JPH0419406Y2 - - Google Patents

Info

Publication number
JPH0419406Y2
JPH0419406Y2 JP1984105380U JP10538084U JPH0419406Y2 JP H0419406 Y2 JPH0419406 Y2 JP H0419406Y2 JP 1984105380 U JP1984105380 U JP 1984105380U JP 10538084 U JP10538084 U JP 10538084U JP H0419406 Y2 JPH0419406 Y2 JP H0419406Y2
Authority
JP
Japan
Prior art keywords
temperature
concentrated solution
heat exchanger
low
temperature heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984105380U
Other languages
Japanese (ja)
Other versions
JPS6121256U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10538084U priority Critical patent/JPS6121256U/en
Publication of JPS6121256U publication Critical patent/JPS6121256U/en
Application granted granted Critical
Publication of JPH0419406Y2 publication Critical patent/JPH0419406Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は吸収式冷凍機に関するものである。[Detailed explanation of the idea] [Industrial application field] This invention relates to an absorption refrigerator.

〔従来の技術〕[Conventional technology]

この種の吸収式冷凍機は、第3図に示すよう
に、稀溶液が導入されてこれを加熱する高温再生
器1と、高温再生器1で加熱され沸騰した高温の
稀溶液を揚液管2を介して取り込み、高温の水蒸
気と中間濃溶液とに分離する分離器3と、分離器
3で分離された中間濃溶液を中間液降り管4を介
して高温熱交換器5に導き、この高温熱交換器5
においてその中間濃溶液を稀溶液と熱交換させる
ことによつて降温させ、その降温された中間濃溶
液を中間液上り管6を介して導入し、この導入さ
れた中間濃溶液を分離器3からの高温蒸気が蒸気
管を通ることによつて加熱する低温再生器8と、
低温再生器8において中間濃溶液が加熱されるこ
とによつて生じた冷媒蒸気と中間濃溶液に熱を奪
われて凝縮した蒸気管7の液体冷媒とが導入さ
れ、これらを冷却水コイル9内を流れる冷却水に
よつて冷却して凝縮する凝縮器10と、凝縮器1
0で凝縮された冷媒が下部の受液部11に溜めら
れた後、冷媒液流の管12を介して冷媒滴下器1
3に導かれ、冷媒滴下器13によつて冷水コイル
14上に散布させて蒸発をさせる蒸発器15と、
低温再生器8からの濃溶液を濃溶液降り連結管1
6を介して低温熱交換器17に導き、該熱交換器
17によつてこれを降温させ、その降温させた濃
溶液を濃溶液流入管18を介して導入して冷却水
コイル9上に散布させ、蒸発器15で蒸発した冷
媒蒸気を吸収し、稀溶液とすると共に、吸収する
際に発生する吸収熱を冷却水コイル9内を流れる
冷却水によつて除去させる吸収器19と、該吸収
器19における稀溶液を、熱交換器17,5を有
する稀溶液管20を介して、高温再生器1へ送る
溶液循環ポンプ21と、冷媒滴下器13における
冷媒温度を検出する温度検出器30と、該温度検
出器30からの検出信号を設定温度値と比較し制
御信号を形成する制御装置31と、この制御装置
31からの制御信号により開閉する冷媒電磁弁3
2を設けたバイパス管33とを備え、前記バイパ
ス管33を冷媒流入管12と濃溶液流入管18と
の間に接続して構成されている。
As shown in Figure 3, this type of absorption refrigerator consists of a high-temperature regenerator 1 into which a dilute solution is introduced and heated, and a pump tube that pumps the high-temperature dilute solution heated and boiled in the high-temperature regenerator 1. The intermediate concentrated solution separated by the separator 3 is led to the high temperature heat exchanger 5 through the intermediate downcomer pipe 4, and High temperature heat exchanger 5
The temperature of the intermediate concentrated solution is lowered by heat exchange with the dilute solution, and the lowered temperature of the intermediate concentrated solution is introduced via the intermediate liquid rising pipe 6, and the introduced intermediate concentrated solution is passed from the separator 3. a low-temperature regenerator 8 that heats the high-temperature steam by passing through a steam pipe;
The refrigerant vapor generated by heating the intermediate concentrated solution in the low-temperature regenerator 8 and the liquid refrigerant in the steam pipe 7 that has been condensed by taking heat from the intermediate concentrated solution are introduced, and are transferred into the cooling water coil 9. a condenser 10 that is cooled and condensed by cooling water flowing through the condenser 1;
After the refrigerant condensed at
an evaporator 15 that is guided by a refrigerant dripper 13 and distributed over a chilled water coil 14 for evaporation;
Connecting pipe 1 for dropping the concentrated solution from the low-temperature regenerator 8
6 to a low-temperature heat exchanger 17, the heat exchanger 17 lowers the temperature of the concentrated solution, and the cooled concentrated solution is introduced through a concentrated solution inlet pipe 18 and sprayed onto the cooling water coil 9. an absorber 19 which absorbs the refrigerant vapor evaporated in the evaporator 15 to form a dilute solution and removes the absorption heat generated during absorption by the cooling water flowing in the cooling water coil 9; A solution circulation pump 21 that sends the dilute solution in the container 19 to the high temperature regenerator 1 via a dilute solution pipe 20 having heat exchangers 17 and 5, and a temperature detector 30 that detects the refrigerant temperature in the refrigerant dripper 13. , a control device 31 that compares the detection signal from the temperature detector 30 with a set temperature value to form a control signal, and a refrigerant solenoid valve 3 that opens and closes according to the control signal from the control device 31.
2, and the bypass pipe 33 is connected between the refrigerant inflow pipe 12 and the concentrated solution inflow pipe 18.

このような吸収式冷凍機によれば、低い冷却水
温度にて冷房運転を行なう場合に、蒸発器15の
上部に設けられた冷媒温度を温度検出器30にて
検出し、この検出された信号を冷媒が凍結状態に
なる温度よりもやや高い温度に設定された設定温
度値とを制御装置31で比較し、その結果より得
た制御信号で、濃溶液流入管18と冷媒流入管1
2とを連結するバイパス管33に設けられた冷媒
電極弁32を“開”状態とし、冷媒流入管12に
濃溶液を流入させ、冷媒と濃溶液との混合によつ
て生ずる稀釈熱、及び冷媒の蒸発温度の低下、等
により低い蒸気圧における冷媒の凍結を防止して
いる。
According to such an absorption refrigerator, when performing cooling operation at a low cooling water temperature, the temperature of the refrigerant provided at the upper part of the evaporator 15 is detected by the temperature detector 30, and this detected signal is detected. The control device 31 compares this with a set temperature value set at a temperature slightly higher than the temperature at which the refrigerant freezes, and a control signal obtained from the result is used to control the concentration solution inflow pipe 18 and the refrigerant inflow pipe 1.
The refrigerant electrode valve 32 provided in the bypass pipe 33 that connects the refrigerant and the refrigerant is set to the "open" state, and the concentrated solution is allowed to flow into the refrigerant inflow pipe 12, and the dilution heat generated by mixing the refrigerant and the concentrated solution and the refrigerant The freezing of the refrigerant at low vapor pressure is prevented by lowering the evaporation temperature of the refrigerant.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、このような従来の技術にあつて
は、冷媒の凍結温度を下げる、換言すれば冷媒の
蒸発圧力を下げるために冷媒液に濃溶液を流入さ
せて冷媒液を溶液混合冷媒液とするのであるが、
この溶液混合冷媒液を蒸発器15の表面で蒸発さ
せながら流下させると、この溶液混合冷媒液の冷
媒液分が優先されて蒸発してしまうことになる。
このため、蒸発現象が進むにつれて、この溶液混
合冷媒液中の溶液濃度は徐々に上昇して滴下初期
時よりも蒸発圧力が下がり、同蒸発器15の雰囲
気での蒸気圧では蒸発が不可能となる。
However, in such conventional technology, in order to lower the freezing temperature of the refrigerant, in other words, to lower the evaporation pressure of the refrigerant, a concentrated solution is flowed into the refrigerant liquid to form a solution-mixed refrigerant liquid. Yes, but
If this solution mixed refrigerant liquid is allowed to flow down while being evaporated on the surface of the evaporator 15, the refrigerant liquid portion of this solution mixed refrigerant liquid will be prioritized and evaporated.
Therefore, as the evaporation phenomenon progresses, the solution concentration in the mixed refrigerant solution gradually increases, and the evaporation pressure decreases compared to the initial stage of dropping, and evaporation becomes impossible with the vapor pressure in the atmosphere of the evaporator 15. Become.

つまり、十分に溶液混合冷媒液を蒸発させよう
とすると、滴下時の溶液混合冷媒の溶液濃度を下
げる必要があるものの、蒸発温度が上昇するた
め、凍結現象を生じやすくする。また、これとは
逆に、凍結防止に重点をおくと、溶液混合冷媒の
十分な蒸発が不可となる。
In other words, in order to sufficiently evaporate the solution-mixed refrigerant liquid, although it is necessary to lower the solution concentration of the solution-mixed refrigerant at the time of dropping, the evaporation temperature increases, making the freezing phenomenon more likely to occur. Conversely, if emphasis is placed on preventing freezing, sufficient evaporation of the solution-mixed refrigerant becomes impossible.

したがつて、混合度合は、この蒸発による凍結
能力と、凍結を防止するという観点より決定しな
ければならず、従来の技術では双方の条件を満足
させることができないという問題点があつた。
Therefore, the degree of mixing must be determined from the viewpoints of freezing ability due to evaporation and prevention of freezing, and there has been a problem in that conventional techniques cannot satisfy both conditions.

この考案は上述した点に鑑みてなされたもの
で、凍結を防止すると共に、通常の冷却水温度と
同時の冷凍能力を発揮できる吸収式冷凍機を提供
することを目的とするものである。
This invention was made in view of the above points, and the purpose is to provide an absorption refrigerator that can prevent freezing and exhibit a refrigerating capacity at the same time as the normal cooling water temperature.

〔問題点を解決する課題〕[Tasks to solve problems]

この考案は、稀溶液を加熱する高温再生器と、
該高温再生器からの高温稀溶液を高温の水蒸気と
中間濃溶液に分離する分離器と、該分離器からの
中間濃溶液と高温再生器に導入される稀溶液とを
熱交換させる高温熱交換器と、該高温熱交換器か
らの中間濃溶液を該分離器からの高温蒸気で加熱
して蒸気と高温濃溶液とにする低温再生器と、該
低温再生器で高温蒸気によつて加熱された蒸気と
該加熱に用いられた蒸気とを導入してこれらを冷
却することにより液冷媒とする凝縮器と、該低温
再生器からの高温濃溶液と高温再生器に導入する
稀溶液とを熱交換させる低温熱交換器と、該凝縮
器からの液冷媒を蒸発させる蒸発器と、該蒸発器
で蒸発した蒸気冷媒を低温熱交換器を介して導入
した濃溶液に吸収させて稀溶液とする吸収器と、
該吸収器からの稀溶液を高温熱交換器及び低温熱
交換器を介して高温再生器に送出する溶液循環ポ
ンプとを備えてなる吸収式冷凍機において、前記
高温熱交換器および/または前記低温熱交換器へ
導入される前記中間濃溶液または前記高温濃溶液
を前記高温熱交換器および/または前記低温熱交
換器からバイパスさせるため、前記吸収器及び蒸
発器のうちのすくなくとも一方の圧力及び温度の
いずれかを検出し、この検出信号が所定の設定値
を超えたか否かに応じて開閉制御信号を生成する
検出制御手段を設けると共に、前記高温熱交換器
または前記低温熱交換器への前記中間濃溶液また
は前記高温濃溶液の導入側と前記低温熱交換器か
らの前記濃溶液の導出側とにそれぞれ連通するバ
イパス管とを設け、該バイパス管に前記開閉制御
信号によつて作動可能な電磁弁を配設したことを
特徴とする。
This idea consists of a high-temperature regenerator that heats the dilute solution,
a separator that separates the high-temperature dilute solution from the high-temperature regenerator into high-temperature steam and an intermediate concentrated solution; and a high-temperature heat exchanger that exchanges heat between the intermediate concentrated solution from the separator and the dilute solution introduced into the high-temperature regenerator. a low-temperature regenerator that heats an intermediate concentrated solution from the high-temperature heat exchanger with high-temperature steam from the separator to produce steam and a high-temperature concentrated solution; A condenser that cools the steam and the steam used for heating and converts it into a liquid refrigerant, and a high-temperature concentrated solution from the low-temperature regenerator and a dilute solution introduced into the high-temperature regenerator. A low-temperature heat exchanger for exchanging liquid refrigerant, an evaporator for evaporating the liquid refrigerant from the condenser, and the vapor refrigerant evaporated by the evaporator being absorbed into a concentrated solution introduced through the low-temperature heat exchanger to form a dilute solution. an absorber;
In an absorption refrigerator comprising a solution circulation pump that sends a dilute solution from the absorber to a high temperature regenerator via a high temperature heat exchanger and a low temperature heat exchanger, the high temperature heat exchanger and/or the low temperature the pressure and temperature of at least one of the absorber and the evaporator in order to bypass the intermediate concentrated solution or the hot concentrated solution introduced into the heat exchanger from the high temperature heat exchanger and/or the low temperature heat exchanger; A detection control means is provided for detecting either of the above and generating an opening/closing control signal depending on whether or not this detection signal exceeds a predetermined set value. A bypass pipe is provided which communicates with the inlet side of the intermediate concentrated solution or the high temperature concentrated solution and the outlet side of the concentrated solution from the low temperature heat exchanger, and the bypass pipe is operable by the opening/closing control signal. It is characterized by being equipped with a solenoid valve.

前記バイパス管を、前記低温熱交換器への前記
高温濃溶液の導入側と前記低温熱交換器からの前
記濃溶液の導出側とにそれぞれ連通させて設ける
か、あるいは前記バイパス管を、前記高温熱交換
器への前記中間濃溶液の導入側と前記低温熱交換
器からの前記濃溶液の導出側とにそれぞれ連通さ
せて設けることが望ましい。
The bypass pipe is provided in communication with the introduction side of the high temperature concentrated solution to the low temperature heat exchanger and the outlet side of the high temperature concentrated solution from the low temperature heat exchanger, or the bypass pipe is connected to the high temperature It is desirable that the intermediate concentrated solution be provided in communication with the introduction side of the intermediate concentrated solution into the high temperature heat exchanger and the output side of the concentrated solution from the low temperature heat exchanger.

〔作用〕[Effect]

冷房運転において低い冷却水温になつた場合、
冷媒の温度、又は吸収器、蒸発器の圧力を検出制
御手段で検出し、その検出信号を冷媒の凍結する
温度よりやや高めに設定した設定値と比較してこ
れを超えたときに開制御信号を前記検出制御手段
で生成する。該検出制御手段からの開制御手段で
開となる電磁弁が設けられたバイパス管により低
温熱交換がバイパスされ、熱交換されない濃溶液
が熱交換された濃溶液中に流入する。すると、吸
収器に供給される濃溶液の温度は熱交換前の濃溶
液の流入分だけ昇温されるため、吸収器に供給さ
れても凍結することはない。
If the cooling water temperature becomes low during cooling operation,
The temperature of the refrigerant or the pressure of the absorber or evaporator is detected by the detection control means, and the detection signal is compared with a set value set slightly higher than the freezing temperature of the refrigerant, and when the temperature exceeds this, an open control signal is generated. is generated by the detection control means. The low-temperature heat exchange is bypassed by a bypass pipe provided with a solenoid valve that is opened by the opening control means from the detection control means, and the concentrated solution that is not subjected to heat exchange flows into the concentrated solution that has undergone heat exchange. Then, the temperature of the concentrated solution supplied to the absorber is increased by the amount of inflow of the concentrated solution before heat exchange, so that it will not freeze even if it is supplied to the absorber.

上記の説明では、バイパス管は低温熱交換器を
バイパスする部分に接続したものであつたが、も
ちろん両方の熱交換器をバイパスする部分であつ
てもよい。
In the above description, the bypass pipe is connected to a part that bypasses the low-temperature heat exchanger, but of course it may be a part that bypasses both heat exchangers.

〔実施例〕〔Example〕

以下、この考案を図面に基づいて説明する。第
1図は、この考案の第1実施例を示す構成図であ
る。第1図において、第2図に示す構成の部剤と
同一のものには同一の符号を付し、構成等の説明
を省略する。
This invention will be explained below based on the drawings. FIG. 1 is a block diagram showing a first embodiment of this invention. In FIG. 1, the same components as those shown in FIG. 2 are denoted by the same reference numerals, and explanations of the structure and the like will be omitted.

第1図に示す構成が第3図の構成と異なるとこ
ろは、冷媒電磁弁32及びこの冷媒電磁弁32を
設けたバイパス管33を無くし、かつ低温再生器
8で濃縮された濃溶液を低温熱交換器17へ導び
く濃溶液−熱交換連結管16と、低温熱交換器1
7から熱交換した濃溶液を吸収器19へ導びく濃
溶液流入管18とを連結するバイパス管41を設
けると共に、このバイパス管41の途中に、温度
検出器30にて検出される検出温度信号を制御装
置31に取り込み該制御装置31からの開閉制御
信号によつて開閉をする濃溶液電磁弁42を設け
た点にある。尚、検出制御手段は、検出器30と
制御装置31とから構成されている。
The configuration shown in FIG. 1 differs from the configuration shown in FIG. 3 by eliminating the refrigerant solenoid valve 32 and the bypass pipe 33 provided with the refrigerant solenoid valve 32, and by converting the concentrated solution concentrated in the low-temperature regenerator 8 to low-temperature heat. Concentrated solution-heat exchange connecting pipe 16 leading to exchanger 17 and low temperature heat exchanger 1
A bypass pipe 41 is provided that connects the concentrated solution inflow pipe 18 that guides the heat-exchanged concentrated solution from the absorber 19 to the absorber 19. A concentrated solution electromagnetic valve 42 is provided which is inputted into the control device 31 and opened and closed by an opening/closing control signal from the control device 31. Note that the detection control means is composed of a detector 30 and a control device 31.

上述のように構成された実施例の製作を説明す
る。
The fabrication of the embodiment configured as described above will be explained.

冷房運転において低い冷却水温になつた場合、
蒸発器15の上部に設けられた冷媒滴下器13の
冷媒温度を温度検出器30にて検出する。この検
出器30より検出された検出信号は、該制御装置
31に取り込まれ、冷媒が凍結状態になる温度よ
りもやや高い温度に設定された設定値と比較され
る。検出信号が設定値と同じか、これ以下になる
と、該制御装置31より開放のための制御信号が
出力されて、濃溶液バイパス管41に設けられた
濃溶液電磁弁42を“開”状態とし、熱交換前の
温度の高い濃溶液を熱交換後の温度の低い濃溶液
に流入させる。
If the cooling water temperature becomes low during cooling operation,
A temperature detector 30 detects the temperature of the refrigerant in the refrigerant dripper 13 provided above the evaporator 15 . The detection signal detected by the detector 30 is taken into the control device 31 and compared with a set value set at a temperature slightly higher than the temperature at which the refrigerant becomes frozen. When the detection signal is equal to or less than the set value, the control device 31 outputs a control signal for opening, and the concentrated solution solenoid valve 42 provided in the concentrated solution bypass pipe 41 is set to the "open" state. , the high temperature concentrated solution before heat exchange is allowed to flow into the low temperature concentrated solution after heat exchange.

すると、吸収器19へ供給される濃溶液の温度
は熱交換前の濃溶液の流入分だけ昇温されるた
め、吸収器19に滴下されて冷却されても、従来
のように凍結温度までにはいたらないことにな
る。したがつて、この濃溶液の蒸気圧は、濃溶液
を、この考案のごとくバイパスさせず熱交換器1
7で熱交換させた濃溶液の蒸気圧よりも高くな
る。したがつて、蒸発器15の蒸気圧は、冷媒の
凍結温度より低下することはなくなり冷媒の凍結
防止が可能となる。
Then, the temperature of the concentrated solution supplied to the absorber 19 is increased by the amount of inflow of the concentrated solution before heat exchange, so even if it is dropped into the absorber 19 and cooled, it will not reach the freezing temperature as in the conventional case. It becomes unnecessary. Therefore, the vapor pressure of this concentrated solution is such that the concentrated solution does not bypass the heat exchanger 1 as in this invention.
It becomes higher than the vapor pressure of the concentrated solution heat exchanged in step 7. Therefore, the vapor pressure of the evaporator 15 will not drop below the freezing temperature of the refrigerant, making it possible to prevent the refrigerant from freezing.

第2図は、この考案の第2実施例を示す構成図
である。
FIG. 2 is a block diagram showing a second embodiment of this invention.

第2図においても、第1図の構成要素と同一の
ものには同一の符号を付し、説明を省略する。
In FIG. 2, the same components as those in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted.

第2図の第2実施例が第1実施例と異なる点
は、電磁弁42を設けたバイパス管41を中間液
降り管4と濃溶液流入管18との間に接続した点
にある。
The second embodiment shown in FIG. 2 differs from the first embodiment in that a bypass pipe 41 provided with an electromagnetic valve 42 is connected between the intermediate liquid down pipe 4 and the concentrated solution inflow pipe 18.

このように構成しても第1実施例と同様の作用
効果を発することにある。
Even with this configuration, the same effects as in the first embodiment can be obtained.

尚、第1実施例及び第2実施例とも、温度検出
器30は、吸収器19に流入する濃溶液温度等、
吸収器や蒸発器の圧力が下がつたことを検知でき
る部分であれば、設置場所は問わない。
In both the first and second embodiments, the temperature detector 30 measures the temperature of the concentrated solution flowing into the absorber 19, etc.
The installation location does not matter as long as it can detect when the pressure of the absorber or evaporator has decreased.

また、上記各実施例とも温度により圧力低下を
検出したが、圧力を直接検知するものであつても
よい。
Further, in each of the above embodiments, the pressure drop was detected by temperature, but the pressure may be directly detected.

〔考案の効果〕[Effect of idea]

以上説明してきたように、この考案によれば、
凝縮器で得られた冷媒液を全て蒸発器にて蒸発さ
せることができるため、十分な冷凍能力が得られ
ると共に、冷媒の凍結防止が確実にできる。
As explained above, according to this idea,
Since all of the refrigerant liquid obtained in the condenser can be evaporated in the evaporator, sufficient refrigerating capacity can be obtained and the refrigerant can be reliably prevented from freezing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の第1実施例を示す構成図、
第2図はこの考案の第2実施例を示す構成図、第
3図は従来の技術を示す構成図である。 1……高温再生器、2……揚液管、3……分離
器、4……中間液降り管、5……高温熱交換器、
6……中間液上り管、7……蒸発管、8……低温
再生器、10……凝縮器、12……冷媒流入管、
13……冷媒滴下器、15……蒸発器、16……
濃溶液−熱交換器凍結管、17……低温熱交換
器、18……濃溶液流入管、19……吸収器、2
0……稀溶液管、30……温度検出器、31……
制御装置、41……バイパス管、42……電磁
弁。
FIG. 1 is a configuration diagram showing the first embodiment of this invention.
FIG. 2 is a block diagram showing a second embodiment of this invention, and FIG. 3 is a block diagram showing a conventional technique. 1... High temperature regenerator, 2... Lifting liquid pipe, 3... Separator, 4... Intermediate liquid downfall pipe, 5... High temperature heat exchanger,
6... Intermediate liquid up pipe, 7... Evaporation pipe, 8... Low temperature regenerator, 10... Condenser, 12... Refrigerant inflow pipe,
13... Refrigerant dripper, 15... Evaporator, 16...
Concentrated solution-heat exchanger freezing tube, 17... Low temperature heat exchanger, 18... Concentrated solution inflow tube, 19... Absorber, 2
0... Dilute solution tube, 30... Temperature detector, 31...
Control device, 41... Bypass pipe, 42... Solenoid valve.

Claims (1)

【実用新案登録請求の範囲】 (1) 稀溶液を加熱する高温再生器と、該高温再生
器からの高温稀溶液を高温の水蒸気と中間濃溶
液とに分離する分離器と、該分離器からの中間
濃溶液と高温再生器に導入される稀溶液とを熱
交換させる高温熱交換器と、該高温熱交換器か
らの中間濃溶液を該分離器からの高温蒸気で加
熱して蒸気と高温濃溶液とにする低温再生器
と、該低温再生器で高温蒸気によつて加熱され
た蒸気と該加熱の用いられた蒸気とを導入して
これらを冷却することにより液冷媒とする凝縮
器と、該低温再生器からの高温濃溶液と高温再
生器に導入する稀溶液とを熱交換させる低温熱
交換器と、該凝縮器からの液冷媒を蒸発させる
蒸発器と、該蒸発器で蒸発した蒸気冷媒を低温
熱交換器を介して導入した濃溶液に吸収させて
稀溶液とする吸収器と、該吸収器からの稀溶液
を低温熱交換器及び高温熱交換器を介して高温
再生器に送出する溶液再循環ポンプとを備えて
なる吸収式冷凍機において、前記高温熱交換器
および/または前記低温熱交換器へ導入される
前記中間濃溶液または前記高温濃溶液を前記高
温熱交換器および/または前記低温熱交換器か
らバイパスさせるため、前記吸収器及び蒸発器
のうちすくなくとも一方の圧力及び温度のいず
れかを検出し、この検出信号が所定の設定値を
超えたか否かに応じて開閉制御信号を生成する
検出制御手段と、前記高温熱交換器または前記
低温熱交換器への前記中間濃溶液または前記高
温濃溶液の導入側と前記低温交換器からの前記
濃溶液の導出側とにそれぞれ連通するバイパス
管とを設け、該バイパス管に前記開閉制御信号
によつて作動可能な電磁弁を配設したことを特
徴とする吸収式冷凍機。 (2) 前記バイパス管を、前記低温熱交換器への前
記高温濃溶液の導入側と前記低温熱交換器から
の前記濃溶液の導出側とにそれぞれ連通させて
設けたことを特徴とする実用新案登録請求の範
囲第1項に記載の吸収式冷凍機。 (3) 前記バイパス管を、前記高温熱交換器への前
記中間濃溶液の導入側と前記低温熱交換器から
の前記濃溶液の導出側とにそれぞれ連通させて
設けたことを特徴とする実用新案登録請求の範
囲第1項に記載の吸収式冷凍機。
[Claims for Utility Model Registration] (1) A high-temperature regenerator that heats a dilute solution, a separator that separates the high-temperature dilute solution from the high-temperature regenerator into high-temperature steam and an intermediate concentrated solution, and a a high-temperature heat exchanger for exchanging heat between the intermediate concentrated solution and the dilute solution introduced into the high-temperature regenerator, and heating the intermediate concentrated solution from the high-temperature heat exchanger with high-temperature steam from the separator to generate steam and high-temperature solution. a low-temperature regenerator for converting into a concentrated solution, and a condenser for converting into a liquid refrigerant by introducing steam heated by high-temperature steam in the low-temperature regenerator and steam that has been heated and cooling them. , a low-temperature heat exchanger that exchanges heat between the high-temperature concentrated solution from the low-temperature regenerator and the dilute solution introduced into the high-temperature regenerator; an evaporator that evaporates the liquid refrigerant from the condenser; An absorber that absorbs vapor refrigerant into a concentrated solution introduced through a low-temperature heat exchanger to form a dilute solution, and an absorber that supplies the dilute solution from the absorber to a high-temperature regenerator through a low-temperature heat exchanger and a high-temperature heat exchanger. In an absorption refrigerating machine, the intermediate concentrated solution or the high temperature concentrated solution introduced into the high temperature heat exchanger and/or the low temperature heat exchanger is /or detecting the pressure and temperature of at least one of the absorber and evaporator to bypass the low-temperature heat exchanger; and opening and closing depending on whether or not this detection signal exceeds a predetermined set value. a detection control means for generating a control signal; and an introduction side of the intermediate concentrated solution or the high temperature concentrated solution to the high temperature heat exchanger or the low temperature heat exchanger and an output side of the concentrated solution from the low temperature exchanger. 1. An absorption refrigerating machine characterized in that a bypass pipe is provided which communicates with each other, and a solenoid valve operable by the opening/closing control signal is disposed in the bypass pipe. (2) A practical use characterized in that the bypass pipe is provided in communication with an inlet side of the high temperature concentrated solution to the low temperature heat exchanger and an outlet side of the concentrated solution from the low temperature heat exchanger, respectively. An absorption chiller according to claim 1 of the patent registration claim. (3) A practical use characterized in that the bypass pipe is provided in communication with an inlet side of the intermediate concentrated solution to the high temperature heat exchanger and an outlet side of the concentrated solution from the low temperature heat exchanger, respectively. An absorption chiller according to claim 1 of the patent registration claim.
JP10538084U 1984-07-12 1984-07-12 absorption refrigerator Granted JPS6121256U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10538084U JPS6121256U (en) 1984-07-12 1984-07-12 absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10538084U JPS6121256U (en) 1984-07-12 1984-07-12 absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS6121256U JPS6121256U (en) 1986-02-07
JPH0419406Y2 true JPH0419406Y2 (en) 1992-05-01

Family

ID=30664706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10538084U Granted JPS6121256U (en) 1984-07-12 1984-07-12 absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS6121256U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153656A (en) * 1974-11-02 1976-05-12 Kawasaki Heavy Ind Ltd KYUSHUREITOKINOREISUI REISUITOKETSUBOSHISOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153656A (en) * 1974-11-02 1976-05-12 Kawasaki Heavy Ind Ltd KYUSHUREITOKINOREISUI REISUITOKETSUBOSHISOCHI

Also Published As

Publication number Publication date
JPS6121256U (en) 1986-02-07

Similar Documents

Publication Publication Date Title
JPH0419406Y2 (en)
US3556200A (en) Heating and cooling system
JP3832191B2 (en) Absorption refrigerator
JP3234938B2 (en) Absorption chiller / heater and control method
JP2808063B2 (en) Absorption chiller / heater
JP3813348B2 (en) Absorption refrigerator
JPH05312429A (en) Absorption water cooling/heating apparatus
JP2921372B2 (en) Double-effect absorption heat pump
JPS5896963A (en) Controller for absorption refrigerator
KR100402086B1 (en) Automatic Control System and Method for preventing the Crystallization of a Solution in Absorption Refrigerator
JP2706871B2 (en) Cooling control device for absorption chiller / heater
JP2706870B2 (en) Cooling control device for absorption chiller / heater
JP3280085B2 (en) Operation control method in absorption refrigerator
JPS6135900Y2 (en)
JP3314225B2 (en) Absorption refrigerator
JPS63176965A (en) Double effect air-cooling type water chiller and heater
JPS54131160A (en) Controller for absorption machines
JP2873534B2 (en) Double-effect absorption chiller / heater
JP3811632B2 (en) Waste heat input type absorption refrigerator
JPH08261591A (en) Vapor boiling absorption hot or chilled water generator and controlling method therefor
JPH0317474A (en) Absorption refrigerator
JPH03271663A (en) Absorption cold and hot water tank
JPS6115986B2 (en)
JPS6223229B2 (en)
JPS5823542B2 (en) Method for controlling the refrigeration capacity of a hot water heating absorption chiller according to the refrigeration load