JPH0424368Y2 - - Google Patents
Info
- Publication number
- JPH0424368Y2 JPH0424368Y2 JP9122385U JP9122385U JPH0424368Y2 JP H0424368 Y2 JPH0424368 Y2 JP H0424368Y2 JP 9122385 U JP9122385 U JP 9122385U JP 9122385 U JP9122385 U JP 9122385U JP H0424368 Y2 JPH0424368 Y2 JP H0424368Y2
- Authority
- JP
- Japan
- Prior art keywords
- concentrated solution
- temperature regenerator
- separator
- condenser
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 43
- 239000006096 absorbing agent Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 230000009977 dual effect Effects 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 238000005057 refrigeration Methods 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 1
- 239000000498 cooling water Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000446 fuel Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は二重効用吸収冷凍機に係り、特に水と
リチウム塩系との混合液を循環させて冷水コイル
内の水を冷却するに好適な二重効用吸収冷凍機に
関する。[Detailed description of the invention] [Field of industrial application] The present invention relates to a dual-effect absorption refrigerator, and is particularly suitable for cooling water in a chilled water coil by circulating a mixture of water and lithium salt. This invention relates to a dual-effect absorption refrigerator.
〔従来の技術〕
従来のこの種の冷凍器は、第5図に示されるよ
うに、冷媒を吸収した稀溶液を加熱する高温再生
器2と、この高温再生器2で加熱された溶液を冷
媒蒸気を中間濃溶液とに分離する分離器4と、こ
の分離器4によつて分離された中間濃溶液が高温
とされた後導入され、前記分離器4で得られた冷
媒蒸気によつてこの中間濃溶液を加熱して凝縮す
る低温再生器6と、この低温再生器6を経て導か
れた冷媒蒸気を凝縮する凝縮器8と、この凝縮器
8で凝縮された液冷媒を蒸発させ負荷冷水と熱交
換する蒸発器10と、前記低温再生器6で得られ
た濃溶液が導かれ、前記蒸発器10で蒸発した冷
媒蒸気をこの濃溶液に吸収させる吸収器14と、
この吸収器14で得られた稀溶液を前記高温再生
器2へ圧送するポンプ16とが一つの循環系を構
成しており、蒸発器10内のコイル10a内の水
が冷却されるようになつており、また、分離器4
と吸収器14とを連通するパイプ22の途中に設
けられた冷暖切換弁22aを開放状態として高温
再生器2からの蒸気と中間濃溶液とを分離器4を
介して蒸発器10に導き、コイル10a内の水を
温水とすることもできるようになつている。[Prior Art] As shown in FIG. 5, a conventional refrigerator of this type includes a high-temperature regenerator 2 that heats a dilute solution that has absorbed a refrigerant, and a refrigerant that converts the heated solution in the high-temperature regenerator 2 into a refrigerant. A separator 4 separates vapor into an intermediate concentrated solution, and the intermediate concentrated solution separated by this separator 4 is heated to a high temperature and then introduced, and the refrigerant vapor obtained in the separator 4 A low-temperature regenerator 6 that heats and condenses an intermediate concentrated solution, a condenser 8 that condenses the refrigerant vapor led through the low-temperature regenerator 6, and a condenser 8 that evaporates the liquid refrigerant condensed in the condenser 8 to produce load chilled water. an evaporator 10 that exchanges heat with the evaporator 10, and an absorber 14 to which the concentrated solution obtained in the low-temperature regenerator 6 is guided and which absorbs the refrigerant vapor evaporated in the evaporator 10 into the concentrated solution;
A pump 16 that pumps the dilute solution obtained in the absorber 14 to the high temperature regenerator 2 constitutes one circulation system, and the water in the coil 10a in the evaporator 10 is cooled. Also, separator 4
The cooling/heating switching valve 22a provided in the middle of the pipe 22 communicating with the absorber 14 is opened, and the steam from the high temperature regenerator 2 and the intermediate concentrated solution are guided to the evaporator 10 via the separator 4, and the coil The water inside 10a can also be heated.
なお第5図において符号18は、分離器4の中
間濃溶液を低温再生器6に導く管路5,5a,5
b途中に設けられた高温熱交換器、符号20は低
温再生器6で得られた濃溶液を吸収器14に導く
管路7,7a,7b途中に設けられた低温熱交換
器である。 In FIG. 5, reference numeral 18 denotes pipes 5, 5a, 5 which lead the intermediate concentrated solution from the separator 4 to the low temperature regenerator 6.
A high-temperature heat exchanger provided in the middle of b, and reference numeral 20 is a low-temperature heat exchanger provided in the middle of the pipes 7, 7a, and 7b leading the concentrated solution obtained in the low-temperature regenerator 6 to the absorber 14.
第5図に示すような従来の二重効用吸収冷凍機
では、分離器4で発生した冷媒蒸気が管路5、高
温熱交換器18によつて構成される中間濃溶液回
路に侵入する場合があり、これによつて管路5
a,5b、高温熱交換器18の腐食条件を悪化さ
せるという問題点があつた。また高温再生器2で
発生した冷媒蒸気が中間濃溶液回路に侵入する分
だけ、それだけ有効に利用されなくなり、低温再
生器6への入熱量も低下して冷凍機の運転効率を
低下させるという問題点があつた。
In a conventional dual-effect absorption refrigerator as shown in FIG. Yes, this allows pipe 5
a, 5b, there was a problem that the corrosion conditions of the high temperature heat exchanger 18 were worsened. In addition, the more refrigerant vapor generated in the high temperature regenerator 2 enters the intermediate concentrated solution circuit, the more effectively it is not used, and the amount of heat input to the low temperature regenerator 6 also decreases, reducing the operating efficiency of the refrigerator. The point was hot.
このような問題点に対処するため、管路5の途
中にオリフイス、キヤピラリまたはモジユトロー
ル弁などを設置して中間濃溶液の流量を制御する
ことにより、冷媒蒸気の管路への侵入を防止する
ようになつていた。 To deal with this problem, an orifice, capillary, or module control valve is installed in the middle of the pipe 5 to control the flow rate of the intermediate concentrated solution, thereby preventing refrigerant vapor from entering the pipe. I was getting used to it.
しかし従来の技術のうち、管路5にオリフイス
を設けたものは、負荷や冷却水温度が一定の場合
には管路5内への冷媒蒸気の侵入の防止上効果が
あるが、負荷または冷却水温度において変動があ
つた場合には冷媒蒸気の管路5内への侵入を防止
することができなかつた。また、たとえ冷媒蒸気
の侵入を防止し得たとしても分離器4内に中間濃
溶液を必要以上溜めてしまうという問題点があつ
た。
However, among the conventional techniques, those in which an orifice is provided in the pipe line 5 are effective in preventing refrigerant vapor from entering the pipe line 5 when the load and cooling water temperature are constant; When there were fluctuations in the water temperature, it was not possible to prevent refrigerant vapor from entering the pipe line 5. Further, even if the intrusion of refrigerant vapor could be prevented, there was a problem in that the intermediate concentrated solution would accumulate in the separator 4 more than necessary.
また管路5にキヤピラリを設けたものは、ある
程度の幅をもつた負荷変動または冷却水温度の変
動には有効であるが、冷凍能力が100%〜25%変
動するような大きな負荷変動の場合や、冷却水温
度が20℃〜34℃のような大きな変動には十分対応
することができなかつた。 In addition, a capillary installed in the conduit 5 is effective for load fluctuations with a certain range or fluctuations in cooling water temperature, but in case of large load fluctuations where the refrigerating capacity fluctuates by 100% to 25%. It was not possible to adequately respond to large fluctuations in cooling water temperature, such as temperatures between 20°C and 34°C.
さらに管路5にモジユトロール弁を設けたもの
は、ある程度大きな変動に対応できるものの制御
が複雑となつたり、消費電気エネルギーが増大す
るという点からランニングコストが高くつき、さ
らにモジユトロール弁自体が高価なものであるた
め製品コストが非常に高価なものとなるという問
題点があつた。 Furthermore, although a module equipped with a module control valve in the conduit 5 can handle large fluctuations to some extent, the control becomes complicated and the running cost increases due to increased electrical energy consumption, and furthermore, the module control valve itself is expensive. Therefore, there was a problem that the product cost was extremely high.
本考案は前記従来技術の問題点に鑑みなされた
もので、その目的は構造簡潔にして分離器内冷媒
蒸気の中間濃溶液送給管内への侵入を防ぐに効果
のある二重効用吸収冷凍機を提供することにあ
る。 The present invention was devised in view of the problems of the prior art described above, and its purpose is to provide a double-effect absorption refrigerating machine that has a simple structure and is effective in preventing refrigerant vapor in the separator from penetrating into the intermediate concentrated solution feed pipe. Our goal is to provide the following.
本考案に係る二重効用吸収冷凍機は、冷媒を吸
収した稀溶液を加熱する高温再生器と、この高温
再生器で加熱された溶液を冷媒蒸気と中間濃溶液
とに分離する分離器と、この分離器によつて分離
された中間濃溶液が降温された後導入され、前記
分離器で得られた冷媒蒸気によつてこの中間濃溶
液を加熱して濃縮する低温再生器、この低温再生
器を経て導かれた冷媒蒸気を凝縮する凝縮器と、
この凝縮器で凝縮された液冷媒を蒸発させ負荷冷
水と熱交換する蒸発器と、前記低温再生器で得ら
れた濃溶液が導かれ、前記蒸発器で蒸発した冷媒
蒸気をこの濃溶液に吸収させる吸収器と、この吸
収器で得られた溶液を前記高温再生器へ圧送する
ポンプとが一つの循環系を構成している二重効用
吸収冷凍機において、前記低温再生器へ中間濃溶
液を導く管路途中に前記分離器内の圧力に比例し
かつ前記凝縮器内の圧力に反比例して開口面積を
調整する流量調整器を設けたことを特徴とするも
のである。
The dual-effect absorption refrigerator according to the present invention includes a high-temperature regenerator that heats a dilute solution that has absorbed a refrigerant, and a separator that separates the solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentrated solution. A low-temperature regenerator into which the intermediate concentrated solution separated by the separator is cooled and then heated and concentrated by the refrigerant vapor obtained in the separator; a condenser that condenses the refrigerant vapor guided through the
An evaporator that evaporates the liquid refrigerant condensed in this condenser and exchanges heat with the load chilled water, and a concentrated solution obtained in the low-temperature regenerator is introduced, and the refrigerant vapor evaporated in the evaporator is absorbed into this concentrated solution. In a dual-effect absorption refrigerating machine, an absorber for transporting an intermediate concentrated solution to the low-temperature regenerator and a pump for pumping the solution obtained in the absorber to the high-temperature regenerator constitute one circulation system. The present invention is characterized in that a flow rate regulator is provided in the leading pipe line for adjusting the opening area in proportion to the pressure in the separator and inversely proportional to the pressure in the condenser.
本考案によれば流量調整器による管路開口面積
が分離器内の圧力(絶対圧)に比例した大きさと
なり、かつ凝縮器内の圧力(絶対圧)に反比例し
た大きさとなるように調整され、すなわち分離器
内の圧力が大きく減少すれば流量調整器が流路開
口面積を大きく絞り、冷媒蒸気の中間濃溶液送給
回路内への侵入が抑制され、凝縮器内の圧力が大
きく減少すれば流量調整器が流路開口面積を大き
く開放して分離器内の中間濃溶液が流れやすくな
る。〔実施例〕
次に本考案の実施例を図面に基づいて説明す
る。
According to the present invention, the pipe opening area by the flow regulator is adjusted so that it is proportional to the pressure (absolute pressure) inside the separator and inversely proportional to the pressure (absolute pressure) inside the condenser. In other words, if the pressure inside the separator decreases significantly, the flow rate regulator will greatly reduce the flow path opening area, suppressing the intrusion of refrigerant vapor into the intermediate concentrated solution supply circuit, and causing the pressure inside the condenser to decrease significantly. For example, the flow rate regulator opens the flow path opening area to a large extent, making it easier for the intermediate concentrated solution in the separator to flow. [Example] Next, an example of the present invention will be described based on the drawings.
第1図は本考案の冷凍機の一実施例を示す系統
図であり、符号2はバーナなどの加熱手段を備え
た高温再生器で、内部に導入されている冷媒を吸
収した稀溶液がこの高温再生器において加熱され
蒸気となつて分離器4に導かれ、この分離器4に
おいて冷媒蒸気と中間濃溶液とに分離される。分
離器2で得られた高温の中間濃溶液は管路5aに
よつて高温熱交換器18に導かれ、この熱交換器
において低温の稀溶液と熱交換されて降温された
後、管路5b、後述する流量調整器30、管路5
cを順次経由して低温再生器6に導入される。低
温再生器6内に配設されているコイル6aには分
離器2から高温冷媒蒸気が導入されており、高温
熱交換器18において一旦降温された中間濃溶液
はコイル6a内を流れる高温の冷媒蒸気によつて
再度加熱される。すなわち低温再生器6内におい
て、中間濃溶液から冷媒が蒸発して溶液は濃縮さ
れ、このとき発生した蒸気は低温再生器6に連接
し連通状態に設けられている凝縮器8へ導入され
る。またコイル6a内の冷媒蒸気は中間濃溶液と
の熱交換によつて凝縮され、これも凝縮器8内へ
導入される。 Fig. 1 is a system diagram showing an embodiment of the refrigerator of the present invention. Reference numeral 2 is a high-temperature regenerator equipped with a heating means such as a burner, and the dilute solution that has absorbed the refrigerant introduced into the regenerator is It is heated in the high-temperature regenerator, turns into steam, and is guided to the separator 4, where it is separated into refrigerant vapor and intermediate concentrated solution. The high-temperature intermediate concentrated solution obtained in the separator 2 is led to the high-temperature heat exchanger 18 through the pipe 5a, where it is cooled by heat exchange with the low-temperature dilute solution, and then passed through the pipe 5b. , a flow rate regulator 30, which will be described later, and a pipe line 5.
c and is introduced into the low temperature regenerator 6 sequentially. High-temperature refrigerant vapor is introduced from the separator 2 into the coil 6a disposed in the low-temperature regenerator 6, and the intermediate concentrated solution whose temperature has been lowered once in the high-temperature heat exchanger 18 becomes the high-temperature refrigerant flowing inside the coil 6a. Reheated by steam. That is, in the low-temperature regenerator 6, the refrigerant is evaporated from the intermediate concentrated solution to concentrate the solution, and the vapor generated at this time is introduced into the condenser 8, which is connected to the low-temperature regenerator 6 and is provided in communication. Further, the refrigerant vapor in the coil 6a is condensed by heat exchange with the intermediate concentrated solution, and this is also introduced into the condenser 8.
凝縮器8内には内部を冷却水が流れるコイル8
aが設けてあり、コイル6aから凝縮器8内に導
かれた冷媒はこの冷却水によつてさらに凝縮され
て液冷媒となる。凝縮器8で得られたこの液冷媒
はこの蒸発器10内に導かれ、散布器10bによ
つて蒸発器コイル10a上に散布される。コイル
10a内には冷水が流れており、散布された液冷
媒は冷水から蒸発熱を奪つて蒸発し、これによつ
てコイル10a内の冷水はさらに冷却される。 Inside the condenser 8 is a coil 8 through which cooling water flows.
a is provided, and the refrigerant guided into the condenser 8 from the coil 6a is further condensed by this cooling water and becomes liquid refrigerant. The liquid refrigerant obtained in the condenser 8 is introduced into the evaporator 10 and is spread onto the evaporator coil 10a by a spreader 10b. Cold water is flowing inside the coil 10a, and the sprayed liquid refrigerant takes evaporation heat from the cold water and evaporates, thereby further cooling the cold water inside the coil 10a.
一方、低温再生器6内で凝縮されて得られた濃
溶液は、管路7a、低温熱交換器20、管路7b
を通つて蒸発器10と連通状態の吸収器14へ導
かれる。吸収器14内には前記凝縮器8内に配設
されているコイル8aに連らなる吸収器コイル1
4aが配設されており、このコイル14a上に吸
収器14に導かれた濃溶液が散布器14bによつ
て散布される。低温再生器6で得られた濃溶液
は、低温熱交換器20において循環する稀溶液と
熱交換して高温となり、吸収器14内において、
蒸発器10内で蒸発した冷媒蒸気を十分に吸収し
て稀溶液となる。この濃溶液が冷媒を吸収する際
に生じる吸収熱はコイル14a内を流れている冷
却水に吸収される。吸収器14内において得られ
た稀溶液はポンプ16によつて低温熱交換器2
0、高温熱交換器18を経て高温再生器2に送ら
れる。 On the other hand, the concentrated solution obtained by condensing in the low temperature regenerator 6 is transferred to the pipe 7a, the low temperature heat exchanger 20, and the pipe 7b.
through the absorber 14, which is in communication with the evaporator 10. In the absorber 14, there is an absorber coil 1 connected to the coil 8a disposed in the condenser 8.
4a is disposed, and the concentrated solution introduced into the absorber 14 is sprayed onto this coil 14a by a sprayer 14b. The concentrated solution obtained in the low-temperature regenerator 6 exchanges heat with the dilute solution circulating in the low-temperature heat exchanger 20 to become high temperature, and in the absorber 14,
The refrigerant vapor evaporated in the evaporator 10 is sufficiently absorbed to form a dilute solution. The absorption heat generated when this concentrated solution absorbs the refrigerant is absorbed by the cooling water flowing inside the coil 14a. The dilute solution obtained in the absorber 14 is transferred to a low temperature heat exchanger 2 by a pump 16.
0, is sent to the high temperature regenerator 2 via the high temperature heat exchanger 18.
符号22は分離器4と吸収器14とを連通させ
るパイプで、符号22aは連通パイプ22途中に
設けられている暖房動作と冷凍動作とを切り換え
るための冷暖切換弁、符号24は流量制御弁、符
号26は高温再生器2のバーナへの燃料供給を制
御する燃料制御弁であり、蒸発器10内のコイル
10a内を流れている冷水の温度を検知し、その
温度に応じて流量制御弁24および燃料制御弁2
6を操作することにより、溶液循環量や高温再生
器2の入熱量を制御するようになつている。管路
5bと管路5cとの間に設けられている流量調整
器30は、第2図に示されるように、容器32内
がダイヤフラム34によつて二つの室31aと3
1bとに画成されている。第1の室31aは通路
33を介して凝縮器8内に連通しており、この第
1の室31a内にはダイヤフラム34と容器内壁
との間にばね36が介装され、一方第2の室31
bには管路5bと5cとが連通状態に節接され、
管路5bの端部に設けられているノズル40が第
2の室31bに開口しており、ダイヤフラム34
に取り付けられた弁体38がこのノズル40に対
向する位置に設けられている。そして第1の室3
1aを第2の室31b内の圧力差に基づいてノズ
ル40の開口面積が調整されるようになつてい
る。すなわち、燃料制御弁26により高温再生器
2での加熱量を変化させると、高温再生器2にお
ける溶液の温度、圧力および発生冷媒量が変化
し、同時に分離器4内の圧力も変化する。さらに
凝縮器8、吸収器14における放熱量が変化し、
冷却水の放熱温度が変化する。すなわち分離器4
内の圧力が変化するとともに、凝縮器8内の圧力
も変化する。一方吸収器14内のコイル14a、
凝縮器8内のコイル8a内を流れている冷却水の
温度が変化した場合にも凝縮器8内の圧力が変化
し、同時に分離器4内の圧力も変化する。この凝
縮器8内の圧力変化は通路33を介して流量調整
器30の第1の室31aに伝達され、これによつ
てダイヤフラム34と一体に弁体38が作動して
ノズル40の開口面積を変化させるようになつて
いる。 Reference numeral 22 is a pipe that communicates the separator 4 and the absorber 14, reference numeral 22a is a cooling/heating switching valve provided in the middle of the communication pipe 22 for switching between heating operation and freezing operation, reference numeral 24 is a flow rate control valve, Reference numeral 26 denotes a fuel control valve that controls the fuel supply to the burner of the high-temperature regenerator 2, which detects the temperature of the cold water flowing in the coil 10a in the evaporator 10, and controls the flow rate control valve 24 according to the temperature. and fuel control valve 2
By operating 6, the amount of solution circulation and the amount of heat input to the high temperature regenerator 2 are controlled. As shown in FIG. 2, the flow rate regulator 30 provided between the conduit 5b and the conduit 5c has a container 32 divided into two chambers 31a and 3 by a diaphragm 34.
1b. The first chamber 31a communicates with the inside of the condenser 8 through a passage 33, and a spring 36 is interposed between the diaphragm 34 and the inner wall of the container in the first chamber 31a. Room 31
b, pipes 5b and 5c are connected in a communicating state;
A nozzle 40 provided at the end of the conduit 5b opens into the second chamber 31b, and the diaphragm 34
A valve body 38 attached to the nozzle 40 is provided at a position facing the nozzle 40. and the first chamber 3
The opening area of the nozzle 40 is adjusted based on the pressure difference between the chambers 1a and 31b. That is, when the amount of heating in the high-temperature regenerator 2 is changed by the fuel control valve 26, the temperature and pressure of the solution in the high-temperature regenerator 2 and the amount of refrigerant generated change, and at the same time, the pressure inside the separator 4 changes. Furthermore, the amount of heat released in the condenser 8 and absorber 14 changes,
The heat radiation temperature of the cooling water changes. That is, separator 4
As the pressure inside the condenser 8 changes, the pressure inside the condenser 8 also changes. On the other hand, a coil 14a in the absorber 14,
When the temperature of the cooling water flowing through the coil 8a in the condenser 8 changes, the pressure in the condenser 8 changes, and at the same time, the pressure in the separator 4 also changes. This pressure change in the condenser 8 is transmitted to the first chamber 31a of the flow rate regulator 30 through the passage 33, whereby the valve body 38 is actuated together with the diaphragm 34 to increase the opening area of the nozzle 40. It's starting to change.
この流量調整器30の作用を第1図に示す冷凍
機における冷凍能力を25%〜100%の範囲で制御
する場合と、冷凍能力が一定ではあるが冷却水の
温度が大きく変化した場合のそれぞれについて説
明する。 The action of the flow rate regulator 30 is shown in Fig. 1 when controlling the refrigerating capacity of a refrigerator in the range of 25% to 100%, and when the refrigerating capacity is constant but the temperature of the cooling water changes greatly. I will explain about it.
第3図は冷凍機の冷凍能力と分離器4内の圧力
との関係を示す図であり、この図から明らかなよ
うに、冷凍能力と分離器4内の圧力(絶対圧力)
とは比例関係にある。いま冷却水の温度が32℃で
一定の場合、冷凍能力を100%から25%に下げた
場合には、分離器4内の圧力は650mmHgから300
mmHgに大きく変化する。流量調整器30の第2
の室31bは分離器4内の圧力(650mmHg→300
mmHg)に等しくなり、一方第1の室31a内の
圧力は通路33によつて凝縮器8内の圧力に等し
く、凝縮器8内の圧力変化はほんの数mmHgに過
ぎない。そのためばね36が作用してダイヤフラ
ム34は第2図右方向に移動し、その結果弁体3
8とノズル40とによつて形成される開口面積が
狭められる。また同時に流量制御弁24もその開
口面積を絞るように作動し、溶液循環量を冷凍能
力25%に適したものに調整する。この結果分離器
4で発生した冷媒蒸気が管路5a,高温熱交換器
18、管路5b,5cによつて構成される中間溶
液回路に侵入することが抑制される。 FIG. 3 is a diagram showing the relationship between the refrigerating capacity of the refrigerator and the pressure inside the separator 4. As is clear from this figure, the refrigerating capacity and the pressure inside the separator 4 (absolute pressure)
There is a proportional relationship. If the temperature of the cooling water is now constant at 32℃, if the refrigeration capacity is lowered from 100% to 25%, the pressure inside separator 4 will decrease from 650mmHg to 300mmHg.
It changes greatly to mmHg. The second of the flow regulator 30
The pressure inside the separator 4 (650 mmHg → 300
mmHg), while the pressure in the first chamber 31a is equal to the pressure in the condenser 8 due to the passage 33, and the pressure change in the condenser 8 is only a few mmHg. Therefore, the spring 36 acts to move the diaphragm 34 to the right in FIG. 2, and as a result, the valve body 3
The opening area formed by the nozzle 8 and the nozzle 40 is narrowed. At the same time, the flow control valve 24 also operates to narrow its opening area, and adjusts the solution circulation amount to a value suitable for the refrigeration capacity of 25%. As a result, refrigerant vapor generated in the separator 4 is prevented from entering the intermediate solution circuit constituted by the pipe 5a, the high temperature heat exchanger 18, and the pipes 5b and 5c.
第4図はコイル8a,14aの冷却水の温度と
凝縮器8内の圧力との関係を示す図で、冷却水温
度と凝縮器内圧力とは比例関係にある。冷凍能力
が一定の状態において、コイル8a,14a内の
冷却水の温度がたとえば34℃から20℃に下がつた
とすると、凝縮器8内の圧力は第4図に示される
ように60mmHg(絶対圧)から28mmHg(絶対
圧)に変化する。そのため流量調整器30の第1
の室31a内の圧力は下がり、ばね36の力に抗
してダイヤフラム34が第2図左方向に移動す
る。その結果弁体38とノズル40との開口面積
が広げられ、分離器4内の中間濃溶液の低温再生
器6への供給がスムーズとなる。その結果分離器
4内に中間濃溶液が溜まることがなく、吸収濃溶
液の濃縮による冷媒の凍結、溶液の結晶も生じる
恐れがない。 FIG. 4 is a diagram showing the relationship between the temperature of the cooling water of the coils 8a and 14a and the pressure inside the condenser 8, and the temperature of the cooling water and the pressure inside the condenser are in a proportional relationship. If the temperature of the cooling water in the coils 8a and 14a drops from, for example, 34°C to 20°C while the refrigerating capacity is constant, the pressure in the condenser 8 will be 60 mmHg (absolute) as shown in Figure 4. pressure) to 28mmHg (absolute pressure). Therefore, the first
The pressure inside the chamber 31a decreases, and the diaphragm 34 moves to the left in FIG. 2 against the force of the spring 36. As a result, the opening area between the valve body 38 and the nozzle 40 is expanded, and the intermediate concentrated solution in the separator 4 can be smoothly supplied to the low-temperature regenerator 6. As a result, the intermediate concentrated solution does not accumulate in the separator 4, and there is no possibility that the refrigerant will freeze or the solution will crystallize due to concentration of the absorbed concentrated solution.
このように本実施例によれば、冷凍機の冷凍能
力または冷却水の温度に応じて流量調整器30を
して管路5の開口面積を調整するようになつてい
るので、管路5と高温熱交換器18とから構成さ
れる中間濃溶液供給回路内に蒸気冷媒が侵入する
ことがなく、蒸気の侵入に伴う腐食の問題が起こ
らない。また高温再生器2、および分離器4で発
生した蒸気は全て確実に低温再生器内のコイル6
aに送られるので、熱エネルギーの損失も少く運
転効率を向上させることができる。さらにまた流
量調整器30によつて中間濃溶液の円滑な供給も
可能であることから分離器4内に過剰に中間濃溶
液を貯蔵するという問題もなくなる。さらに、冷
却水温度が低い場合にも過度に吸収濃溶液が濃縮
されることがないので、冷媒の凍結、溶液の結晶
などの発生も防止できる。さらに構造が非常に簡
潔であり、製造コストを安価とすることが可能で
ある。 As described above, according to this embodiment, the opening area of the pipe line 5 is adjusted by using the flow rate regulator 30 according to the refrigerating capacity of the refrigerator or the temperature of the cooling water. The vapor refrigerant does not enter the intermediate concentrated solution supply circuit constituted by the high-temperature heat exchanger 18, and corrosion problems due to vapor entry do not occur. In addition, all the steam generated in the high temperature regenerator 2 and separator 4 is reliably transferred to the coil 6 in the low temperature regenerator.
Since the heat energy is sent to A, there is less loss of thermal energy and operational efficiency can be improved. Furthermore, since the intermediate concentrated solution can be smoothly supplied by the flow rate regulator 30, the problem of storing an excessive amount of intermediate concentrated solution in the separator 4 is eliminated. Further, even when the temperature of the cooling water is low, the absorbent concentrated solution is not excessively concentrated, so freezing of the refrigerant and crystallization of the solution can be prevented. Furthermore, the structure is very simple and manufacturing costs can be reduced.
以上の説明から明らかなように、本考案によれ
ば中間濃溶液回路における腐食が確実に防止され
るとともに、熱エネルギーを有効に利用すること
により、運転効率を向上させることができる。
As is clear from the above description, according to the present invention, corrosion in the intermediate concentrated solution circuit can be reliably prevented, and operating efficiency can be improved by effectively utilizing thermal energy.
第1図は本考案の一実施例の系統図、第2図は
本考案の要部構成説明図、第3図は本実施例に係
る冷凍機の冷凍能力と分離器の圧力との関係を示
す図、第4図はその冷却水温度と凝縮器内圧力と
の関係を示す図、第5図は従来の二重効用吸収冷
凍機の系統図である。
2……高温再生器、4……分離器、6……低温
再生器、8……凝縮器、14……吸収器、16…
…ポンプ、18……高温熱交換器、20……低温
熱交換器、24……流量制御弁、30……流量調
整器、33……通路、34……ダイヤフラム、3
6……ばね、38……弁体、40……ノズル。
Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the main part configuration of the invention, and Fig. 3 shows the relationship between the refrigerating capacity of the refrigerator and the pressure of the separator according to the present embodiment. 4 is a diagram showing the relationship between the cooling water temperature and the pressure inside the condenser, and FIG. 5 is a system diagram of a conventional dual-effect absorption refrigerator. 2...High temperature regenerator, 4...Separator, 6...Low temperature regenerator, 8...Condenser, 14...Absorber, 16...
... pump, 18 ... high temperature heat exchanger, 20 ... low temperature heat exchanger, 24 ... flow control valve, 30 ... flow regulator, 33 ... passage, 34 ... diaphragm, 3
6... Spring, 38... Valve body, 40... Nozzle.
Claims (1)
と、この高温再生器で加熱された溶液を冷媒蒸気
と中間濃溶液とに分離する分離器と、この分離器
によつて分離された中間濃溶液が降温された後導
入され、前記分離器で得られた冷媒蒸気によつて
この中間濃溶液を加熱して濃縮する低温再生器
と、この低温再生器を経て導かれた冷媒蒸気を凝
縮する凝縮器と、この凝縮器で凝縮された液冷媒
を蒸発させ負荷冷水と熱交換する蒸発器と、前記
低温再生器で得られた濃溶液が導かれ、前記蒸発
器で蒸発した冷媒蒸気をこの濃溶液に吸収させる
吸収器と、この吸収器で得られた稀溶液を前記高
温再生器へ圧送するポンプとが一つの循環系を構
成している二重効用吸収冷凍機において、前記低
温再生器へ中間濃溶液を導く管路途中に前記分離
容器内の圧力に比例しかつ前記凝縮器内の圧力に
反比例して開口面積を調整する流量調整器を設け
たことを特徴とする二重効用吸収冷凍機。 A high-temperature regenerator that heats a dilute solution that has absorbed refrigerant, a separator that separates the solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentrated solution, and an intermediate concentrated solution separated by the separator. a low-temperature regenerator that is introduced after the temperature has been lowered and that heats and concentrates this intermediate concentrated solution using the refrigerant vapor obtained in the separator; and a condenser that condenses the refrigerant vapor that has been led through the low-temperature regenerator. an evaporator that evaporates the liquid refrigerant condensed in the condenser and exchanges heat with the load chilled water, and a concentrated solution obtained in the low-temperature regenerator is introduced, and the refrigerant vapor evaporated in the evaporator is converted into the concentrated solution. In a dual-effect absorption refrigerator in which an absorber that absorbs a solution and a pump that pumps the dilute solution obtained in this absorber to the high-temperature regenerator constitute one circulation system, A double-effect absorption refrigeration system, characterized in that a flow rate regulator is provided in the middle of the pipe for guiding the intermediate concentrated solution, the flow rate regulator adjusting the opening area in proportion to the pressure in the separation container and inversely proportional to the pressure in the condenser. Machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9122385U JPH0424368Y2 (en) | 1985-06-17 | 1985-06-17 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9122385U JPH0424368Y2 (en) | 1985-06-17 | 1985-06-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS621070U JPS621070U (en) | 1987-01-07 |
JPH0424368Y2 true JPH0424368Y2 (en) | 1992-06-09 |
Family
ID=30646929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9122385U Expired JPH0424368Y2 (en) | 1985-06-17 | 1985-06-17 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0424368Y2 (en) |
-
1985
- 1985-06-17 JP JP9122385U patent/JPH0424368Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS621070U (en) | 1987-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3651655A (en) | Control system for multiple stage absorption refrigeration system | |
JPH0424368Y2 (en) | ||
JPS6113888Y2 (en) | ||
JPH07849Y2 (en) | Air-cooled absorption chiller / heater | |
JP3086594B2 (en) | Single double effect absorption refrigerator | |
JPS6135890Y2 (en) | ||
JP2592014B2 (en) | Absorption chiller / heater | |
JP2918665B2 (en) | Operation stop method and stop control device for absorption chiller / chiller / heater | |
JPS63204080A (en) | absorption refrigerator | |
JP2895974B2 (en) | Absorption refrigerator | |
JP2904650B2 (en) | Absorption chiller / heater | |
JP2883372B2 (en) | Absorption chiller / heater | |
JPH07324839A (en) | Single and double effect absorption hot and chilled water generator | |
JP2538423B2 (en) | Single-double-effect absorption refrigerator | |
JPH04313652A (en) | Absorption refrigerating machine | |
KR960005669B1 (en) | Double effective absorption type refrigerator | |
JPS6017640Y2 (en) | Absorption chiller refrigerant freeze prevention device | |
JP2517422B2 (en) | Absorption refrigerator | |
JPH04260760A (en) | Single-double effect absorption refrigerator | |
JPS6269072A (en) | Absorption type water cooler/heater | |
JPS6365257A (en) | Air-cooled absorption chiller/heater | |
JPH11230631A (en) | Absorption refrigerator | |
JPH03105171A (en) | Absorption type water cooler/heater | |
JPH04203862A (en) | Cold water and hot water parallel supplying absorption type refrigerating machine | |
JPH0615939B2 (en) | Absorption heat pump device |