JPS6135890Y2 - - Google Patents
Info
- Publication number
- JPS6135890Y2 JPS6135890Y2 JP1981095173U JP9517381U JPS6135890Y2 JP S6135890 Y2 JPS6135890 Y2 JP S6135890Y2 JP 1981095173 U JP1981095173 U JP 1981095173U JP 9517381 U JP9517381 U JP 9517381U JP S6135890 Y2 JPS6135890 Y2 JP S6135890Y2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- temperature regenerator
- low
- evaporator
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 38
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 229910003002 lithium salt Inorganic materials 0.000 claims description 9
- 239000006096 absorbing agent Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 238000001704 evaporation Methods 0.000 claims 1
- 230000007423 decrease Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【考案の詳細な説明】
本考案は冷媒として水をまた吸収剤としてリチ
ウム塩を使用する水−リチウム塩系二重効用吸収
冷凍機の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a water-lithium salt double effect absorption refrigerator using water as a refrigerant and a lithium salt as an absorbent.
第1図は従来の水−リチウム塩系二重効用吸収
冷凍機の系統図である。図中1は冷媒を吸収した
稀溶液が導入され、これをバーナ等の熱源で加熱
する高温再生器、2は高温再生器で加熱された溶
液を冷媒蒸気と中間濃溶液とに分離する分離器、
3は低温再生器であり、分離器2からの高温の中
間濃溶液が高温熱交換器8に於て低温の稀溶液と
の熱交換によつて降温された後で導入され、一方
分離器2から低温再生器コイル14に導入される
冷媒蒸気によつて再度加熱される。4は低温再生
器3及びそのコイル14から導入される冷媒を凝
縮コイル11を流れる冷却水によつて凝縮させ液
冷媒とする凝縮器、5は凝縮器4からの冷媒が管
路10を介して導入され、かつ蒸発器コイル13
上に散布されることにより、コイル13内を流れ
る冷水から蒸発熱を奪つて蒸発する蒸発器、6は
低温再生器3から濃溶液が低温熱交換器7を介し
て導入され、蒸発器5で蒸発した冷媒蒸気を吸収
することによつて稀溶液とする吸収器、9は吸収
器6の稀溶液と高温再生器1側へ送り込む溶液ポ
ンプ、12は吸収器6に於ける吸収熱を除去する
ために冷却水の流れている吸収器コイル、15は
流量制御弁である。 FIG. 1 is a system diagram of a conventional water-lithium salt double-effect absorption refrigerator. In the figure, 1 is a high-temperature regenerator into which a dilute solution that has absorbed refrigerant is introduced and heated by a heat source such as a burner, and 2 is a separator that separates the solution heated by the high-temperature regenerator into refrigerant vapor and intermediate concentrated solution. ,
3 is a low temperature regenerator, into which the high temperature intermediate concentrated solution from the separator 2 is lowered in temperature by heat exchange with the low temperature dilute solution in the high temperature heat exchanger 8; It is heated again by refrigerant vapor introduced into the low-temperature regenerator coil 14 from above. 4 is a condenser that condenses the refrigerant introduced from the low-temperature regenerator 3 and its coil 14 into a liquid refrigerant by cooling water flowing through the condensing coil 11; introduced and the evaporator coil 13
A concentrated solution is introduced from the low temperature regenerator 3 via the low temperature heat exchanger 7, and the concentrated solution is introduced into the evaporator 5 from the low temperature regenerator 3 through the low temperature heat exchanger 7. An absorber that absorbs evaporated refrigerant vapor to form a dilute solution; 9 is a solution pump that sends the dilute solution in the absorber 6 to the high-temperature regenerator 1 side; 12 is a solution pump that removes the absorbed heat in the absorber 6; 15 is a flow control valve.
流量制御弁15の詳細は第2図に示されている
ように、電磁コイル21、プランジヤ22、コイ
ルばね23、パルブデイスク24、ノズル25か
ら構成されており、図示の状態は電磁コイル21
によつてプランジヤ22が吸引されて流量制御弁
15が開の状態となつている。従つて、この状態
では矢印方向へ最大流量の稀溶液が流れることに
なる。一方、電磁コイル21への通電が断れると
プランジヤ22はコイルばね23によつて押され
て下降し、バルブデイスク24の先端がノズル2
5に当接する。ここで、バルブデイスク24には
細孔26が形成されているため、流路が細孔26
の大きさに絞られることとなり、稀溶液の流量が
絞られることになる。この状態を閉状態と呼ぶこ
とにする。 As shown in FIG. 2, the details of the flow rate control valve 15 are composed of an electromagnetic coil 21, a plunger 22, a coil spring 23, a valve disk 24, and a nozzle 25. In the illustrated state, the electromagnetic coil 21
The plunger 22 is attracted by the pump, and the flow rate control valve 15 is in an open state. Therefore, in this state, the dilute solution will flow at the maximum flow rate in the direction of the arrow. On the other hand, when the electromagnetic coil 21 is de-energized, the plunger 22 is pushed down by the coil spring 23 and the tip of the valve disc 24 is connected to the nozzle 2.
5. Here, since the valve disk 24 is formed with the pores 26, the flow path is formed in the pores 26.
As a result, the flow rate of the dilute solution is reduced. This state will be called a closed state.
従つて、流量制御弁15の開、閉によつて冷凍
機の運転状態をハイ(High)状態とロー
(Low)状態に切換えることができる。勿論ロー
状態には高温再生器1の加熱量も減少させること
は云うまでもない。 Therefore, by opening and closing the flow rate control valve 15, the operating state of the refrigerator can be switched between a high state and a low state. Of course, it goes without saying that the heating amount of the high temperature regenerator 1 is also reduced in the low state.
ところで、冷凍機の運転状態をハイからローへ
切換える場合は、流量制御弁15を閉じるととも
に高温再生器1の加熱源を絞つて加熱量を減じる
のであるが、このとき、吸収器6へ流入する濃溶
液の流入量は流量制御弁15を閉じてから通常十
数秒後にロー運転状態の流量となるものの、蒸発
器5へ流入する冷媒の量は数分間かかつて徐々に
減少する程度で追従が非常に遅い。その理由は、
低温再生器コイル14内表面、凝縮器コイル11
表面の冷媒保有量や高温再生器1、低温再生器3
内での溶液の保有熱量等の影響であると考えられ
る。 By the way, when switching the operating state of the refrigerator from high to low, the flow rate control valve 15 is closed and the heating source of the high temperature regenerator 1 is throttled to reduce the amount of heating. Although the flow rate of the concentrated solution normally reaches the flow rate of the low operating state after a dozen or so seconds after closing the flow rate control valve 15, the amount of refrigerant flowing into the evaporator 5 only gradually decreases for several minutes and is very difficult to follow. It's late. The reason is,
Inner surface of low temperature regenerator coil 14, condenser coil 11
Amount of refrigerant on the surface, high temperature regenerator 1, low temperature regenerator 3
This is thought to be due to the amount of heat held by the solution within the chamber.
このような現象から、吸収器6へ流入する濃溶
液がロー状態として少なくなつており、吸収能力
が減少しているにもかかわらず、蒸発器5への冷
媒流量はハイ状態が続くため、その間冷媒が蒸発
しきれずに無効冷媒となつてしまい、冷凍効率が
低下することになつていた。 Due to this phenomenon, the amount of concentrated solution flowing into the absorber 6 is in a low state and is decreasing, and even though the absorption capacity is decreasing, the refrigerant flow rate to the evaporator 5 continues to be in a high state. The refrigerant could not be completely evaporated and became an ineffective refrigerant, resulting in a decrease in refrigeration efficiency.
本考案は、このような事情にもとづきなされた
もので、その目的は、運転状態を切換えたときに
溶液と冷媒の流量をその運転状態に適するように
バルンスさせるようにして、冷凍効率の低下を防
ぐようにした水−リチウム塩系二重効用吸収冷凍
機を提供することにある。 The present invention was developed based on these circumstances, and its purpose is to balance the flow rates of solution and refrigerant to suit the operating state when the operating state is changed, thereby preventing a decrease in refrigeration efficiency. It is an object of the present invention to provide a water-lithium salt double-effect absorption refrigerator which prevents the above-mentioned effects.
以下本考案の一実施例を第3図を参照して詳細
に説明する。なお第3図において第1図と同一部
分には同一符号を付してあるので、その部分の説
明は省略する。 An embodiment of the present invention will be described in detail below with reference to FIG. Note that in FIG. 3, the same parts as in FIG. 1 are given the same reference numerals, so the explanation of those parts is omitted.
本考案は、凝縮器4から蒸発器5へ冷媒を導く
管路10中に、冷媒溜16を設けたことを特徴と
している。この冷媒溜16の液面位は、凝縮器4
と蒸発器5の圧力差に相当する水柱差ΔHによつ
て決まるものである。ところで、冷凍機の運転転
状態がハイとローに切換えられたとき、蒸発器5
の圧力変化は無視できるほど微少であるが、凝縮
器4の圧力には顕著な差を生ずる。従つて、冷媒
溜16内の冷媒液面位は、凝縮器4内の圧力変化
に相応する水柱高さだけ変化する。よつて、冷凍
機の運転状態ををハイからロー又は逆にローから
ハイに切換えると、凝縮器4内の圧力は切換えた
直後から急激に変化する。従つて、例えば運転状
態をハイからローに切換えた場合は、凝縮器4内
の圧力が低下し、そのため冷媒溜16内の液面位
が上昇して、蒸発器5へ流入する冷媒量が、冷媒
溜16に貯えられた分だけ減少することになる。
逆に、運転状態をローからハイへ切換えると、凝
縮器4内の圧力が上昇するため冷媒溜16内の液
面位が下り、その分だけ蒸発器5への冷媒流量が
増加する。 The present invention is characterized in that a refrigerant reservoir 16 is provided in a pipe line 10 that leads refrigerant from the condenser 4 to the evaporator 5. The liquid level of this refrigerant reservoir 16 is the same as that of the condenser 4.
It is determined by the water column difference ΔH corresponding to the pressure difference between the evaporator 5 and the evaporator 5. By the way, when the operating state of the refrigerator is switched between high and low, the evaporator 5
Although the pressure change is negligibly small, it causes a noticeable difference in the pressure in the condenser 4. Therefore, the refrigerant liquid level in the refrigerant reservoir 16 changes by the water column height corresponding to the pressure change in the condenser 4. Therefore, when the operating state of the refrigerator is switched from high to low or conversely from low to high, the pressure inside the condenser 4 changes rapidly immediately after switching. Therefore, for example, when the operating state is switched from high to low, the pressure in the condenser 4 decreases, the liquid level in the refrigerant reservoir 16 rises, and the amount of refrigerant flowing into the evaporator 5 decreases. The amount will be reduced by the amount stored in the refrigerant reservoir 16.
Conversely, when the operating state is switched from low to high, the pressure in the condenser 4 increases, so the liquid level in the refrigerant reservoir 16 decreases, and the flow rate of refrigerant to the evaporator 5 increases accordingly.
このようにして本考案によれば、冷凍機の運転
状態の切換に即応して蒸発器5への冷媒流量を調
整することが可能となり、切換時に無効冷媒を生
ずることはなく、常に効率良く運転できる水−リ
チウム塩系二重効用吸収冷凍機が提供される。 In this way, according to the present invention, it is possible to adjust the flow rate of refrigerant to the evaporator 5 in immediate response to switching of the operating state of the refrigerator, and no invalid refrigerant is generated during switching, so that the machine always operates efficiently. A water-lithium salt dual-effect absorption refrigerator is provided.
しかも、本考案では、冷媒溜16は流量制御弁
15による段階制御の加熱量の変化に伴う凝縮器
4の圧力変化を静的にとらえて蒸発器5と凝縮器
4との圧力差により冷媒の貯蔵・放出を行なうの
で、圧力検知素子、圧力調整器及び電動又は電磁
弁の如き制御弁などの特別な装置は一切不要であ
り、したがつて安価で信頼性の高い制御が可能で
ある。 Moreover, in the present invention, the refrigerant reservoir 16 statically captures the pressure change in the condenser 4 due to the change in the heating amount under the stepwise control by the flow rate control valve 15, and uses the pressure difference between the evaporator 5 and the condenser 4 to cool the refrigerant. Since storage and release are performed, there is no need for any special equipment such as pressure sensing elements, pressure regulators, and control valves such as electric or solenoid valves, and therefore, inexpensive and highly reliable control is possible.
本考案の実施例を、運転状態がハイ、ロー2段
階に切換えられる場合について説明したが、これ
に限らず多段階に切換える場合にも同様に本考案
が実施できることは云うまでもなく、本考案は要
旨を逸脱しない範囲内で種々変化して実施するこ
とが可能である。 Although the embodiment of the present invention has been described with reference to the case where the operating state is switched to two stages, high and low, it goes without saying that the present invention can be implemented in the same way when the operating state is switched to multiple stages. It is possible to implement various changes without departing from the gist of the invention.
第1図は従来の水−リチウム塩系二重効用吸収
冷凍機の系統図、第2図は流量制御弁の一例を示
す断面図、第3図は本考案に係る水−リチウム塩
系二重効用吸収冷凍機の一実施例を示す系統図で
ある。
1……高温再生器、2……分離器、3……低温
再生器、4……凝縮器、5……蒸発器、6……吸
収器、7……低温熱交換器、8……高温熱交換
器、9……溶液ポンプ、15……流量制御弁、1
6……冷媒溜。
Fig. 1 is a system diagram of a conventional water-lithium salt system dual-effect absorption refrigerator, Fig. 2 is a sectional view showing an example of a flow control valve, and Fig. 3 is a water-lithium salt system dual-effect absorption refrigerator according to the present invention. It is a system diagram showing one example of an effect absorption refrigerator. 1... High temperature regenerator, 2... Separator, 3... Low temperature regenerator, 4... Condenser, 5... Evaporator, 6... Absorber, 7... Low temperature heat exchanger, 8... High Thermal heat exchanger, 9... Solution pump, 15... Flow rate control valve, 1
6...Refrigerant reservoir.
Claims (1)
器で加熱された溶液を冷媒蒸気と中間濃溶液に分
離する分離器と、この分離器で分離された中間濃
溶液が一担降温された後で供給され、前記分離器
で分離された冷媒蒸気によつて加熱する低温再生
器と、この低温再生器からの冷媒を凝縮して液冷
媒とする凝縮器と、この凝縮器からの液冷媒を蒸
発させる蒸発器と、この蒸発器で蒸発した冷媒蒸
気を前記低温再生器からの濃溶液に吸収させて稀
溶液とする吸収器と、この吸収器から前記高温再
生器側へ送り込む稀溶液の流量を少なくともハイ
及びローの2段階に制御する流量制御弁とを有す
る水−リチウム塩系二重効用吸収冷凍機におい
て、前記凝縮器と蒸発器とを連結する冷媒回路に
冷媒溜を設け、この冷媒溜に前記凝縮器内の圧力
に応じた量の液冷媒を溜めるようにしたことを特
徴とする水−リチウム塩系二重効用吸収冷凍機。 A high-temperature regenerator that heats the dilute solution, a separator that separates the solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentrated solution, and after the intermediate concentrated solution separated by the separator is cooled down once. a low-temperature regenerator heated by the refrigerant vapor supplied by the refrigerant and separated by the separator; a condenser that condenses the refrigerant from the low-temperature regenerator to form a liquid refrigerant; An evaporator for evaporating, an absorber for absorbing the refrigerant vapor evaporated by the evaporator into a concentrated solution from the low-temperature regenerator to form a dilute solution, and a flow rate of the dilute solution sent from the absorber to the high-temperature regenerator side. In a water-lithium salt double-effect absorption refrigerator having a flow rate control valve that controls the flow rate in at least two stages, high and low, a refrigerant reservoir is provided in the refrigerant circuit connecting the condenser and the evaporator, and the refrigerant A water-lithium salt double-effect absorption refrigerator, characterized in that a reservoir stores an amount of liquid refrigerant corresponding to the pressure inside the condenser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9517381U JPS582568U (en) | 1981-06-29 | 1981-06-29 | Water-lithium salt double effect absorption refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9517381U JPS582568U (en) | 1981-06-29 | 1981-06-29 | Water-lithium salt double effect absorption refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS582568U JPS582568U (en) | 1983-01-08 |
JPS6135890Y2 true JPS6135890Y2 (en) | 1986-10-18 |
Family
ID=29890090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9517381U Granted JPS582568U (en) | 1981-06-29 | 1981-06-29 | Water-lithium salt double effect absorption refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS582568U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60118460U (en) * | 1984-01-19 | 1985-08-10 | 矢崎総業株式会社 | Solution concentration adjustment device for absorption chiller/heater |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52150849U (en) * | 1976-05-12 | 1977-11-15 |
-
1981
- 1981-06-29 JP JP9517381U patent/JPS582568U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS582568U (en) | 1983-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3887204B2 (en) | Two-stage absorption chiller / heater | |
JPS6135890Y2 (en) | ||
JPS6135891Y2 (en) | ||
JP2010078298A (en) | Absorption refrigerator | |
JPS6113884Y2 (en) | ||
JP4632633B2 (en) | Absorption heat pump device | |
JP2650654B2 (en) | Absorption refrigeration cycle device | |
JPS6117319Y2 (en) | ||
JP5091590B2 (en) | Absorption type water heater | |
JPS6311570Y2 (en) | ||
JP4201418B2 (en) | Control method of absorption chiller / heater | |
JPS6118366Y2 (en) | ||
JP4115020B2 (en) | Control method of absorption refrigerator | |
JPS6113887Y2 (en) | ||
JPH0643654Y2 (en) | Absorption type water heater | |
JPS6113888Y2 (en) | ||
JPS6215736Y2 (en) | ||
JPH0424368Y2 (en) | ||
JPS586229Y2 (en) | absorption refrigerator | |
JPS6023649Y2 (en) | Double effect water - lithium salt absorption chiller | |
JP2659331B2 (en) | Absorption refrigerator | |
JP3251100B2 (en) | Absorption refrigerator | |
JPS6223229B2 (en) | ||
JPS63204080A (en) | Absorption refrigerator | |
JPS6024904B2 (en) | Dual effect water-lithium salt absorption chiller |