生器1下部に溜まっている濃溶液)の温度を測定してもよい。他の温度センサについても同様である。   (1) The temperature T3 of the concentrated solution flowing out from the regenerator detected by the T3 temperature sensor 22 is set as the solution saturation temperature at the outlet of the regenerator 1, and the saturation pressure P2 of the refrigerant in the air-cooled condenser detected by the P2 pressure sensor 21 From this, the concentration of the concentrated solution flowing into the air-cooled absorber 4 is calculated. The T3 temperature sensor 22 for detecting the temperature T3 of the “concentrated solution flowing out from the regenerator” may measure the temperature of the concentrated solution after flowing out from the regenerator as long as it can be detected as the solution saturation temperature. The temperature of the concentrated solution before flowing out of the regenerator (for example, when the concentrated solution is accumulated in the lower part of the regenerator 1), the temperature of the concentrated solution may be measured. The same applies to other temperature sensors.

(2)(1)の濃溶液濃度と、P1圧力センサ20で検出される蒸発器内の冷媒の飽和圧力P1から、空冷吸収器4に流入する濃溶液飽和温度を算出する。   (2) The concentrated solution saturation temperature flowing into the air-cooled absorber 4 is calculated from the concentrated solution concentration in (1) and the saturation pressure P1 of the refrigerant in the evaporator detected by the P1 pressure sensor 20.

(3)(2)の濃溶液飽和温度と、T2温度センサ16で検出される空冷吸収器4へ流入する濃溶液の温度T2との差から過熱度を算出する。   (3) The degree of superheat is calculated from the difference between the concentrated solution saturation temperature of (2) and the temperature T2 of the concentrated solution flowing into the air-cooled absorber 4 detected by the T2 temperature sensor 16.

(4)制御装置17において、一定周期毎に(1)〜(3)を実施し、空冷吸収器4へ流入する濃溶液の過熱度を算出する。算出された過熱度に基づいて、希溶液ポンプ9の回転数は固定し、濃溶液ポンプ8の回転数を制御する。   (4) In the control device 17, (1) to (3) are performed at regular intervals, and the degree of superheat of the concentrated solution flowing into the air-cooled absorber 4 is calculated. Based on the calculated degree of superheat, the rotational speed of the dilute solution pump 9 is fixed and the rotational speed of the concentrated solution pump 8 is controlled.

本実施例においては、実施例1とは、空冷吸収器4に流入する濃溶液の飽和温度の検出手段が異なるが、空冷吸収器4に流入する濃溶液の過熱度に基づく濃溶液ポンプ8の回転数の制御方法については、実施例1と同様に行うことで、実施例1と同様の効果を得ることができる。   In this embodiment, the means for detecting the saturation temperature of the concentrated solution flowing into the air-cooled absorber 4 is different from that of the first embodiment, but the concentration of the concentrated solution pump 8 based on the degree of superheat of the concentrated solution flowing into the air-cooled absorber 4 is different. With respect to the method for controlling the rotational speed, the same effect as in the first embodiment can be obtained by performing the same as in the first embodiment.

さらに、(1)のように、T3温度センサ22で検出される再生器1から流出する濃溶液の温度T3を再生器1出口の溶液飽和温度とし、P2圧力センサ21で検出される空冷凝縮器内の冷媒の飽和圧力P2から、空冷吸収器4に流入する濃溶液の濃度を算出するので、濃溶液の濃度が第二所定値以上になった場合には、再生器1への入熱量を減少するように加熱源媒体の流量を制御することによって、濃溶液の結晶防止を図ることができる。また、蒸発器6のP1圧力センサ20で検出される蒸発器内の冷媒の飽和圧力P1から蒸発器6内の冷媒温度を算出するので、冷媒温度が第三所定値より低くなった場合には、再生器1への入熱量を減少するように加熱源媒体の流量を制御することによって、冷媒の凍結防止を図ることができる。   Further, as shown in (1), the temperature T3 of the concentrated solution flowing out from the regenerator 1 detected by the T3 temperature sensor 22 is set as the solution saturation temperature at the outlet of the regenerator 1, and the air-cooled condenser detected by the P2 pressure sensor 21. Since the concentration of the concentrated solution flowing into the air-cooled absorber 4 is calculated from the saturation pressure P2 of the refrigerant inside, when the concentration of the concentrated solution exceeds a second predetermined value, the amount of heat input to the regenerator 1 is calculated. By controlling the flow rate of the heating source medium so as to decrease, crystallization of the concentrated solution can be prevented. Further, since the refrigerant temperature in the evaporator 6 is calculated from the saturation pressure P1 of the refrigerant in the evaporator detected by the P1 pressure sensor 20 of the evaporator 6, when the refrigerant temperature becomes lower than the third predetermined value, By controlling the flow rate of the heating source medium so as to reduce the amount of heat input to the regenerator 1, it is possible to prevent the refrigerant from freezing.

本発明の第3の実施例を図3により説明する。図3は本発明の実施例3を示すサイクル系統図である。本実施例では、空冷吸収器4へ流入する濃溶液の過熱度の検出手段が実施例1と異なる。以下、実施例1と異なる構成について説明する。   A third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a cycle system diagram showing Embodiment 3 of the present invention. In this embodiment, the means for detecting the degree of superheat of the concentrated solution flowing into the air-cooled absorber 4 is different from that in the first embodiment. Hereinafter, a configuration different from that of the first embodiment will be described.

再生器1の濃溶液出口部の溶液配管11にT3温度センサ22、空冷凝縮器3の冷媒出口部の冷媒配管13にT4温度センサ31、蒸発器6の冷媒出口部の冷媒配管14にT5温度センサ32を設け、それぞれが制御装置17に接続される。   A T3 temperature sensor 22 is provided in the solution pipe 11 at the concentrated solution outlet of the regenerator 1, a T4 temperature sensor 31 is provided in the refrigerant pipe 13 at the refrigerant outlet of the air-cooled condenser 3, and a T5 temperature is provided in the refrigerant pipe 14 at the refrigerant outlet of the evaporator 6. Sensors 32 are provided and each is connected to the control device 17.

実施例1と同様に、T2温度センサ16では、空冷吸収器4へ流入する濃溶液の温度T2が検出される。また、T3温度センサ22では、再生器1から流出する濃溶液の温度T3が検出される。T4温度センサ31では、空冷凝縮器3から流出する冷媒の温度T4が検出される。T5温度センサ31では、蒸発器6から流出する冷媒の温度T5が検出される。   Similar to the first embodiment, the T2 temperature sensor 16 detects the temperature T2 of the concentrated solution flowing into the air-cooled absorber 4. The T3 temperature sensor 22 detects the temperature T3 of the concentrated solution flowing out from the regenerator 1. The T4 temperature sensor 31 detects the temperature T4 of the refrigerant flowing out from the air-cooled condenser 3. The T5 temperature sensor 31 detects the temperature T5 of the refrigerant flowing out of the evaporator 6.

ここで、溶液濃度は、溶液飽和温度と圧力(水の飽和温度)の関数で算出することができ、溶液飽和温度は、溶液濃度と圧力(水の飽和温度)の関数で算出することができる。そこで、空冷吸収器4に流入する濃溶液の過熱度は次の手順で算出する。   Here, the solution concentration can be calculated as a function of the solution saturation temperature and pressure (water saturation temperature), and the solution saturation temperature can be calculated as a function of the solution concentration and pressure (water saturation temperature). . Therefore, the superheat degree of the concentrated solution flowing into the air-cooled absorber 4 is calculated by the following procedure.

(1)T3温度センサ22で検出される再生器から流出する濃溶液の温度T3を再生器1出口の溶液飽和温度とし、T4温度センサ31で検出される空冷凝縮器3から流出する冷媒の温度T4から、空冷吸収器4に流入する濃溶液の濃度を算出する。   (1) The temperature T3 of the concentrated solution flowing out of the regenerator detected by the T3 temperature sensor 22 is set as the solution saturation temperature at the outlet of the regenerator 1, and the temperature of the refrigerant flowing out of the air-cooled condenser 3 detected by the T4 temperature sensor 31 From T4, the concentration of the concentrated solution flowing into the air-cooled absorber 4 is calculated.

(2)(1)の濃溶液濃度と、T5温度センサ32で検出される蒸発器6から流出する冷媒の温度T5から、空冷吸収器4に流入する濃溶液飽和温度を算出する。   (2) The concentrated solution saturation temperature flowing into the air-cooled absorber 4 is calculated from the concentrated solution concentration in (1) and the temperature T5 of the refrigerant flowing out from the evaporator 6 detected by the T5 temperature sensor 32.

(3)(2)の濃溶液飽和温度と、T2温度センサ16で検出される空冷吸収器4へ流入する濃溶液の温度T2との差から過熱度を算出する。   (3) The degree of superheat is calculated from the difference between the concentrated solution saturation temperature of (2) and the temperature T2 of the concentrated solution flowing into the air-cooled absorber 4 detected by the T2 temperature sensor 16.

(4)制御装置17において、一定周期毎に(1)〜(3)を実施し、空冷吸収器4へ流入する濃溶液の過熱度を算出する。算出された過熱度に基づいて、希溶液ポンプ9の回転数は固定し、濃溶液ポンプ8の回転数を制御する。   (4) In the control device 17, (1) to (3) are performed at regular intervals, and the degree of superheat of the concentrated solution flowing into the air-cooled absorber 4 is calculated. Based on the calculated degree of superheat, the rotational speed of the dilute solution pump 9 is fixed and the rotational speed of the concentrated solution pump 8 is controlled.

本実施例においては、実施例1とは、空冷吸収器4に流入する濃溶液の飽和温度の検出手段が異なるが、空冷吸収器4に流入する濃溶液の過熱度に基づく濃溶液ポンプ8の回転数の制御方法については、実施例1と同様に行うことで、同様の効果を得ることができる。   In this embodiment, the means for detecting the saturation temperature of the concentrated solution flowing into the air-cooled absorber 4 is different from that of the first embodiment, but the concentration of the concentrated solution pump 8 based on the degree of superheat of the concentrated solution flowing into the air-cooled absorber 4 is different. About the control method of rotation speed, the same effect can be acquired by carrying out similarly to Example 1. FIG.

さらに、(1)のように、T3温度センサ22で検出される再生器1から流出する濃溶液の温度T3を再生器1出口の溶液飽和温度とし、T4温度センサ31で検出される空冷凝縮器3から流出する冷媒の温度T4から、空冷吸収器4に流入する濃溶液の濃度を算出するので、濃溶液濃度が第二所定値以上になった場合には、再生器1への入熱量を減少するように加熱源媒体の流量を制御することによって、濃溶液の結晶防止を図ることができる。また、蒸発器6のT5温度センサ32で検出される蒸発器6から流出する冷媒の温度T5が第三所定値より低くなった場合には、再生器1への入熱量を減少するように加熱源媒体の流量を制御することによって、冷媒の凍結防止を図ることができる。   Further, as shown in (1), the temperature T3 of the concentrated solution flowing out from the regenerator 1 detected by the T3 temperature sensor 22 is set as the solution saturation temperature at the outlet of the regenerator 1, and the air-cooled condenser detected by the T4 temperature sensor 31. Since the concentration of the concentrated solution flowing into the air-cooled absorber 4 is calculated from the temperature T4 of the refrigerant flowing out from 3, the amount of heat input to the regenerator 1 is calculated when the concentrated solution concentration exceeds the second predetermined value. By controlling the flow rate of the heating source medium so as to decrease, crystallization of the concentrated solution can be prevented. Further, when the temperature T5 of the refrigerant flowing out of the evaporator 6 detected by the T5 temperature sensor 32 of the evaporator 6 becomes lower than the third predetermined value, heating is performed so as to reduce the heat input to the regenerator 1. By controlling the flow rate of the source medium, it is possible to prevent the refrigerant from freezing.

従って、本実施例によれば、熱損失を抑えた効率の良い吸収式冷凍機を得ることができる。   Therefore, according to the present Example, the efficient absorption refrigerator which suppressed the heat loss can be obtained.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、空冷吸収器4に流入する流量を濃溶液ポンプ8で制御するとしたが、溶液配管11に制御対象として流量調整弁(図示せず)を備え、制御装置17で開度を調整する吸収式冷凍機にも適用できる。また、本発明では、吸収器と凝縮器を垂直配置した伝熱管と空冷フィンからなる空冷吸収器4と空冷凝縮器3としたが、水平配置した伝熱管の管内を冷却水が通水する水冷式の吸収器と凝縮器にも適用できる。更に、上記実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, although the flow rate flowing into the air-cooled absorber 4 is controlled by the concentrated solution pump 8, the solution pipe 11 is provided with a flow rate adjustment valve (not shown) as a control target, and the opening degree is adjusted by the control device 17. It can also be applied to refrigerators. Further, in the present invention, the air-cooled absorber 4 and the air-cooled condenser 3 including the heat transfer tubes and the air-cooled fins in which the absorber and the condenser are arranged vertically are used, but the water cooling in which the cooling water flows through the tubes of the horizontally arranged heat transfer tubes. It can also be applied to absorbers and condensers of the type. Further, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.

1:再生器、1a:散布装置、1b:熱交換器、1c:熱媒体配管
2、5:冷媒蒸気配管
3:空冷凝縮器、3a:上部ヘッダ、3b:空冷熱交換器、3c:下部ヘッダ
4:空冷吸収器、4a:上部ヘッダ、4b:散布装置、4c:空冷熱交換器、4d下部ヘッダ
6:蒸発器、6a:散布装置、6b:熱交換器、6c:冷水配管
7:溶液熱交換器
8:濃溶液ポンプ
9:希溶液ポンプ
10:冷媒ポンプ
11、12:溶液配管
13、14:冷媒配管
15:T1温度センサ
16:T2温度センサ
17:制御装置
20:P1圧力センサ
21:P2圧力センサ
22:T3温度センサ
31:T4温度センサ
32:T5温度センサ
DESCRIPTION OF SYMBOLS 1: Regenerator, 1a: Spreading device, 1b: Heat exchanger, 1c: Heating medium piping 2, 5: Refrigerant vapor piping 3: Air cooling condenser, 3a: Upper header, 3b: Air cooling heat exchanger, 3c: Lower header 4: Air-cooled absorber, 4a: Upper header, 4b: Spraying device, 4c: Air-cooled heat exchanger, 4d Lower header 6: Evaporator, 6a: Spraying device, 6b: Heat exchanger, 6c: Cold water piping 7: Solution heat Exchanger 8: Concentrated solution pump 9: Dilute solution pump 10: Refrigerant pump 11, 12: Solution pipe 13, 14: Refrigerant pipe 15: T1 temperature sensor 16: T2 temperature sensor 17: Controller 20: P1 pressure sensor 21: P2 Pressure sensor 22: T3 temperature sensor 31: T4 temperature sensor 32: T5 temperature sensor

Claims (9)

再生器、凝縮器、蒸発器、吸収器、溶液熱交換器、冷媒ポンプ、前記再生器で濃縮された濃溶液を前記吸収器に供給するための濃溶液ポンプ、前記吸収器で希釈された希溶液を前記再生器に供給するための希溶液ポンプを備え、
前記吸収器に流入する濃溶液の過熱度が第一所定値以下になるように、前記吸収器に流入する濃溶液の流量を制御する吸収式冷凍機。
Regenerator, condenser, evaporator, absorber, solution heat exchanger, refrigerant pump, concentrated solution pump for supplying concentrated solution concentrated in the regenerator to the absorber, diluted diluted in the absorber A dilute solution pump for supplying solution to the regenerator,
An absorption refrigerator that controls the flow rate of the concentrated solution flowing into the absorber so that the degree of superheat of the concentrated solution flowing into the absorber becomes a first predetermined value or less.
請求項1において、
前記吸収器へ流入する濃溶液の温度を検出する吸収器溶液温度検出手段と、
前記吸収器の散布装置内の濃溶液の飽和温度を検出する溶液飽和温度検出手段と、
前記過熱度を算出し、前記濃溶液ポンプの回転数を制御する制御装置と、を備え、
前記制御装置は、前記吸収器溶液温度検出手段及び溶液飽和温度検出手段の検出結果から前記過熱度を算出し、前記過熱度が前記第一所定値以下になるように前記濃溶液ポンプの回転数を制御する吸収式冷凍機。
In claim 1,
Absorber solution temperature detecting means for detecting the temperature of the concentrated solution flowing into the absorber;
Solution saturation temperature detection means for detecting the saturation temperature of the concentrated solution in the absorber spraying device;
A controller for calculating the degree of superheat and controlling the number of revolutions of the concentrated solution pump,
The control device calculates the degree of superheat from the detection results of the absorber solution temperature detecting means and the solution saturation temperature detecting means, and the number of rotations of the concentrated solution pump so that the degree of superheat is equal to or less than the first predetermined value. Absorption type refrigerator that controls.
請求項1において、
前記吸収器へ流入する濃溶液の温度を検出する吸収器溶液温度検出手段と、
前記蒸発器内の冷媒の飽和圧力を検出する蒸発圧力検出手段と、
前記凝縮器内の冷媒の飽和圧力を検出する凝縮圧力検出手段と、
前記再生器から流出する濃溶液の温度を検出する再生器溶液温度検出手段と、
前記過熱度を算出し、前記濃溶液ポンプの回転数を制御する制御装置と、を備え、
前記制御装置は、前記吸収器溶液温度検出手段、前記蒸発圧力検出手段、前記凝縮圧力検出手段、及び、前記再生器溶液温度検出手段の検出結果から前記過熱度を算出し、前記過熱度が前記第一所定値以下になるように前記濃溶液ポンプの回転数を制御する吸収式冷凍機。
In claim 1,
Absorber solution temperature detecting means for detecting the temperature of the concentrated solution flowing into the absorber;
Evaporating pressure detecting means for detecting the saturation pressure of the refrigerant in the evaporator;
Condensation pressure detection means for detecting the saturation pressure of the refrigerant in the condenser;
Regenerator solution temperature detecting means for detecting the temperature of the concentrated solution flowing out of the regenerator,
A controller for calculating the degree of superheat and controlling the number of revolutions of the concentrated solution pump,
The controller calculates the degree of superheat from detection results of the absorber solution temperature detection means, the evaporation pressure detection means, the condensation pressure detection means, and the regenerator solution temperature detection means, and the degree of superheat is An absorption refrigerator that controls the number of revolutions of the concentrated solution pump to be equal to or lower than a first predetermined value.
請求項3において、
前記制御装置は、
前記凝縮圧力検出手段、及び、前記再生器溶液温度検出手段の検出結果から、前記吸収器へ流入する濃溶液の濃度を算出し、前記濃溶液の濃度が第二所定値を超えた場合には、前記再生器への入熱量を減少させ、
前記蒸発圧力検出手段の検出結果から、前記蒸発器内の冷媒の温度を算出し、前記冷媒の温度が第三所定値より低くなった場合には、前記再生器への入熱量を減少させる吸収式冷凍機。
In claim 3,
The controller is
From the detection results of the condensation pressure detection means and the regenerator solution temperature detection means, the concentration of the concentrated solution flowing into the absorber is calculated, and when the concentration of the concentrated solution exceeds a second predetermined value Reducing the heat input to the regenerator,
From the detection result of the evaporating pressure detecting means, the temperature of the refrigerant in the evaporator is calculated, and when the temperature of the refrigerant becomes lower than a third predetermined value, absorption that reduces the heat input to the regenerator Type refrigerator.
請求項1において、
前記吸収器へ流入する濃溶液の温度を検出する吸収器溶液温度検出手段と、
前記蒸発器から流出する冷媒の温度を検出する蒸発器冷媒温度検出手段と、
前記凝縮器から流出する冷媒の温度を検出する凝縮器冷媒温度検出手段と、
前記再生器から流出する濃溶液の温度を検出する再生器溶液温度検出手段と、
前記過熱度を算出し、前記濃溶液ポンプの回転数を制御する制御装置と、を備え、
前記吸収器溶液温度検出手段、前記蒸発器冷媒温度検出手段、前記凝縮器冷媒温度検出手段、及び、前記再生器溶液温度検出手段の検出結果から前記過熱度を算出し、前記過熱度が前記第一所定値以下になるように前記濃溶液ポンプの回転数を制御する吸収式冷凍機。
In claim 1,
Absorber solution temperature detecting means for detecting the temperature of the concentrated solution flowing into the absorber;
Evaporator temperature detection means for detecting the temperature of the refrigerant flowing out of the evaporator;
Condenser refrigerant temperature detection means for detecting the temperature of the refrigerant flowing out of the condenser;
Regenerator solution temperature detecting means for detecting the temperature of the concentrated solution flowing out of the regenerator,
A controller for calculating the degree of superheat and controlling the number of revolutions of the concentrated solution pump,
The superheat degree is calculated from the detection results of the absorber solution temperature detection means, the evaporator refrigerant temperature detection means, the condenser refrigerant temperature detection means, and the regenerator solution temperature detection means, and the superheat degree is the first value. An absorption refrigerator that controls the number of revolutions of the concentrated solution pump to be equal to or less than a predetermined value.
請求項5において、
前記制御手段は、
前記凝縮器冷媒温度検出手段、及び、前記再生器溶液温度検出手段の検出結果から、前記吸収器へ流入する濃溶液の濃度を算出し、前記濃溶液の濃度が第二所定値を超えた場合には、前記再生器への入熱量を減少させ、
前記蒸発器冷媒温度検出手段の検出結果から、前記蒸発器内の冷媒の温度を算出し、前記冷媒の温度が第三所定値より低くなった場合には、前記再生器への入熱量を減少させる吸収式冷凍機。
In claim 5,
The control means includes
When the concentration of the concentrated solution flowing into the absorber is calculated from the detection results of the condenser refrigerant temperature detection means and the regenerator solution temperature detection means, and the concentration of the concentrated solution exceeds a second predetermined value In order to reduce the heat input to the regenerator,
The temperature of the refrigerant in the evaporator is calculated from the detection result of the evaporator refrigerant temperature detecting means, and when the refrigerant temperature becomes lower than a third predetermined value, the amount of heat input to the regenerator is reduced. Absorption type refrigerator.
請求項2乃至6の何れかにおいて、
前記制御装置は、算出された前記過熱度が前記第一所定値より高い場合には前記濃溶液ポンプの回転数を低下させ、算出された前記過熱度が前記第一所定値より低い場合には前記濃溶液ポンプの回転数を増加させる吸収式冷凍機。
In any of claims 2 to 6,
The control device decreases the rotational speed of the concentrated solution pump when the calculated degree of superheat is higher than the first predetermined value, and when the calculated degree of superheat is lower than the first predetermined value. An absorption refrigerator that increases the rotational speed of the concentrated solution pump.
請求項1乃至7の何れかにおいて、
前記吸収器は、垂直配置した伝熱管と空冷フィンからなる空冷熱交換器を有し、
前記空冷熱交換器は、前記蒸発器からの冷媒蒸気と前記再生器からの濃溶液が流入する上部ヘッダと、希溶液が溜められる下部ヘッダとの間に配置された吸収式冷凍機。
In any one of Claims 1 thru | or 7,
The absorber has an air-cooled heat exchanger composed of vertically arranged heat transfer tubes and air-cooling fins,
The air-cooled heat exchanger is an absorption refrigerator disposed between an upper header into which refrigerant vapor from the evaporator and a concentrated solution from the regenerator flow and a lower header in which a diluted solution is stored.
請求項1乃至8の何れかにおいて、前記希溶液ポンプの回転数を固定とした吸収式冷凍機。   9. The absorption refrigerator according to claim 1, wherein the number of revolutions of the dilute solution pump is fixed.
JP2013160926A 2013-08-02 2013-08-02 Absorption type refrigerator Pending JP2015031440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013160926A JP2015031440A (en) 2013-08-02 2013-08-02 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013160926A JP2015031440A (en) 2013-08-02 2013-08-02 Absorption type refrigerator

Publications (1)

Publication Number Publication Date
JP2015031440A true JP2015031440A (en) 2015-02-16

Family

ID=52516906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013160926A Pending JP2015031440A (en) 2013-08-02 2013-08-02 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JP2015031440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215136A (en) * 2018-06-14 2019-12-19 Jfeエンジニアリング株式会社 Absorption type refrigeration unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215136A (en) * 2018-06-14 2019-12-19 Jfeエンジニアリング株式会社 Absorption type refrigeration unit
JP7003847B2 (en) 2018-06-14 2022-01-21 Jfeエンジニアリング株式会社 Absorption chiller

Similar Documents

Publication Publication Date Title
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP6434730B2 (en) Absorption heat source machine
JP5390426B2 (en) Absorption heat pump device
KR100441923B1 (en) Control method for absorption refrigerator
JP2985747B2 (en) Absorption refrigerator
JP2015031440A (en) Absorption type refrigerator
JP2012202589A (en) Absorption heat pump apparatus
JP5785800B2 (en) Vapor absorption refrigerator
JP5583435B2 (en) Refrigeration and air conditioning method and apparatus
KR20090103740A (en) Absorption heat pump
JP6603066B2 (en) Waste heat input type absorption chiller / heater
JP5449862B2 (en) Absorption refrigeration system
JP4922872B2 (en) Absorption type water heater
JP2009287805A (en) Absorption refrigerator
JP6437354B2 (en) Absorption refrigerator
JP6364238B2 (en) Absorption type water heater
JP3889655B2 (en) Absorption refrigerator
JP6922147B2 (en) Absorption chiller
JP4330522B2 (en) Absorption refrigerator operation control method
JPH09170845A (en) Absorption chiller heater and its control method
JP2664436B2 (en) Control method of absorption refrigerator
JP6320958B2 (en) Absorption chiller / heater, heat exchanger, absorption chiller / heater control method
JP2020046128A (en) Absorption refrigerator
JP2011033261A (en) Absorption type refrigerating machine
JP2019020027A (en) Absorption type refrigerator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160404