JPS6223229B2 - - Google Patents

Info

Publication number
JPS6223229B2
JPS6223229B2 JP4315183A JP4315183A JPS6223229B2 JP S6223229 B2 JPS6223229 B2 JP S6223229B2 JP 4315183 A JP4315183 A JP 4315183A JP 4315183 A JP4315183 A JP 4315183A JP S6223229 B2 JPS6223229 B2 JP S6223229B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
temperature
storage chamber
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4315183A
Other languages
Japanese (ja)
Other versions
JPS59170665A (en
Inventor
Toshihiro Ishibashi
Satoshi Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP4315183A priority Critical patent/JPS59170665A/en
Publication of JPS59170665A publication Critical patent/JPS59170665A/en
Publication of JPS6223229B2 publication Critical patent/JPS6223229B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は、水―リチウム塩系吸収冷凍機に係
り、特に循環系内の冷媒量を最適状態に維持する
ような制御機能を備えた水―リチウム塩系吸収冷
凍機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water-lithium salt absorption refrigerating machine, and more particularly to a water-lithium salt absorption refrigerating machine equipped with a control function to maintain the amount of refrigerant in the circulation system in an optimum state. Regarding.

先ず、従来の水―リチウム塩系吸収冷凍機につ
いて第1図を参照して説明する。
First, a conventional water-lithium salt absorption refrigerator will be explained with reference to FIG.

第1図において、参照符号1は稀溶液が導入さ
れてこれを加熱する高温再生器、2は高温再生器
1で加熱されて沸騰した高温の水蒸気と中間濃溶
液とを分離する分離器、3は低温再生器であり、
分離器2で分離された中間濃溶液が高温熱交換器
8で稀容液との熱交換によつて降温された後導入
され、分離器2からの高温蒸気で加熱される。4
は凝縮器で、低温再生器3から中間濃溶液を加熱
することによつて生じた冷媒蒸気と中間濃溶液に
熱を奪われて凝縮した液体冷媒が導入され、冷却
水コイル11内を流れる冷却水によつて冷却され
て凝縮される。5は蒸発器であり、凝縮器4で凝
縮された冷媒が下部の受液部13に溜められた後
管19を経て、更に分散管14を介して冷水伝熱
コイル12上に散布されて蒸発する。
In FIG. 1, reference numeral 1 denotes a high-temperature regenerator into which a dilute solution is introduced and heats it; 2 a separator that separates high-temperature steam heated and boiled in the high-temperature regenerator 1 from an intermediate concentrated solution; 3; is a low temperature regenerator,
The intermediate concentrated solution separated in the separator 2 is lowered in temperature by heat exchange with the dilute liquid in the high temperature heat exchanger 8, and then introduced and heated with high temperature steam from the separator 2. 4
is a condenser, into which the refrigerant vapor generated by heating the intermediate concentrated solution from the low-temperature regenerator 3 and the liquid refrigerant condensed by removing heat from the intermediate concentrated solution are introduced, and the cooling water flows through the cooling water coil 11. It is cooled and condensed by water. Reference numeral 5 denotes an evaporator, in which the refrigerant condensed in the condenser 4 is stored in a liquid receiving part 13 at the lower part, passes through a pipe 19, and is further spread over a cold water heat transfer coil 12 via a dispersion pipe 14, where it is evaporated. do.

参照符号6は吸収器で、低温再生器3からの濃
溶液が低温熱交換器7によつて降温された後導入
されてコイル11上に散布され、蒸発器5で蒸発
した冷媒蒸気を吸収し、稀溶液となる。なお、こ
のとき生ずる吸収熱はコイル11内を流れる冷却
水によつて除去される。9は稀溶液を熱交換器
7,8を介して高温再生器1へ送る溶液循環ポン
プ、10は冷房との切替を行なうための冷暖切替
バルブである。
Reference numeral 6 denotes an absorber, in which the concentrated solution from the low-temperature regenerator 3 is cooled down by the low-temperature heat exchanger 7 and then introduced and spread over the coil 11 to absorb the refrigerant vapor evaporated by the evaporator 5. , resulting in a dilute solution. Note that the absorbed heat generated at this time is removed by the cooling water flowing inside the coil 11. 9 is a solution circulation pump that sends the dilute solution to the high temperature regenerator 1 via heat exchangers 7 and 8; 10 is a cooling/heating switching valve for switching between air conditioning and cooling.

15は冷媒貯蔵室であり、連通管20によつて
蒸発器5と同圧力に保持されている。この冷媒貯
蔵室15には凝縮器4で凝縮した冷媒の一部が管
19を通して導かれ、凝縮器4と蒸発器5の圧力
差に依つて貯えられる。この冷媒貯蔵室15内に
は、冷却水温度が高く凝縮器4内の圧力が高い時
は冷媒が貯えられ、圧力が低い場合は貯えられて
いた冷媒を流出させて系内の溶液濃度を調整する
ようになつている。
A refrigerant storage chamber 15 is maintained at the same pressure as the evaporator 5 by a communication pipe 20. A part of the refrigerant condensed in the condenser 4 is introduced into the refrigerant storage chamber 15 through a pipe 19 and is stored therein depending on the pressure difference between the condenser 4 and the evaporator 5. Refrigerant is stored in this refrigerant storage chamber 15 when the cooling water temperature is high and the pressure inside the condenser 4 is high, and when the pressure is low, the stored refrigerant is discharged to adjust the solution concentration in the system. I'm starting to do that.

しかしながら、このような従来の冷凍機にあつ
ては、冷媒貯蔵室15は凝縮器4の圧力が高い時
は冷媒を貯え、凝縮器4内の圧力が低い時は冷媒
を流出させるような構造となつていたため、次の
様な欠点があつた。
However, in such a conventional refrigerator, the refrigerant storage chamber 15 has a structure in which the refrigerant is stored when the pressure in the condenser 4 is high, and the refrigerant is discharged when the pressure in the condenser 4 is low. Because it was old, it had the following drawbacks.

(1) 冷房負荷に応じて冷凍機の入熱量を例えば
High―Low制御するような場合、Low運転時
に凝縮器4の圧力が低下するため冷媒貯蔵室1
5より冷媒が流出してしまい、系内の溶液濃度
を低下させて吸収能力が低下する。
(1) For example, change the heat input of the refrigerator depending on the cooling load.
When performing High-Low control, the pressure in the condenser 4 decreases during Low operation, so the refrigerant storage chamber 1
5, the refrigerant flows out, lowering the solution concentration in the system and reducing the absorption capacity.

(2) 運転を停止した時1と同様に冷媒が流出する
為運転開始時に冷媒を冷媒貯蔵室15に貯えな
ければならず、その分だけON―OFFを繰返し
た場合は効率が悪くなる。即ち部分負荷運転時
の効率が悪くなる。
(2) When the operation is stopped, the refrigerant flows out as in 1, so it is necessary to store the refrigerant in the refrigerant storage chamber 15 when the operation is started, and if the ON-OFF operation is repeated that much, the efficiency will deteriorate. That is, efficiency during partial load operation deteriorates.

本発明はこのような従来の欠点を除去すること
を目的としてなされたものである。
The present invention has been made with the object of eliminating such conventional drawbacks.

以下本発明に係る水―リチウム塩系吸収冷凍機
の一実施例を第2図ないし第4図を参照して詳細
に説明する。なお第2図において第1図と同一部
分には同一符号を附して示してあるのでその部分
の説明は省略する。
An embodiment of the water-lithium salt absorption refrigerator according to the present invention will be described in detail below with reference to FIGS. 2 to 4. Note that in FIG. 2, the same parts as in FIG. 1 are designated by the same reference numerals, so the explanation of those parts will be omitted.

第2図は本発明の一実施例を示す系統図であ
り、第1図に示した従来のものとは次の点で異な
つている。すなわち、冷媒貯蔵室15の下部と凝
縮器4下部の受液部13とが管22によつて直接
接続され、連通管20に代えてオーバーフロー管
21によつて冷媒貯蔵室15の上部と蒸発器5と
が連通されている。このオーバーフロー管21
は、冷媒貯蔵室15に冷媒が一杯になつたとき、
オーバーフローする冷媒を蒸発器5へ流入させる
とともに、冷媒貯蔵室15内の圧力を蒸発器5の
内圧と同圧に保つように機能している。また、冷
媒貯蔵室15の底部は管19を介して蒸発器5の
分散管14部分に連結されているが、この管19
には弁開度が適宜変更される制御弁16が設けら
れている。なお蒸発器5には蒸発器5の温度を検
出する温度センサ18が取着されており、この温
度センサ18からの信号を処理して制御弁16の
弁開度を指示する制御器17が設けられている。
そして、この制御弁16は、蒸発器5の温度が高
いときは閉じる方向へ、逆に蒸発器5の温度が低
いときは開く方向へ制御されることになる。
FIG. 2 is a system diagram showing an embodiment of the present invention, which differs from the conventional system shown in FIG. 1 in the following points. That is, the lower part of the refrigerant storage chamber 15 and the liquid receiving part 13 at the lower part of the condenser 4 are directly connected by the pipe 22, and the upper part of the refrigerant storage chamber 15 and the evaporator are connected by the overflow pipe 21 instead of the communication pipe 20. 5 are in communication. This overflow pipe 21
When the refrigerant storage chamber 15 is full of refrigerant,
It functions to allow overflowing refrigerant to flow into the evaporator 5 and to maintain the pressure within the refrigerant storage chamber 15 at the same pressure as the internal pressure of the evaporator 5. Further, the bottom of the refrigerant storage chamber 15 is connected to the dispersion pipe 14 portion of the evaporator 5 via a pipe 19.
is provided with a control valve 16 whose opening degree is changed as appropriate. A temperature sensor 18 is attached to the evaporator 5 to detect the temperature of the evaporator 5, and a controller 17 is provided to process a signal from the temperature sensor 18 and instruct the valve opening degree of the control valve 16. It is being
The control valve 16 is controlled to close when the temperature of the evaporator 5 is high, and to open when the temperature of the evaporator 5 is low.

次に上記のように構成された本発明の作用を説
明する。
Next, the operation of the present invention configured as described above will be explained.

凝縮器4で凝縮された冷媒は、蒸発器5にオー
バーフロー管21が接続されているため凝縮器4
より低圧の冷媒貯蔵室15に管22を通りその圧
力差及び重力に依つて貯えられる。貯えられた冷
媒は重力に依り管19を通つて蒸発器5に流入
し、冷水伝熱コイル12上に散布され、コイル1
2内を流れる冷水から熱を奪つて蒸発する。とこ
ろで、蒸発器5の温度が低下(例えば冷却水温度
が低下)したような場合は、制御弁16の弁開度
が広がり冷媒の流入量が増加する。従つて冷媒貯
蔵室15内の冷媒液面は低下する。逆の場合例え
ば冷却水温度が高い場合制御弁16の弁開度が狭
くなり冷媒の流入量は減少し、従つて冷媒液面は
上昇する。即ち蒸発器5の温度に依つて制御弁1
6の開度を比例的に変化させるようにすることに
依り、流路抵抗に相応して液ヘツドが変化するか
ら冷媒貯蔵室15の液面位置を任意に設定でき、
これにより系内の溶液濃度が所望の値に調整され
る。
The refrigerant condensed in the condenser 4 is transferred to the condenser 4 because the overflow pipe 21 is connected to the evaporator 5.
The refrigerant is stored in the lower pressure refrigerant storage chamber 15 through the pipe 22 depending on the pressure difference and gravity. The stored refrigerant flows into the evaporator 5 through the pipe 19 by gravity, and is spread over the cold water heat transfer coil 12.
It removes heat from the cold water flowing through it and evaporates. By the way, when the temperature of the evaporator 5 decreases (for example, the cooling water temperature decreases), the valve opening of the control valve 16 widens and the amount of refrigerant flowing in increases. Therefore, the refrigerant liquid level in the refrigerant storage chamber 15 decreases. In the opposite case, for example, when the cooling water temperature is high, the opening degree of the control valve 16 is narrowed, the amount of refrigerant flowing in decreases, and the refrigerant liquid level rises. That is, depending on the temperature of the evaporator 5, the control valve 1
By proportionally changing the opening degree of the refrigerant storage chamber 15, the liquid head changes in accordance with the flow path resistance, so the liquid level position in the refrigerant storage chamber 15 can be set arbitrarily.
This adjusts the solution concentration within the system to a desired value.

次に、冷凍機の運転を停止した時は、蒸発器5
の温度が上昇することに依り制御弁16は閉とな
る。従つて冷媒貯蔵室15内の冷媒は流出しな
い。冷凍機の運転を開始した場合は蒸発器5の温
度が低下すると制御弁16が開となり、蒸発器5
に冷媒貯蔵室15の冷媒が流入する。又蒸発器5
の温度が高く制御弁16が閉となつたままである
と冷媒貯蔵室15内の冷媒は一杯となるが、オー
バーフロー管21を通して蒸発器5に冷媒が流れ
ることに依り系内の濃度は一定値以上は上昇しな
い。
Next, when the refrigerator operation is stopped, the evaporator 5
As the temperature increases, the control valve 16 closes. Therefore, the refrigerant in the refrigerant storage chamber 15 does not flow out. When the refrigerator starts operating, the control valve 16 opens when the temperature of the evaporator 5 decreases, and the evaporator 5
The refrigerant in the refrigerant storage chamber 15 flows into the refrigerant storage chamber 15 . Also evaporator 5
If the temperature of the refrigerant is high and the control valve 16 remains closed, the refrigerant in the refrigerant storage chamber 15 will be full, but as the refrigerant flows into the evaporator 5 through the overflow pipe 21, the concentration in the system will exceed a certain value. does not rise.

第3図は温度センサ18により検出した蒸発器
5の温度と制御弁16の弁開度との関係の一例を
示したもので、2℃で全開、6℃で全閉となる。
FIG. 3 shows an example of the relationship between the temperature of the evaporator 5 detected by the temperature sensor 18 and the valve opening degree of the control valve 16, which is fully open at 2°C and fully closed at 6°C.

第4図は制御弁16を通る冷媒流量と冷媒貯蔵
室15内の冷媒液面高さの関係を制御弁16の弁
開度(蒸発器温度)をパラメータとして示したも
のである。
FIG. 4 shows the relationship between the flow rate of refrigerant passing through the control valve 16 and the height of the refrigerant liquid level in the refrigerant storage chamber 15, using the valve opening degree of the control valve 16 (evaporator temperature) as a parameter.

制御弁16の冷媒流量は入熱量に比例する。従
つてHigh入熱運転時には冷媒貯蔵室15内の液
面は、蒸発器温度に依つてa線との交点で示され
る値となる。一方Low入熱量運転時には、制御弁
16の冷媒流量が低下し、同一蒸発器温度では冷
媒貯蔵室15の冷媒液面は低下し、b線との交点
で示される値となる。しかし第3図に示す制御温
度範囲を適正なものにすれば、冷媒液面低下に依
つて吸収溶液濃度が下がり蒸発器温度が上昇する
ことに依り弁開度が閉じる方向に変化するので常
に設定された蒸発器温度となり、無効冷媒が生ず
ることがない。
The refrigerant flow rate of the control valve 16 is proportional to the amount of heat input. Therefore, during high heat input operation, the liquid level in the refrigerant storage chamber 15 takes a value indicated by the intersection with line a depending on the evaporator temperature. On the other hand, during low heat input operation, the refrigerant flow rate of the control valve 16 decreases, and at the same evaporator temperature, the refrigerant liquid level in the refrigerant storage chamber 15 decreases to a value indicated by the intersection with line b. However, if the control temperature range shown in Figure 3 is set appropriately, the concentration of the absorption solution decreases as the refrigerant liquid level decreases, and as the evaporator temperature increases, the valve opening changes in the direction of closing, so it is always set. The evaporator temperature is maintained at a constant temperature, and there is no generation of ineffective refrigerant.

以上説明してきたように、この発明によれば次
の様な効果が得られる。
As explained above, according to the present invention, the following effects can be obtained.

(1) 冷却水温度の低下とともに系内の溶液濃度が
低下する為、蒸発器5の温度が極端に低下せ
ず、低冷却水温度においても冷媒の凍結が防止
できる。
(1) Since the solution concentration in the system decreases as the cooling water temperature decreases, the temperature of the evaporator 5 does not drop excessively, and freezing of the refrigerant can be prevented even at low cooling water temperatures.

(2) 冷房負荷に応じて入熱量をHigh―Low制御
する場合、Low入熱量運転時には冷媒を冷媒貯
蔵室15に貯えるので、従来のように溶液濃度
が低下しすぎて効率が下ることがない。
(2) When high-low heat input is controlled according to the cooling load, the refrigerant is stored in the refrigerant storage chamber 15 during low heat input operation, so the solution concentration will not drop too much and efficiency will not drop as in the past. .

(3) 蒸発器温度を常に一定温度になるように制御
することにより、吸収能力の不足に依つて生ず
る無効冷媒が減少し効率が上昇する。
(3) By controlling the evaporator temperature to always maintain a constant temperature, the amount of ineffective refrigerant caused by insufficient absorption capacity is reduced and efficiency is increased.

(4) 運転停止時に制御弁16が閉成されることに
より、冷媒貯蔵室15内の冷媒が流出せず、
ON―OFF運転時即ち低負荷時の総合効率が上
昇する。
(4) By closing the control valve 16 when the operation is stopped, the refrigerant in the refrigerant storage chamber 15 does not flow out.
The overall efficiency increases during ON-OFF operation, that is, at low loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の水―リチウム塩系吸収冷凍機
を示す系統図、第2図は本発明に係る水―リチウ
ム塩系吸収冷凍機の一実施例を示す系統図、第3
図は制御弁の開度と蒸発器温度の関係を示す特性
図、第4図は蒸発器温度をパラメータとした冷媒
貯蔵室液面高さと冷媒流量との関係を示す特性図
である。 1…高温再生器、2…分離器、3…低温再生
器、4…凝縮器、5…蒸発器、6…吸収器、7…
低温熱交換器、8…高温熱交換器、9…溶液循環
ポンプ、10…冷暖切換弁、11…冷却水コイ
ル、12…冷温水コイル、13…受液部、14…
分散管、15…冷媒貯蔵室、16…制御弁、17
…制御器、18…温度センサ、19…冷媒を通す
為の管、21…冷媒のオーバーフロー管。
FIG. 1 is a system diagram showing a conventional water-lithium salt absorption refrigerator, FIG. 2 is a system diagram showing an embodiment of the water-lithium salt absorption refrigerator according to the present invention, and FIG.
4 is a characteristic diagram showing the relationship between the opening degree of the control valve and the evaporator temperature, and FIG. 4 is a characteristic diagram showing the relationship between the liquid level height in the refrigerant storage chamber and the refrigerant flow rate using the evaporator temperature as a parameter. 1... High temperature regenerator, 2... Separator, 3... Low temperature regenerator, 4... Condenser, 5... Evaporator, 6... Absorber, 7...
Low-temperature heat exchanger, 8... High-temperature heat exchanger, 9... Solution circulation pump, 10... Cooling/heating switching valve, 11... Cooling water coil, 12... Cold/hot water coil, 13... Liquid receiving section, 14...
Dispersion pipe, 15... Refrigerant storage chamber, 16... Control valve, 17
... Controller, 18 ... Temperature sensor, 19 ... Pipe for passing refrigerant, 21 ... Refrigerant overflow pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 リチウム塩溶液に冷媒を吸収させた稀溶液を
加熱する高温再生器と、この高温再生器からの冷
媒蒸気と中間濃溶液とを分離する分離器と、この
分離器で分離された中間濃溶液を降温した後前記
分離器からの冷媒蒸気で加熱する低温再生器と、
この低温再生器からの冷媒を凝縮する凝縮器と、
この凝縮器で凝縮された液体冷媒を蒸発させる蒸
発器と、この蒸発器で蒸発した冷媒を前記低温再
生器からの濃溶液に吸収させる吸収器とを備え、
これらが循環系を形成している水―リチウム塩系
吸収冷凍機において、前記凝縮器に連結されこの
凝縮器で凝縮された冷媒を貯蔵する冷媒貯蔵室
と、この冷媒貯蔵室の上部と前記蒸発器とを連通
するオーバーフロー管と、前記冷媒貯蔵室の底部
と前記蒸発器とを弁開度を適宜変更できる制御弁
を介して連結する連結管と、前記制御弁の弁開度
を前記凝縮器又は蒸発器の温度に応じて制御する
制御器とを具備することを特徴とする水―リチウ
ム塩系吸収冷凍機。
1. A high-temperature regenerator that heats a dilute solution obtained by absorbing a refrigerant into a lithium salt solution, a separator that separates the refrigerant vapor from this high-temperature regenerator and an intermediate concentrated solution, and the intermediate concentrated solution separated by this separator. a low-temperature regenerator for heating with refrigerant vapor from the separator after lowering the temperature;
a condenser that condenses refrigerant from the low-temperature regenerator;
an evaporator that evaporates the liquid refrigerant condensed in the condenser; and an absorber that absorbs the refrigerant evaporated in the evaporator into the concentrated solution from the low-temperature regenerator;
In a water-lithium salt absorption refrigerator in which these components form a circulation system, there is a refrigerant storage chamber that is connected to the condenser and stores the refrigerant condensed in the condenser, and an upper part of the refrigerant storage chamber and the evaporator. a connecting pipe that connects the bottom of the refrigerant storage chamber and the evaporator via a control valve that can appropriately change the valve opening of the control valve; or a controller for controlling the temperature of the evaporator according to the temperature of the evaporator.
JP4315183A 1983-03-17 1983-03-17 Water-lithium salt group absorption refrigerator Granted JPS59170665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4315183A JPS59170665A (en) 1983-03-17 1983-03-17 Water-lithium salt group absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4315183A JPS59170665A (en) 1983-03-17 1983-03-17 Water-lithium salt group absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS59170665A JPS59170665A (en) 1984-09-26
JPS6223229B2 true JPS6223229B2 (en) 1987-05-21

Family

ID=12655836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4315183A Granted JPS59170665A (en) 1983-03-17 1983-03-17 Water-lithium salt group absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS59170665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647282U (en) * 1992-12-09 1994-06-28 本田技研工業株式会社 Work transfer jig

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647282U (en) * 1992-12-09 1994-06-28 本田技研工業株式会社 Work transfer jig

Also Published As

Publication number Publication date
JPS59170665A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
JP2000018762A (en) Absorption refrigerating machine
JPS6223229B2 (en)
JP3363518B2 (en) Operation control method of single double effect absorption refrigerator
JP3813348B2 (en) Absorption refrigerator
JP2858922B2 (en) Absorption chiller / heater controller
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JP2883372B2 (en) Absorption chiller / heater
JP2816790B2 (en) Absorption chiller / heater
JP4201418B2 (en) Control method of absorption chiller / heater
JPS6135890Y2 (en)
JP3234938B2 (en) Absorption chiller / heater and control method
JP4278315B2 (en) Absorption refrigerator
JPS6311570Y2 (en)
JPS6135900Y2 (en)
JPS5921957A (en) Absorption cold and hot water machine
JPS5838936Y2 (en) Water-lithium salt absorption refrigerator
JPS6117319Y2 (en)
JPS5818139Y2 (en) Double effect absorption chiller
JP2654009B2 (en) Absorption refrigerator
JPH07324839A (en) Single and double effect absorption hot and chilled water generator
JP2858921B2 (en) Control device for absorption refrigerator
JPS6215736Y2 (en)
JPH0419406Y2 (en)
JPS6115986B2 (en)
JPH0868572A (en) Dual-effect absorption refrigerator