JPS6135891Y2 - - Google Patents

Info

Publication number
JPS6135891Y2
JPS6135891Y2 JP1981095174U JP9517481U JPS6135891Y2 JP S6135891 Y2 JPS6135891 Y2 JP S6135891Y2 JP 1981095174 U JP1981095174 U JP 1981095174U JP 9517481 U JP9517481 U JP 9517481U JP S6135891 Y2 JPS6135891 Y2 JP S6135891Y2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature regenerator
flow rate
low
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981095174U
Other languages
Japanese (ja)
Other versions
JPS582569U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9517481U priority Critical patent/JPS582569U/en
Publication of JPS582569U publication Critical patent/JPS582569U/en
Application granted granted Critical
Publication of JPS6135891Y2 publication Critical patent/JPS6135891Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 本考案は冷媒として水をまた吸収剤としてリチ
ウム塩を使用する水−リチウム塩系二重効用吸収
冷凍機の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a water-lithium salt double effect absorption refrigerator using water as a refrigerant and a lithium salt as an absorbent.

第1図は従来の水−リチウム塩系二重効用吸収
冷凍機の系統図である。図中1は冷媒を吸収した
稀溶液が導入され、これをバーナ等の熱源で加熱
する高温再生器、2は高温再生器で加熱された溶
液を冷媒蒸気と中間濃溶液とに分離する分離器、
3は低温再生器であり、分離器2からの高温の中
間濃溶液が高温熱交換器8に於て低温の稀溶液と
の熱交換によつて降温された後で導入され、一方
分離器2から低温再生器コイル14に導入される
冷媒蒸気によつて再度加熱される。4は低温再生
器3及びそのコイル14から導入される冷媒を凝
縮コイル11を流れる冷却水によつて凝縮させ液
冷媒とする凝縮器、5は凝縮器4からの冷媒が管
路10を介して導入され、かつ蒸発器コイル13
上に散布されることにより、コイル13内を流れ
る冷水から蒸発熱を奪つて蒸発する蒸発器、6は
低温再生器3から濃溶液が低温熱交換器7を介し
て導入され、蒸発器5で蒸発した冷媒蒸気を吸収
することによつて稀溶液とする吸収器、9は吸収
器6の稀溶液と高温再生器1側へ送り込む溶液ポ
ンプ、12は吸収器6に於ける吸収熱を除去する
ために冷却水の流れている吸収器コイル、15は
流量制御弁である。
FIG. 1 is a system diagram of a conventional water-lithium salt double-effect absorption refrigerator. In the figure, 1 is a high-temperature regenerator into which a dilute solution that has absorbed refrigerant is introduced and heated by a heat source such as a burner, and 2 is a separator that separates the solution heated by the high-temperature regenerator into refrigerant vapor and intermediate concentrated solution. ,
3 is a low temperature regenerator, into which the high temperature intermediate concentrated solution from the separator 2 is lowered in temperature by heat exchange with the low temperature dilute solution in the high temperature heat exchanger 8; It is heated again by refrigerant vapor introduced into the low-temperature regenerator coil 14 from above. 4 is a condenser that condenses the refrigerant introduced from the low-temperature regenerator 3 and its coil 14 into a liquid refrigerant by cooling water flowing through the condensing coil 11; introduced and the evaporator coil 13
A concentrated solution is introduced from the low temperature regenerator 3 via the low temperature heat exchanger 7, and the concentrated solution is introduced into the evaporator 5 from the low temperature regenerator 3 through the low temperature heat exchanger 7. An absorber that absorbs evaporated refrigerant vapor to form a dilute solution; 9 is a solution pump that sends the dilute solution in the absorber 6 to the high-temperature regenerator 1 side; 12 is a solution pump that removes the absorbed heat in the absorber 6; 15 is a flow control valve.

流量制御弁15の詳細は第2図に示されている
ように、電磁コイル21、プランジヤ22、コイ
ルばね23、バルブデイスク24、ノズル25か
ら構成されており、図示の状態は電磁コイル21
によつてプランジヤ22が吸引されて流量制御弁
15が開の状態となつている。従つて、この状態
では矢印方向へ最大流量の稀溶液が流れることに
なる。一方、電磁コイル21への通電が断れると
プランジヤ22はコイルばね23によつて押され
て下降し、バルブデイスク24の先端がノズル2
5に当接する。ここで、バルブデイスク24には
細孔26が形成されているため流路が細孔26の
大きさに絞られることとなり、稀溶液の流量が絞
られることになる。この状態を閉状態と呼ぶこと
にする。
As shown in FIG. 2, the details of the flow rate control valve 15 are composed of an electromagnetic coil 21, a plunger 22, a coil spring 23, a valve disk 24, and a nozzle 25. In the illustrated state, the electromagnetic coil 21
The plunger 22 is attracted by the pump, and the flow rate control valve 15 is in an open state. Therefore, in this state, the dilute solution will flow at the maximum flow rate in the direction of the arrow. On the other hand, when the electromagnetic coil 21 is de-energized, the plunger 22 is pushed down by the coil spring 23 and the tip of the valve disc 24 is connected to the nozzle 2.
5. Here, since the pores 26 are formed in the valve disk 24, the flow path is constricted to the size of the pores 26, and the flow rate of the dilute solution is constricted. This state will be called a closed state.

従つて、流量制御弁15の開、閉によつて冷凍
機の運転状態をハイ(High)状態とロー
(Low)状態に切換えることができる。勿論ロー
状態には高温再生器1の加熱量も減少させること
は云うまでもない。
Therefore, by opening and closing the flow rate control valve 15, the operating state of the refrigerator can be switched between a high state and a low state. Of course, it goes without saying that the heating amount of the high temperature regenerator 1 is also reduced in the low state.

ところで、冷凍機の運転状態をハイからローへ
切換える場合は、流量制御弁15を閉じるととも
に高温再生器1の加熱源を絞つて加熱量を減じる
のであるが、このとき、吸収器6へ流入する濃溶
液の流入量は流量制御弁15を閉じてから通常十
数秒後にロー運転状態の流量となるものの、蒸発
器5へ流入する冷媒の量は数分間かかつて徐々に
減少する程度で追従が非常に遅い。その理由は、
低温再生器コイル14内表面、凝縮器コイル11
表面の冷媒保有量や高温再生器1、低温再生器3
内での溶液の保有熱量等の影響であると考えられ
る。
By the way, when switching the operating state of the refrigerator from high to low, the flow rate control valve 15 is closed and the heating source of the high temperature regenerator 1 is throttled to reduce the amount of heating. Although the flow rate of the concentrated solution normally reaches the flow rate of the low operating state after a dozen or so seconds after closing the flow rate control valve 15, the amount of refrigerant flowing into the evaporator 5 only gradually decreases for several minutes and is very difficult to follow. It's late. The reason is,
Inner surface of low temperature regenerator coil 14, condenser coil 11
Amount of refrigerant on the surface, high temperature regenerator 1, low temperature regenerator 3
This is thought to be due to the amount of heat held by the solution within the chamber.

このような現象から、吸収器6へ流入する濃溶
液がロー状態として少なくなつており、吸収能力
が減少しているにもかかわらず、蒸発器5への冷
媒流量はハイ状態が続くため、その間冷媒が蒸発
しきれずに無効冷媒となつてしまい、冷凍効率が
低下することになつていた。
Due to this phenomenon, the amount of concentrated solution flowing into the absorber 6 is in a low state and is decreasing, and even though the absorption capacity is decreasing, the refrigerant flow rate to the evaporator 5 continues to be in a high state. The refrigerant could not be completely evaporated and became an ineffective refrigerant, resulting in a decrease in refrigeration efficiency.

本考案は、このような事情にもとづきなされた
もので、その目的は、運転状態を切換えたときに
溶液と冷媒の流量をその運転状態に適するように
バランスさせるようにして、冷凍効率の低下を防
ぐようにした水−リチウム塩系二重効用吸収冷凍
機を提供することにある。
The present invention was developed based on these circumstances, and its purpose is to balance the flow rates of the solution and refrigerant to suit the operating state when the operating state is changed, thereby preventing a decrease in refrigeration efficiency. It is an object of the present invention to provide a water-lithium salt double-effect absorption refrigerator which prevents the above-mentioned effects.

以下本考案の実施例を第3図及び第4図を参照
して詳細に説明する。なお第3図及び第4図にお
いて第1図と同一部分には同一符号を付してある
ので、その部分の説明は省略する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 3 and 4. Note that in FIGS. 3 and 4, the same parts as in FIG. 1 are given the same reference numerals, so the explanation of those parts will be omitted.

第3図に示した実施例は、凝縮器4から蒸発器
5へ冷媒を導く管路10中に、流量制御弁16を
設けたことを特徴としている。この流量制御弁1
6は第2図に詳細を示したところの、溶液ポンプ
9の吐出側に設けられている流量制御弁15と同
様構成のものである。
The embodiment shown in FIG. 3 is characterized in that a flow control valve 16 is provided in a pipe line 10 that guides the refrigerant from the condenser 4 to the evaporator 5. This flow control valve 1
Reference numeral 6 has the same structure as the flow rate control valve 15 provided on the discharge side of the solution pump 9, the details of which are shown in FIG.

従つて、冷凍機の運転転状態をハイからローに
切換えるに際し、流量制御弁15を閉じるのに連
動させて管路10中に設けた流量制御弁16も閉
じるようにする。勿論、ローからハイ状態へ切換
る際も流量制御弁15と16を連動させて開く。
このようにすれば、冷凍機の運転状態に応じて溶
液流量と冷媒流量とのバランスが図られ、吸収能
力に合致した量の冷媒が蒸発することとなり、無
効冷媒を生ぜず、冷凍能力を低下させることはな
い。
Therefore, when switching the operating state of the refrigerator from high to low, the flow rate control valve 16 provided in the conduit 10 is also closed in conjunction with the closing of the flow rate control valve 15. Of course, the flow rate control valves 15 and 16 are opened in conjunction with each other when switching from the low state to the high state.
In this way, the solution flow rate and refrigerant flow rate are balanced according to the operating state of the refrigerator, and the amount of refrigerant that matches the absorption capacity is evaporated, thereby preventing the generation of ineffective refrigerant and reducing the refrigerating capacity. I won't let you.

第4図は本考案の他の実施例を示したもので、
第3図の流量制御弁16に代えて、管路10中に
冷媒溜17と電磁弁18を直列に接続するととも
に、冷媒溜17にオーバーフロー管19を設け、
オーバーフロー管19の先端を蒸発器5へ導入す
るようにしたものである。
FIG. 4 shows another embodiment of the present invention.
Instead of the flow rate control valve 16 in FIG. 3, a refrigerant reservoir 17 and a solenoid valve 18 are connected in series in the pipe line 10, and an overflow pipe 19 is provided in the refrigerant reservoir 17.
The tip of the overflow pipe 19 is introduced into the evaporator 5.

この実施例では、冷凍機がハイ状態で運転され
ているときには、電磁弁18を開いておくので、
凝縮器4からの液冷媒は、管路10、冷媒溜1
7、電磁弁18を単に通過してハイ運転状態に適
した量の冷媒が蒸発器5へ導入される。一方ロー
状態に切換えられると、電磁弁18は閉じ冷媒の
通路が断れる。従つて冷媒は冷媒溜17内に貯え
られ始め、所定量貯えられた後オーバーフローす
る分がオーバーフロー管19を通して蒸発器5へ
流れることになる。従つて、このときの冷媒の流
量は、一旦停止した後運転状態の切換時より時間
的に遅れてロー運転に適した量となり、よつて吸
収能力に対して過剰となることはなく、無効冷媒
が生ぜず、冷凍能力を低下させることはない。
In this embodiment, when the refrigerator is operating in a high state, the solenoid valve 18 is kept open.
The liquid refrigerant from the condenser 4 is transferred to a pipe 10 and a refrigerant reservoir 1.
7. An amount of refrigerant suitable for high operating conditions is introduced into the evaporator 5 by simply passing through the solenoid valve 18. On the other hand, when switched to the low state, the solenoid valve 18 is closed and the refrigerant passage is cut off. Therefore, the refrigerant begins to be stored in the refrigerant reservoir 17, and after a predetermined amount of refrigerant is stored, the overflowing amount flows to the evaporator 5 through the overflow pipe 19. Therefore, the flow rate of the refrigerant at this time becomes an amount suitable for low operation after a time delay than when the operation state is switched after it has stopped, and therefore does not exceed the absorption capacity and is used as an ineffective refrigerant. does not occur, and the refrigeration capacity will not be reduced.

本考案は上述の実施例に限定されることなく、
要旨を逸脱しない範囲内で種々変形して実施でき
ることは云うまでもない。
The present invention is not limited to the above-mentioned embodiments, but
It goes without saying that various modifications can be made without departing from the scope of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水−リチウム塩系二重効用吸収
冷凍機の系統図、第2図は流量制御弁の一例を示
す断面図、第3図は本考案に係る水−リチウム塩
系二重効用吸収冷凍機の一実施例を示す系統図、
第4図は本考案の他の実施例の系統図である。 1……高温再生器、2……分離器、3……低温
再生器、4……凝縮器、5……蒸発器、6……吸
収器、7……低温熱交換器、8……高温熱交換
器、9……溶液ポンプ、10……管路、15、1
6……流量制御弁、17……冷媒溜、18……電
磁弁、19……オーバーフロー管。
Fig. 1 is a system diagram of a conventional water-lithium salt system dual-effect absorption refrigerator, Fig. 2 is a sectional view showing an example of a flow control valve, and Fig. 3 is a water-lithium salt system dual-effect absorption refrigerator according to the present invention. A system diagram showing an example of an effective absorption refrigerator,
FIG. 4 is a system diagram of another embodiment of the present invention. 1... High temperature regenerator, 2... Separator, 3... Low temperature regenerator, 4... Condenser, 5... Evaporator, 6... Absorber, 7... Low temperature heat exchanger, 8... High Heat exchanger, 9...Solution pump, 10...Pipe line, 15, 1
6...Flow rate control valve, 17...Refrigerant reservoir, 18...Solenoid valve, 19...Overflow pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 稀溶液を加熱する高温再生器と、この高温再生
器で加熱された溶液を冷媒蒸気と中間濃溶液に分
離する分離器と、この分離器で分離された中間濃
溶液が一担降温された後で供給され、前記分離器
で分離された冷媒蒸気によつて加熱する低温再生
器と、この低温再生器からの冷媒を凝縮して液冷
媒とする凝縮器と、この凝縮器からの液冷媒を蒸
発させる蒸発器と、この蒸発器で蒸発した冷媒蒸
気を前記低温再生器からの濃溶液に吸収させて稀
溶液とする吸収器と、この吸収器から前記高温再
生器側へ送り込む稀溶液の流量をハイ及びローの
2段階に制御する流量制御弁とを有する水−リチ
ウム塩系二重効用吸収冷凍機において、前記凝縮
器と蒸発器とを連結する冷媒回路に、冷凍機の運
転状態に応じて冷媒をハイ及びローの2段階に制
御するための流量制御器を設けたことを特徴とす
る水−リチウム塩系二重効用吸収冷凍機。
A high-temperature regenerator that heats the dilute solution, a separator that separates the solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentrated solution, and after the intermediate concentrated solution separated by the separator is cooled down once. a low-temperature regenerator heated by the refrigerant vapor supplied by the refrigerant and separated by the separator; a condenser that condenses the refrigerant from the low-temperature regenerator to form a liquid refrigerant; An evaporator for evaporating, an absorber for absorbing the refrigerant vapor evaporated by the evaporator into a concentrated solution from the low-temperature regenerator to form a dilute solution, and a flow rate of the dilute solution sent from the absorber to the high-temperature regenerator side. In a water-lithium salt double-effect absorption refrigerator having a flow rate control valve that controls the flow rate in two stages, high and low, the refrigerant circuit connecting the condenser and the evaporator is provided with a 1. A water-lithium salt double-effect absorption refrigerating machine characterized by being provided with a flow rate controller for controlling the refrigerant in two stages, high and low.
JP9517481U 1981-06-29 1981-06-29 Water-lithium salt double effect absorption refrigerator Granted JPS582569U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9517481U JPS582569U (en) 1981-06-29 1981-06-29 Water-lithium salt double effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9517481U JPS582569U (en) 1981-06-29 1981-06-29 Water-lithium salt double effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS582569U JPS582569U (en) 1983-01-08
JPS6135891Y2 true JPS6135891Y2 (en) 1986-10-18

Family

ID=29890091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9517481U Granted JPS582569U (en) 1981-06-29 1981-06-29 Water-lithium salt double effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS582569U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100400B2 (en) * 1984-12-12 1994-12-12 三洋電機株式会社 Absorption heat pump device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150849U (en) * 1976-05-12 1977-11-15

Also Published As

Publication number Publication date
JPS582569U (en) 1983-01-08

Similar Documents

Publication Publication Date Title
JPS6135891Y2 (en)
JPS6135890Y2 (en)
JPS6113884Y2 (en)
JP2538278B2 (en) Absorption refrigerator
JPS6117319Y2 (en)
KR20180085363A (en) Low load control system for 2-stage low temperature hot water absorption chiller
JPS6023649Y2 (en) Double effect water - lithium salt absorption chiller
JP4115020B2 (en) Control method of absorption refrigerator
JPS5818139Y2 (en) Double effect absorption chiller
JPS6215736Y2 (en)
JPS5810940Y2 (en) Double effect absorption chiller
JP2659331B2 (en) Absorption refrigerator
JP2567662B2 (en) Air-cooled double-effect absorption refrigerator
JPH079002Y2 (en) Absorption refrigerator
JP4145001B2 (en) Absorption refrigerator
JPS6024904B2 (en) Dual effect water-lithium salt absorption chiller
JPS6113888Y2 (en)
JPS6311570Y2 (en)
JPS63204080A (en) Absorption refrigerator
JPH0424368Y2 (en)
JPH0451320Y2 (en)
JPS6110139Y2 (en)
JP2019190707A (en) Absorptive refrigerator
JPH0198865A (en) Absorption refrigerator
JP2001272128A (en) Absorption refrigerating machine