JP2010078298A - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP2010078298A
JP2010078298A JP2008250813A JP2008250813A JP2010078298A JP 2010078298 A JP2010078298 A JP 2010078298A JP 2008250813 A JP2008250813 A JP 2008250813A JP 2008250813 A JP2008250813 A JP 2008250813A JP 2010078298 A JP2010078298 A JP 2010078298A
Authority
JP
Japan
Prior art keywords
temperature
combustion
temperature regenerator
predetermined
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008250813A
Other languages
Japanese (ja)
Inventor
Shuji Ishizaki
修司 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008250813A priority Critical patent/JP2010078298A/en
Priority to CN2009101791606A priority patent/CN101713597B/en
Publication of JP2010078298A publication Critical patent/JP2010078298A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption refrigerator capable of improving an average of COP during low load operation of less than 20 percent. <P>SOLUTION: The absorption refrigerator includes at least a high temperature regenerator 1, a low temperature regenerator 3, a condenser 4, an evaporator 5 passing cold and hot water to be supplied to a load via a cold and hot water pipe 17, an absorber 6, a refrigerant pump 14, and absorbent pumps 20, 22. During a low load of cooling operation, a temperature of cold water switching OFF combustion of a burner 2 of the high temperature regenerator 1 is set higher than a set temperature for just a predetermined temperature. Alternatively, during a low load of heating operation, a temperature of hot water switching OFF the combustion of the burner 2 of the high temperature regenerator 1 is set lower than the set temperature for just a predetermined temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特に低負荷運転時におけるCOP(成績係数)の向上を図るようにした吸収式冷凍機に関する。   The present invention relates to an absorption chiller designed to improve COP (coefficient of performance) particularly during low-load operation.

一般に、ビルの空調装置や大型店舗の冷凍・冷蔵装置等に使用される吸収式冷凍機は広く知られており、その代表的なものは二重効用吸収式冷凍機(以下、単に吸収式冷凍機と称することがある)である。この吸収式冷凍機は通常、高温再生器と、低温再生器と、凝縮器と、蒸発器と、吸収器とを備え、冷媒ポンプ、吸収液ポンプ及び低温熱交換器、高温熱交換器等を含めて配管接続することにより循環経路が構成されている。そして、吸収液としては例えば臭化リチウム水溶液が用いられ、冷媒は水が用いられている。   In general, absorption chillers used for building air conditioners and large store refrigeration and refrigeration systems are widely known. A typical example is a double-effect absorption chiller (hereinafter simply called absorption refrigeration). May be referred to as a machine). This absorption refrigerator usually includes a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, and an absorber, and includes a refrigerant pump, an absorption liquid pump, a low temperature heat exchanger, a high temperature heat exchanger, and the like. A circulation path is configured by connecting the pipes. For example, an aqueous lithium bromide solution is used as the absorbing solution, and water is used as the refrigerant.

上記のような従来の吸収式冷凍機は、例えば特許文献1等に開示されている。
特開2006−170569
The conventional absorption refrigerator as described above is disclosed in, for example, Patent Document 1.
JP 2006-170569 A

病院や老人ホーム或はホテル等での空調においては、負荷率が20%以下の低負荷状態で吸収式冷凍機を運転する時間が、他の負荷率で運転する時間よりはるかに長いという事実が空気調和衛生学会に報告されている。吸収式冷凍機では、通常高温再生器でバーナを燃焼させて稀吸収液を加熱し、この稀吸収液から分離した冷媒蒸気を冷媒管を介して低温再生器に供給すると共に、中濃度となった吸収液(以下、中間吸収液と称する)を、吸収液管を介して低温再生器内を通過させるようにしている。   In air conditioning in hospitals, nursing homes, hotels, etc., the fact that the operation time of the absorption chiller in a low load state with a load factor of 20% or less is much longer than the time to operate at other load factors. Reported to the Society for Air Conditioning Hygiene. In an absorption chiller, a burner is usually burned in a high-temperature regenerator to heat the rare absorbent, and the refrigerant vapor separated from the rare absorbent is supplied to the low-temperature regenerator through the refrigerant pipe and becomes a medium concentration. The absorbed liquid (hereinafter referred to as intermediate absorbent) is allowed to pass through the low temperature regenerator through the absorbent liquid tube.

空調負荷の変動に伴って、高温再生器でのバーナの燃焼量を制御弁等によって調節し、負荷率が20〜100%の範囲内で比例制御を行えるように設計されている。しかしながら、負荷率が20%未満の範囲内では、制御弁等によるバーナ燃焼量の比例制御が機械的に困難になる。このため、負荷率が20%未満の場合は、バーナの燃焼スイッチをON−OFF制御(以下、燃焼ON−OFF制御と称する)することで、バーナの燃焼量を調節して低負荷運転時に対応させている。   It is designed so that the combustion rate of the burner in the high-temperature regenerator is adjusted by a control valve or the like in accordance with the fluctuation of the air conditioning load, and proportional control can be performed within a load factor range of 20 to 100%. However, within a range where the load factor is less than 20%, proportional control of the burner combustion amount by a control valve or the like becomes mechanically difficult. For this reason, when the load factor is less than 20%, the burner combustion switch is turned ON / OFF (hereinafter referred to as combustion ON-OFF control) to adjust the burner combustion amount and cope with low load operation. I am letting.

上記の燃焼ON−OFF制御方法では、冷房運転の場合の低負荷時に、負荷に供給する冷水の温度が定格温度以下になった時点でバーナの燃焼をOFFにし、これにより冷房過多にならないように制御している。しかしながら、冷水の定格温度以下になった時点でバーナの燃焼を止めても、冷水の温度が下がり過ぎてしまう傾向がある。このため、燃焼OFF時から一定時間経過後に、バーナの燃焼をONに切り替えて冷水の温度を定格温度に戻す過程において、バーナの燃焼量が増大することから平均COPの低下を招く問題があった。   In the above combustion ON-OFF control method, when the temperature of the chilled water supplied to the load falls below the rated temperature at the time of low load in the cooling operation, the combustion of the burner is turned OFF so that the cooling does not become excessive. I have control. However, even if combustion of the burner is stopped when the temperature falls below the rated temperature of the cold water, the temperature of the cold water tends to decrease too much. For this reason, in the process of switching the burner combustion to ON and returning the temperature of the cold water to the rated temperature after a lapse of a certain time from the time of combustion OFF, there is a problem that the average COP is lowered because the burner combustion amount increases. .

又、暖房運転の場合の低負荷時に、温水の温度が定格温度以上になった時点でバーナの燃焼をOFFにし、これにより暖房過多にならないように制御している。しかしながら、温水の定格温度以上になった時点でバーナの燃焼を止めても、温水の温度が上がり過ぎてしまう傾向がある。このため、温水の温度が上がり過ぎないように適正に制御する必要が生じる。暖房過多に陥るような制御は、バーナの燃焼量がそれだけ多くなって平均COPの低下を招くことになる。   Further, at the time of low load in the heating operation, when the temperature of the hot water becomes equal to or higher than the rated temperature, combustion of the burner is turned off, and thereby control is performed so as not to overheat. However, even if combustion of the burner is stopped when the temperature exceeds the rated temperature of the hot water, the temperature of the hot water tends to increase too much. For this reason, it is necessary to control appropriately so that the temperature of warm water does not rise too much. Control that results in excessive heating results in a decrease in the average COP due to an increase in the amount of burner burn.

本発明は、上記のような従来の吸収式冷凍機の問題を解決するためになされ、特に低負荷運転時において、平均COPの向上が図れるようにした吸収式冷凍機を提供することを目的とする。   The present invention has been made to solve the problems of the conventional absorption refrigerator as described above, and an object of the invention is to provide an absorption refrigerator that can improve the average COP especially during low-load operation. To do.

上記の目的を達成するための手段として、本発明の請求項1は、高温再生器と、低温再生器と、凝縮器と、負荷に供給する冷温水が冷温水管を介して通過する蒸発器と、吸収器と、冷媒ポンプ及び吸収液ポンプを少なくとも備えた吸収式冷凍機であって、冷房運転低負荷時に、前記高温再生器の燃焼をOFFに切り替える冷水の温度を設定温度よりも所定温度だけ高く設定したことを特徴とする。   As means for achieving the above object, claim 1 of the present invention includes a high temperature regenerator, a low temperature regenerator, a condenser, and an evaporator through which cold / hot water supplied to a load passes through a cold / hot water pipe. An absorption refrigerator having at least an absorber, a refrigerant pump, and an absorption liquid pump, and when the cooling operation is under a low load, the temperature of the cold water for switching off the combustion of the high-temperature regenerator is set to a predetermined temperature from the set temperature. It is characterized by being set high.

本発明の請求項2は、請求項1の吸収式冷凍機において、前記冷媒ポンプをOFFに切り替える冷水の温度を、設定温度よりも所定温度だけ低く設定したことを特徴とする。   According to a second aspect of the present invention, in the absorption refrigeration machine according to the first aspect, the temperature of the cold water for switching off the refrigerant pump is set lower by a predetermined temperature than the set temperature.

本発明の請求項3は、請求項1の吸収式冷凍機において、前記冷温水管を介して蒸発器内を通過する冷水の蒸発器入口温度と出口温度との差が所定温度以下であり、且つ当該所定温度以下の状態が所定時間継続した場合に、前記冷房運転低負荷時における高温再生器の燃焼をOFFに切り替えることを特徴とする。   A third aspect of the present invention is the absorption refrigerator according to the first aspect, wherein a difference between an evaporator inlet temperature and an outlet temperature of the cold water passing through the evaporator through the cold / hot water pipe is equal to or lower than a predetermined temperature, and When the state below the predetermined temperature continues for a predetermined time, the combustion of the high-temperature regenerator during the cooling operation low load is switched to OFF.

本発明の請求項4は、請求項1に記載の吸収式冷凍機において、請求項2と請求項3とを組み合わせることにより、高温再生器の燃焼をOFFに切り替えることを特徴とする。   According to a fourth aspect of the present invention, in the absorption refrigerator according to the first aspect, the combustion of the high-temperature regenerator is switched to OFF by combining the second and third aspects.

本発明の請求項5は、請求項1の吸収式冷凍機において、冷房能力が定格の所定割合以下となり、且つその所定割合以下の状態が所定時間継続した場合に、前記冷房運転低負荷時における高温再生器の燃焼をOFFに切り替えることを特徴とする。   According to a fifth aspect of the present invention, in the absorption chiller of the first aspect, when the cooling capacity is equal to or less than a predetermined ratio of the rating, and the state of the predetermined ratio or less continues for a predetermined time, the cooling operation is performed at a low load. The combustion of the high-temperature regenerator is switched off.

本発明の請求項6は、請求項1に記載の吸収式冷凍機において、所定時間当たりの前記高温再生器の燃焼OFFの回数、及び蒸発器に接続された冷媒ポンプのOFFの回数がいずれも所定回数以上となった場合に、前記冷房運転低負荷時における高温再生器の燃焼をOFFに切り替えることを特徴とする。   According to a sixth aspect of the present invention, in the absorption refrigerator according to the first aspect, both the number of times of combustion OFF of the high-temperature regenerator per predetermined time and the number of times of OFF of the refrigerant pump connected to the evaporator are both. The combustion of the high-temperature regenerator is switched to OFF when the cooling operation is under a low load when the predetermined number of times is reached.

本発明の請求項7は、請求項1の吸収式冷凍機において、請求項3、5、6のいずれかを2つ以上組み合わせて、前記冷房運転低負荷時における高温再生器の燃焼をOFF、又は冷媒ポンプの運転をOFFに切り替えることを特徴とする。   Claim 7 of the present invention is the absorption refrigerator of claim 1, wherein two or more of claims 3, 5 and 6 are combined to turn off combustion of the high-temperature regenerator at the time of the cooling operation low load, Alternatively, the operation of the refrigerant pump is switched off.

本発明の請求項8は、高温再生器と、低温再生器と、凝縮器と、負荷に供給する冷温水が冷温水管を介して通過する蒸発器と、吸収器と、冷媒ポンプ及び吸収液ポンプとを少なくとも備えた吸収式冷凍機であって、暖房運転低負荷時に、前記高温再生器の燃焼をOFFに切り替える温水の温度を設定温度よりも所定温度だけ低く設定したことを特徴とする。   Claim 8 of the present invention is a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator through which cold / hot water supplied to a load passes through a cold / hot water pipe, an absorber, a refrigerant pump and an absorption liquid pump. The temperature of the hot water for switching off the combustion of the high-temperature regenerator is set lower than the set temperature by a predetermined temperature when the heating operation is under a low load.

本発明の請求項9は、請求項8の吸収式冷凍機において、前記冷温水管を介して蒸発器内を通過する温水の蒸発器入口温度と出口温度との差が所定温度以上であり、且つ当該所定温度以上の状態が所定時間継続した場合に、前記高温再生器の燃焼をOFFに切り替えることを特徴とする。   A ninth aspect of the present invention is the absorption refrigerator according to the eighth aspect, wherein a difference between an evaporator inlet temperature and an outlet temperature of hot water passing through the evaporator through the cold / hot water pipe is not less than a predetermined temperature, and The combustion of the high-temperature regenerator is switched off when the state of the predetermined temperature or higher continues for a predetermined time.

本発明の請求項10は、請求項8の吸収式冷凍機において、暖房能力が定格の所定割合以上であり、且つその所定割合以上の状態が所定時間継続した場合に、前記高温再生器の燃焼をOFFに切り替えることを特徴とする。   According to a tenth aspect of the present invention, in the absorption refrigerator according to the eighth aspect, the combustion of the high-temperature regenerator is performed when the heating capacity is equal to or higher than a predetermined ratio of the rating and the predetermined ratio or higher continues for a predetermined time. Is switched to OFF.

本発明の請求項11は、請求項8の吸収式冷凍機において、所定時間当たりの前記高温再生器の燃焼OFFの回数及び蒸発器に接続された冷媒ポンプのOFFの回数がいずれも所定回数以上となった場合に、前記高温再生器の燃焼をOFFに切り替えることを特徴とする。   According to an eleventh aspect of the present invention, in the absorption chiller according to the eighth aspect, the number of times of combustion OFF of the high temperature regenerator per unit time and the number of times of OFF of the refrigerant pump connected to the evaporator are both greater than or equal to the predetermined number. In this case, the combustion of the high-temperature regenerator is switched off.

本発明の請求項12は、請求項8の吸収式冷凍機において、請求項9、10、11のいずれかを2つ以上組み合わせて、前記高温再生器の燃焼をOFFに切り替えることを特徴とする。   According to a twelfth aspect of the present invention, in the absorption refrigerator of the eighth aspect, the combustion of the high-temperature regenerator is switched to OFF by combining two or more of the ninth, tenth, and eleventh aspects. .

本発明の請求項13は、請求項1又は8の吸収式冷凍機において、前記高温再生器は、熱源としてバーナの燃焼に代えて蒸気又は温水が用いられることを特徴とする。   A thirteenth aspect of the present invention is the absorption refrigerator according to the first or eighth aspect, wherein the high-temperature regenerator uses steam or hot water as a heat source in place of combustion of the burner.

上記請求項1の発明によれば、吸収冷凍機で冷房する場合に、低負荷運転時に高温再生器の燃焼をOFFに切り替える冷水の温度を設定温度よりも所定温度だけ高く設定したので、冷水の温度低下を抑えることができる。これにより、冷水の温度が過多に低下するのを防ぐことができ、燃焼OFF時から一定時間経過後に、バーナの燃焼をONに切り替えて冷水の温度を定格温度に戻す過程において、バーナの燃焼量を従来よりも減少させることから平均COPを向上させることができる。特に、負荷率が20%以下の状態で長時間の冷房を行う病院や老人ホーム等の低負荷運転時に適用すると、平均COPを著しく向上させる効果を奏する。   According to the first aspect of the present invention, when cooling with an absorption refrigerator, the temperature of the chilled water for switching off the combustion of the high-temperature regenerator during low load operation is set higher than the set temperature by a predetermined temperature. Temperature drop can be suppressed. As a result, the temperature of the chilled water can be prevented from excessively decreasing, and the burner combustion amount in the process of switching the burner combustion to ON and returning the chilled water temperature to the rated temperature after a certain period of time has elapsed since the combustion was turned off. As a result, the average COP can be improved. In particular, when applied at low load operation, such as hospitals and nursing homes where cooling is performed for a long time with a load factor of 20% or less, the effect of significantly improving the average COP is achieved.

上記請求項2の発明によれば、冷媒ポンプの作動を長引かせて冷水の取り出し温度をなるべく下げることにより、高温再生器1でのバーナの燃焼を軽減させることができる。これにより、低負荷運転時での平均COPの向上に寄与することができる。   According to the second aspect of the present invention, combustion of the burner in the high-temperature regenerator 1 can be reduced by extending the operation of the refrigerant pump to lower the cold water take-out temperature as much as possible. Thereby, it can contribute to the improvement of average COP at the time of low load operation.

上記請求項3の発明によれば、冷温水管を介して蒸発器内を通過する冷水の蒸発器入口温度と出口温度との差が所定温度以下であり、且つ当該所定温度以下の状態が所定時間継続した場合に、前記冷房運転低負荷時における高温再生器の燃焼をOFFに切り替えることにより、その燃焼OFFの切り替え時を適正に判定することができる。   According to the third aspect of the present invention, the difference between the evaporator inlet temperature and the outlet temperature of the cold water passing through the evaporator via the cold / hot water pipe is equal to or lower than the predetermined temperature, and the state equal to or lower than the predetermined temperature is the predetermined time. When continuing, by switching off the combustion of the high-temperature regenerator at the time of the cooling operation low load, it is possible to appropriately determine when the combustion is switched off.

上記請求項4の発明によれば、請求項2と請求項3を組み合わせることにより、適正に高温再生器の燃焼をOFFに切り替えられると共に、平均COPの向上を効率良く行うことができる。   According to the fourth aspect of the invention, by combining the second and third aspects, the combustion of the high-temperature regenerator can be appropriately switched off and the average COP can be improved efficiently.

上記請求項5の発明によれば、冷房能力が定格の所定割合以下となり、且つその所定割合以下の状態が所定時間継続した場合に、前記冷房運転低負荷時における高温再生器の燃焼をOFFに切り替えることにより、その燃焼OFFの切り替え時を適正に判定することができる。   According to the fifth aspect of the present invention, when the cooling capacity is equal to or less than a predetermined ratio of the rating and the state equal to or less than the predetermined ratio continues for a predetermined time, the combustion of the high temperature regenerator at the time of the cooling operation low load is turned off. By switching, it is possible to appropriately determine when the combustion is switched off.

上記請求項6の発明によれば、所定時間当たりの前記高温再生器の燃焼OFFの回数、及び蒸発器に接続された冷媒ポンプのOFFの回数がいずれも所定回数以上となった場合に、前記冷房運転低負荷時における高温再生器の燃焼をOFFに切り替えることにより、その燃焼OFFの切り替え時を適正に判定することができる。   According to the sixth aspect of the present invention, when both the number of times of combustion OFF of the high temperature regenerator per predetermined time and the number of times of OFF of the refrigerant pump connected to the evaporator are equal to or greater than the predetermined number, By switching the combustion of the high-temperature regenerator at the time of cooling operation low load to OFF, it is possible to appropriately determine when the combustion is switched off.

上記請求項7の発明によれば、請求項3、5、6のいずれかを2つ以上組み合わせて、前記冷房運転低負荷時における高温再生器の燃焼をOFF、又は冷媒ポンプの運転をOFFに切り替えることにより、その燃焼OFFの切り替え時を一層適正に判定すること、又は冷媒ポンプの動作を長引かせて冷水の取り出し温度をなるべく下げることにより、高温再生器でのバーナの燃焼を軽減させることができる。   According to the seventh aspect of the invention, by combining two or more of the third, fifth and sixth aspects, the combustion of the high-temperature regenerator at the time of the cooling operation low load is turned off, or the operation of the refrigerant pump is turned off. It is possible to reduce the combustion of the burner in the high-temperature regenerator by switching the combustion OFF more appropriately, or by reducing the cold water extraction temperature as much as possible by extending the operation of the refrigerant pump. it can.

上記請求項8の発明によれば、吸収冷凍機で暖房する場合に、低負荷運転時に高温再生器の燃焼をOFFに切り替える冷水の温度を設定温度よりも所定温度だけ低く設定したので、温水の温度上昇を抑えることができる。これにより、温水の温度が過多に上昇するのを防ぐことができ、バーナの燃焼量を従来よりも減少させることから平均COPを向上させることができる。特に、負荷率が20%以下の状態で長時間の暖房を行う病院や老人ホーム等での低負荷運転時に適用すると、平均COPを著しく向上させる効果を奏する。   According to the eighth aspect of the present invention, when heating with an absorption refrigerator, the temperature of the cold water for switching off the combustion of the high-temperature regenerator during low load operation is set lower than the set temperature by a predetermined temperature. Temperature rise can be suppressed. Thereby, it can prevent that the temperature of warm water rises excessively, and since the combustion amount of a burner is decreased compared with the past, average COP can be improved. In particular, when applied at low load operation in a hospital or a nursing home where heating is performed for a long time with a load factor of 20% or less, the average COP is significantly improved.

上記請求項9の発明によれば、前記冷温水管を介して蒸発器内を通過する温水の蒸発器入口温度と出口温度との差が所定温度以上であり、且つ当該所定温度以上の状態が所定時間継続した場合に、前記高温再生器の燃焼をOFFに切り替えることにより、その燃焼OFFの切り替え時を適正に判定することができる。   According to the ninth aspect of the present invention, the difference between the evaporator inlet temperature and the outlet temperature of the hot water passing through the evaporator through the cold / hot water pipe is equal to or higher than a predetermined temperature, and the state equal to or higher than the predetermined temperature is predetermined. When the time is continued, by switching the combustion of the high-temperature regenerator to OFF, it is possible to appropriately determine the switching time of the combustion OFF.

上記請求項10の発明によれば、暖房能力が定格の所定割合以上であり、且つその所定割合以上の状態が所定時間継続した場合に、前記高温再生器の燃焼をOFFに切り替えることにより、その燃焼OFFの切り替え時を適正に判定することができる。   According to the invention of claim 10, when the heating capacity is equal to or higher than a predetermined ratio of the rating and the state exceeding the predetermined ratio continues for a predetermined time, the combustion of the high-temperature regenerator is switched to OFF, It is possible to appropriately determine when the combustion is switched off.

上記請求項11の発明によれば、所定時間当たりの前記高温再生器の燃焼OFFの回数及び蒸発器に接続された冷媒ポンプのOFFの回数がいずれも所定回数以上となった場合に前記高温再生器の燃焼をOFFに切り替えることにより、その燃焼OFFの切り替え時を適正に判定することができる。   According to the eleventh aspect of the invention, the high temperature regeneration is performed when the number of times of combustion OFF of the high temperature regenerator per unit time and the number of times of turn off of the refrigerant pump connected to the evaporator are both equal to or greater than the predetermined number. By switching the combustion of the chamber to OFF, it is possible to appropriately determine when the combustion is switched off.

上記請求項12の発明によれば、請求項9、10、11のいずれかを2つ以上組み合わせて、前記高温再生器の燃焼をOFFに切り替えることにより、その燃焼OFFの切り替え時を一層適正に判定することができる。   According to the twelfth aspect of the present invention, by combining two or more of the ninth, tenth and eleventh aspects and switching the combustion of the high-temperature regenerator to OFF, the switching time of the combustion OFF can be made more appropriate. Can be determined.

上記請求項13の発明によれば、前記高温再生器は、熱源としてバーナの燃焼に代えて蒸気又は温水が用いられる吸収式冷凍機であっても同様に適用することが可能である。   According to the thirteenth aspect of the present invention, the high-temperature regenerator can be similarly applied even to an absorption refrigerating machine in which steam or hot water is used as a heat source instead of combustion of a burner.

次に、本発明の実施形態を添付図面に基づいて説明する。図1は、本発明に係る吸収式冷凍機の第1実施形態を示す構成図である。   Next, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a configuration diagram showing a first embodiment of an absorption refrigerator according to the present invention.

図1において、1は高温再生器であり、加熱源であるバーナ2を備えており、吸収器6から戻される稀吸収液を加熱して冷媒蒸気を蒸発分離する。この高温再生器1で蒸発分離された高温の冷媒蒸気は、冷媒管7を介して低温再生器3の内部を通過すると共に、凝縮器4の底部内に供給される。又、高温再生器1で冷媒蒸気が蒸発分離することで中濃度となった中間吸収液は、中間吸収液管8を介して前記低温再生器3に供給される。この中間吸収液管8の途中には高温熱交換器9が接続され、前記吸収器6から稀吸収液管10を介して高温再生器1に戻される稀吸収液と、中間吸収液とが熱交換する。   In FIG. 1, reference numeral 1 denotes a high-temperature regenerator, which includes a burner 2 as a heating source, and heats the rare absorbent returned from the absorber 6 to evaporate and separate the refrigerant vapor. The high-temperature refrigerant vapor evaporated and separated by the high-temperature regenerator 1 passes through the inside of the low-temperature regenerator 3 through the refrigerant pipe 7 and is supplied into the bottom of the condenser 4. Further, the intermediate absorbing liquid that has become a medium concentration by evaporating and separating the refrigerant vapor in the high temperature regenerator 1 is supplied to the low temperature regenerator 3 through the intermediate absorbing liquid pipe 8. A high temperature heat exchanger 9 is connected in the middle of the intermediate absorption liquid pipe 8, and the rare absorption liquid returned from the absorber 6 to the high temperature regenerator 1 through the rare absorption liquid pipe 10 and the intermediate absorption liquid are heated. Exchange.

前記低温再生器3では、高温再生器1から供給される中間吸収液が、冷媒管7を介して低温再生器3内を通過する高温の冷媒蒸気により加熱されて再度冷媒蒸気が蒸発分離される。蒸発分離された冷媒蒸気は凝縮器4内に流入し、この凝縮器4内を冷却水管11を介して通過する冷却水により冷やされて凝縮し、冷媒液となって凝縮器4の底部に溜まる。又、低温再生器3で放熱した冷媒管7内の冷媒蒸気は、冷媒ドレン熱回収器12で更に放熱して凝縮し、冷媒液となって凝縮器4の底部に供給され、この凝縮器4内で凝縮した前記冷媒液と合流する。上記冷却水管11は、前記吸収器6内を通過した後に凝縮器4内を通過し、当該吸収器6内及び凝縮器4内で冷却水がそれぞれ吸熱作用をなすものである。   In the low-temperature regenerator 3, the intermediate absorption liquid supplied from the high-temperature regenerator 1 is heated by the high-temperature refrigerant vapor passing through the low-temperature regenerator 3 through the refrigerant pipe 7, and the refrigerant vapor is again evaporated and separated. . The evaporated and separated refrigerant vapor flows into the condenser 4, is cooled by the cooling water passing through the cooling water pipe 11 through the condenser 4, is condensed, and becomes a refrigerant liquid and accumulates at the bottom of the condenser 4. . Further, the refrigerant vapor in the refrigerant pipe 7 radiated by the low-temperature regenerator 3 is further radiated and condensed by the refrigerant drain heat recovery device 12, and is supplied to the bottom of the condenser 4 as a refrigerant liquid. It merges with the refrigerant liquid condensed inside. The cooling water pipe 11 passes through the condenser 4 after passing through the absorber 6, and the cooling water has an endothermic action in the absorber 6 and the condenser 4.

凝縮器4の底部に溜まった冷媒液は、冷媒液管13を介して蒸発器5に供給され、この蒸発器5の底部に溜まった冷媒液は、冷媒ポンプ14により冷媒液管15を介して蒸発器5内の上部に配設された冷媒散布器16から冷温水管17に散布される。この冷温水管17は、室内機等の負荷(図示せず)に接続され、蒸発器5内を通過するようにしてあり、冷房運転時には負荷から戻される冷水が蒸発器5内を通過する際に、前記冷媒散布器16から散布される冷媒液の蒸発により冷やされて負荷に供給できるようにしてある。   The refrigerant liquid collected at the bottom of the condenser 4 is supplied to the evaporator 5 through the refrigerant liquid pipe 13, and the refrigerant liquid collected at the bottom of the evaporator 5 is passed through the refrigerant liquid pipe 15 by the refrigerant pump 14. It is sprayed to the cold / hot water pipe 17 from the refrigerant | coolant sprayer 16 arrange | positioned in the upper part in the evaporator 5. FIG. The cold / hot water pipe 17 is connected to a load (not shown) such as an indoor unit so as to pass through the evaporator 5. When the cold water returned from the load passes through the evaporator 5 during the cooling operation. Further, the refrigerant is cooled by evaporation of the refrigerant liquid sprayed from the refrigerant sprayer 16 and can be supplied to the load.

蒸発器5内で蒸発した冷媒蒸気は、吸収器6内に流入すると共に上部に配設された吸収液散布器18から散布される濃吸収液に吸収されて吸収器6の底部に溜まる。吸収液散布器18から散布される濃吸収液は、前記低温再生器3において中間吸収液から冷媒蒸気が蒸発分離されて濃吸収液となったものであり、濃吸収液ポンプ19により濃吸収液管20を介して吸収器6の吸収液散布器18に供給される。この濃吸収液管20の途中には、低温熱交換器21が接続されている。   The refrigerant vapor evaporated in the evaporator 5 flows into the absorber 6 and is absorbed by the concentrated absorbent sprayed from the absorbent sprayer 18 disposed in the upper portion and accumulates at the bottom of the absorber 6. The concentrated absorbent sprayed from the absorbent sprayer 18 is obtained by evaporating and separating the refrigerant vapor from the intermediate absorbent in the low-temperature regenerator 3 to form a concentrated absorbent. It is supplied to the absorbing liquid spreader 18 of the absorber 6 through the pipe 20. A low temperature heat exchanger 21 is connected in the middle of the concentrated absorbent pipe 20.

冷媒蒸気を吸収して吸収器6の底部に溜まった稀吸収液は、稀吸収液ポンプ22により前記稀吸収液管10を介して前記高温再生器1に供給されるが、その途中で前記低温熱交換器21及び高温熱交換器9を通過して加温されると共に、稀吸収液管10から分岐して前記冷媒ドレン熱回収器12を通過する際にも加温される。この稀吸収液管10の分岐管23は、冷媒ドレン熱回収器12より下流側で稀吸収液管10に合流し、この合流後に前記高温熱交換器9を通過するようにしてある。   The rare absorbent that has absorbed the refrigerant vapor and accumulated at the bottom of the absorber 6 is supplied to the high-temperature regenerator 1 through the rare absorbent pipe 10 by the rare absorbent pump 22. Heat is passed through the heat exchanger 21 and the high-temperature heat exchanger 9, and is also warmed when branching from the rare absorption liquid pipe 10 and passing through the refrigerant drain heat recovery unit 12. The branch pipe 23 of the rare absorption liquid pipe 10 joins the rare absorption liquid pipe 10 on the downstream side of the refrigerant drain heat recovery device 12, and passes through the high-temperature heat exchanger 9 after the merge.

このように構成された吸収式冷凍機において、前記負荷の大小に応じて高温再生器1のバーナ2の燃焼量を調節する。このバーナ2の燃焼量の調節は、制御弁24により燃料及び空気の供給量を変えることで行われるが、負荷に対応して適正に比例制御できるのは負荷率が20%以上の範囲内であり、負荷率が20%未満の低負荷の範囲内では適正に対応することが困難であった。このため、負荷率が20%未満の低負荷時の制御に関しては、制御弁24に依らずにバーナ2の燃焼をON−OFF制御するようにしていた。   In the absorption refrigerator configured as described above, the combustion amount of the burner 2 of the high-temperature regenerator 1 is adjusted according to the magnitude of the load. The combustion amount of the burner 2 is adjusted by changing the supply amount of fuel and air by the control valve 24. However, the proportional control can be appropriately performed corresponding to the load within a range where the load factor is 20% or more. In the low load range where the load factor is less than 20%, it has been difficult to respond appropriately. For this reason, regarding the control at a low load with a load factor of less than 20%, the combustion of the burner 2 is ON / OFF controlled without depending on the control valve 24.

このバーナ2の燃焼ON−OFF制御の場合、冷房運転時に例えば前記冷温水管17の冷水出口の定格温度をT℃とし、このT℃より低い設定温度t1℃でバーナ2の燃焼をOFFにすると図3に実線で示すような状態になり、T℃より低い温度であって上記設定温度t1℃よりも若干高い(1℃程度)設定温度t2℃でバーナ2の燃焼をOFFにすると図2に破線で示すような状態になる。   In the case of this combustion ON-OFF control of the burner 2, when the rated temperature at the cold water outlet of the cold / hot water pipe 17 is, for example, T ° C. during cooling operation, the burner 2 is turned off at a set temperature t1 ° C. lower than T ° C. When the combustion of the burner 2 is turned off at a set temperature t2 ° C. which is lower than T ° C. and slightly higher than the set temperature t1 ° C. (about 1 ° C.), a broken line in FIG. It will be in the state shown in.

冷房運転において、20%未満の低負荷時には、通常の燃焼OFF時の設定温度よりも所定温度だけ高く設定することにより、冷水出口温度の下降を低く抑えることができ、冷水出口温度の下降後にバーナの燃焼をONにして冷水出口温度を定格温度まで戻すのに必要なバーナの燃焼量を低く抑えることができる。このため、バーナの燃焼量を抑えられる分だけ平均COPの向上が図れることになる。   In a cooling operation, when the load is less than 20%, the temperature of the chilled water outlet can be kept low by setting the temperature higher by a predetermined temperature than the set temperature at the time of normal combustion OFF. The combustion amount of the burner required to turn on the combustion of this and return the cold water outlet temperature to the rated temperature can be kept low. Therefore, the average COP can be improved by the amount that can suppress the burner combustion amount.

前記冷媒ポンプ14は、冷媒散布器16から冷温水管17に散布される冷媒液の量を調節することができる。冷房運転の低負荷時には、高温再生器1での冷媒蒸気の発生量を抑える制御に連動させて冷媒ポンプ14による冷媒液の送出量を抑える制御も同時に発生することが多い。   The refrigerant pump 14 can adjust the amount of refrigerant liquid sprayed from the refrigerant sprayer 16 to the cold / hot water pipe 17. At the time of low load in the cooling operation, there is often a simultaneous control for suppressing the amount of refrigerant liquid sent by the refrigerant pump 14 in conjunction with the control for suppressing the amount of refrigerant vapor generated in the high-temperature regenerator 1.

このため、図4に示すように冷媒ポンプ14をOFFに切り替える冷水の温度を、実線で示す設定温度t3℃の場合よりも、所定温度(例えば1℃)だけ低い破線で示す設定温度t4℃に変更する。この場合、20%以下の低負荷冷房運転時に、冷媒ポンプ14の作動を長引かせることで、冷温水管17を通過する冷水の最低温度を下げることができる。これにより、低負荷冷房運転時での高温再生器1のバーナ2の燃焼量を低く抑えることにより、平均COPの向上に寄与することができる。   For this reason, as shown in FIG. 4, the temperature of the cold water for switching the refrigerant pump 14 to OFF is set to a set temperature t4 ° C. indicated by a broken line that is lower by a predetermined temperature (for example, 1 ° C.) than the set temperature t3 ° C. indicated by the solid line. change. In this case, the minimum temperature of the cold water passing through the cold / hot water pipe 17 can be lowered by extending the operation of the refrigerant pump 14 during the low-load cooling operation of 20% or less. Thereby, by suppressing the combustion amount of the burner 2 of the high temperature regenerator 1 during the low load cooling operation to a low level, it is possible to contribute to the improvement of the average COP.

図1のように、冷温水管17の蒸発器入口側に入口側温度センサ25を設置すると共に、蒸発器出口側に出口側温度センサ26を設置し、図示を省略した負荷から蒸発器5に戻る冷水の蒸発器入口温度を測定し、蒸発器5で冷やされて負荷に供給される冷水の蒸発器出口温度を測定する。この冷水の蒸発器入口温度と出口温度との差が所定温度以下であり、且つ当該所定温度以下の状態が所定時間継続した場合に、これらのデータを制御装置(図示せず)に入力すると、冷房運転は低負荷であって燃焼ON−OFF制御時と判定されて高温再生器1のバーナ2の燃焼をOFFに切り替える信号が出力される。   As shown in FIG. 1, an inlet side temperature sensor 25 is installed on the evaporator inlet side of the cold / hot water pipe 17, and an outlet side temperature sensor 26 is installed on the evaporator outlet side, and returns to the evaporator 5 from a load not shown. The evaporator inlet temperature of the cold water is measured, and the evaporator outlet temperature of the cold water cooled by the evaporator 5 and supplied to the load is measured. When the difference between the cold water evaporator inlet temperature and the outlet temperature is equal to or lower than a predetermined temperature, and the state equal to or lower than the predetermined temperature continues for a predetermined time, when these data are input to a control device (not shown), The cooling operation has a low load and is determined to be during combustion ON-OFF control, and a signal for switching the combustion of the burner 2 of the high-temperature regenerator 1 to OFF is output.

又、燃焼ON−OFF制御時の判定方法は、冷水の蒸発器入口温度と出口温度との差が、例えば定格温度の15%未満(目安)で、継続時間30分(目安)とすることができる。この場合、冷凍能力(冷水出入口温度差×冷水流量)の15%未満(目安)の状態が30分(目安)継続した場合としても良い。図5は、その制御チャート例を示すものである。当該制御チャートで、冷水設定温度T1は冷房運転時であり、冷水設定温度T1+1℃は低負荷時に冷水設定温度よりも1.0℃だけ高く設定したことを示している。尚、温水設定温度T2は暖房運転時であり、20%以下の低負荷時には温水設定温度T2よりも1.0℃だけ低く設定するのである。   Also, the judgment method at the time of combustion ON-OFF control is that the difference between the evaporator inlet temperature and the outlet temperature of cold water is, for example, less than 15% of the rated temperature (guideline) and the duration is 30 minutes (guideline). it can. In this case, the state of less than 15% (standard) of the refrigeration capacity (cold water inlet / outlet temperature difference × cold water flow rate) may continue for 30 minutes (standard). FIG. 5 shows an example of the control chart. In the control chart, the cold water set temperature T1 is during cooling operation, and the cold water set temperature T1 + 1 ° C. is set higher by 1.0 ° C. than the cold water set temperature at low load. The warm water set temperature T2 is set during heating operation, and is set lower by 1.0 ° C. than the warm water set temperature T2 at a low load of 20% or less.

又、所定時間(目安1時間)当たりの前記高温再生器1の燃焼OFFの回数、及び蒸発器5に接続された冷媒ポンプ14のOFFの回数がいずれも所定回数(目安3回)以上となった場合に、冷房運転は低負荷であって燃焼ON−OFF制御時と判定することも可能である。更に、上記いずれかの判定方法を組み合わせて、前記冷房運転低負荷時における燃焼ON−OFF制御時を一層適正に判定することができる。   In addition, the number of times the high temperature regenerator 1 is turned off and the number of times the refrigerant pump 14 connected to the evaporator 5 is turned off per predetermined time (standard 1 hour) is equal to or greater than the predetermined number (standard 3 times). In this case, it is possible to determine that the cooling operation has a low load and the combustion ON-OFF control is in progress. Further, by combining any of the above-described determination methods, it is possible to more appropriately determine the combustion ON-OFF control time during the cooling operation low load.

一方、暖房運転時には、前記冷媒管7から分岐して吸収器6に接続する冷媒分岐管27の途中に設けられた開閉弁28を開弁すると共に、中間吸収液管8から分岐して吸収器6に接続する中間吸収液分岐管29の途中に設けられた開閉弁30を開弁する。これにより、高温再生器1で蒸発分離された高温の冷媒蒸気が、圧力の低い冷媒分岐管27を通って吸収器6内に供給され、蒸発器5側に流入して冷温水管17を介して蒸発器5内を通過する温水(負荷から戻される温水)を加熱する。この加熱された温水は、冷温水管17を介して負荷に供給されて暖房に供される。   On the other hand, at the time of heating operation, the open / close valve 28 provided in the middle of the refrigerant branch pipe 27 branched from the refrigerant pipe 7 and connected to the absorber 6 is opened and branched from the intermediate absorbent liquid pipe 8 to the absorber. The on-off valve 30 provided in the middle of the intermediate absorbing liquid branch pipe 29 connected to 6 is opened. Accordingly, the high-temperature refrigerant vapor evaporated and separated in the high-temperature regenerator 1 is supplied into the absorber 6 through the refrigerant branch pipe 27 having a low pressure, flows into the evaporator 5 side, and passes through the cold / hot water pipe 17. Hot water (hot water returned from the load) passing through the evaporator 5 is heated. The heated hot water is supplied to the load via the cold / hot water pipe 17 and used for heating.

蒸発器5内で放熱した冷媒蒸気は、凝縮して冷媒液となり蒸発器5の底部に溜まる。この蒸発器5の底部に溜まった冷媒液は、冷媒液管15の途中で分岐して吸収器6に接続された冷媒液分岐管31の途中に設けられている開閉弁32を開弁した状態で、冷媒ポンプ14により冷媒液分岐管31を通って吸収器6の底部に供給される。   The refrigerant vapor radiated in the evaporator 5 condenses into a refrigerant liquid and accumulates at the bottom of the evaporator 5. The refrigerant liquid collected at the bottom of the evaporator 5 is branched in the middle of the refrigerant liquid pipe 15, and the open / close valve 32 provided in the middle of the refrigerant liquid branch pipe 31 connected to the absorber 6 is opened. Then, the refrigerant pump 14 supplies the refrigerant liquid branch pipe 31 to the bottom of the absorber 6.

高温再生器1で加熱されて濃度が中間になった中間吸収液は、前記中間吸収液分岐管29を通って吸収器6に供給されて底部に溜まる。この底部に溜まった中間吸収液は、前記冷媒ポンプ14により冷媒液分岐管31を通って吸収器6の底部に供給される冷媒液を吸収して稀吸収液となる。この稀吸収液は、前記稀吸収液ポンプ22により稀吸収液管10を介して高温再生器1に戻されるが、その途中で低温熱交器21、高温熱交換器9を通って加熱される。これは稀吸収液を予熱することにより高温再生器1でのバーナ2の燃焼量を減少させるためである。   The intermediate absorbing liquid heated in the high temperature regenerator 1 and having an intermediate concentration is supplied to the absorber 6 through the intermediate absorbing liquid branch pipe 29 and collected at the bottom. The intermediate absorption liquid accumulated in the bottom part absorbs the refrigerant liquid supplied to the bottom part of the absorber 6 through the refrigerant liquid branch pipe 31 by the refrigerant pump 14 and becomes a rare absorption liquid. The rare absorbent is returned to the high temperature regenerator 1 via the rare absorbent pipe 10 by the rare absorbent pump 22 and is heated through the low temperature heat exchanger 21 and the high temperature heat exchanger 9 in the middle of the rare absorbent. . This is because the amount of combustion of the burner 2 in the high-temperature regenerator 1 is reduced by preheating the rare absorbent.

このようにして暖房運転を行うことができるが、暖房負荷が20%以下の低負荷の範囲内では、前記制御弁24等によってバーナ2の燃焼量を比例制御することが困難になる。このため、負荷率が20%以下の場合は、バーナ2の燃焼スイッチをON−OFF制御に切り替えることで、低負荷暖房運転時に対応させるようにしている。   Although the heating operation can be performed in this way, it is difficult to proportionally control the combustion amount of the burner 2 by the control valve 24 or the like when the heating load is within a low load range of 20% or less. For this reason, when the load factor is 20% or less, the combustion switch of the burner 2 is switched to ON-OFF control so as to cope with the low load heating operation.

暖房運転において、特に20%以下の低負荷時には、従来の燃焼OFF時の設定温度よりも所定温度だけ低く設定する。これは燃焼OFF時の平均温水出口温度が上昇する傾向にあるからである。燃焼OFF時の設定温度を所定温度(例えば1℃程度)低く設定することにより、早めにバーナの燃焼をOFFにし、温水出口温度の上昇を低く抑えることができる。これにより、必要以上のバーナ2の燃焼量を低く抑えることで平均COPの向上が図れることになる。   In the heating operation, particularly at a low load of 20% or less, the temperature is set lower by a predetermined temperature than the setting temperature at the time of conventional combustion OFF. This is because the average hot water outlet temperature when combustion is OFF tends to increase. By setting the set temperature at the time of combustion OFF low by a predetermined temperature (for example, about 1 ° C.), the burner combustion can be turned off early, and the rise in the hot water outlet temperature can be kept low. Thereby, improvement of average COP can be aimed at by suppressing the combustion amount of the burner 2 more than necessary.

燃焼ON−OFF制御時の判定方法は、前記冷温水管17を介して蒸発器5内を通過する温水の蒸発器入口温度と出口温度との差が所定温度以上であり、且つ当該所定温度以上の状態が所定時間継続した場合とするか、又は暖房能力が定格の所定割合以上であり、且つその所定割合以上の状態が所定時間継続した場合とするか、又は所定時間当たりの前記高温再生器1の燃焼OFFの回数が所定回数以上の場合とするか、のいずれかを採用することができる。更に、これらいずれかの判定方法を組み合わせて、より一層適正に判定することも可能である。   The determination method at the time of combustion ON-OFF control is that the difference between the evaporator inlet temperature and the outlet temperature of hot water passing through the evaporator 5 via the cold / hot water pipe 17 is equal to or higher than the predetermined temperature and equal to or higher than the predetermined temperature. The case where the state continues for a predetermined time, or the case where the heating capacity is equal to or higher than a predetermined ratio of the rating and the state exceeding the predetermined ratio continues for a predetermined time, or the high temperature regenerator 1 per predetermined time It is possible to adopt either the case where the number of times of combustion OFF is equal to or more than a predetermined number. Furthermore, it is possible to determine more appropriately by combining any of these determination methods.

図2は、本発明に係る吸収式冷凍機の第2実施形態を示す構成図である。この第2実施形態の吸収式冷凍機において、前記第1実施形態の吸収式冷凍機と同じ構成部材は前記と同じ符号を付して詳しい説明は省略する。   FIG. 2 is a block diagram showing a second embodiment of the absorption refrigerator according to the present invention. In the absorption refrigerator according to the second embodiment, the same components as those of the absorption refrigerator according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

この第2実施形態の吸収式冷凍機は、高温再生器33の熱源としてバーナの燃焼に代えて高温(170℃以上)の蒸気が用いられる点が相違している。この場合、蒸気管34が高温再生器33の内部を通過するように構成され、この蒸気管34の上流側には蒸気制御弁35が設けられている。そして、高温再生器33と、前記低温再生器3と、凝縮器4と、負荷に供給する冷温水が冷温水管17を介して通過する蒸発器5と、吸収器6と、冷媒ポンプ14及び吸収液ポンプ19、22を少なくとも備えている。   The absorption refrigerator according to the second embodiment is different in that high-temperature (170 ° C. or higher) steam is used as a heat source for the high-temperature regenerator 33 instead of burner combustion. In this case, the steam pipe 34 is configured to pass through the inside of the high-temperature regenerator 33, and a steam control valve 35 is provided on the upstream side of the steam pipe 34. And the high temperature regenerator 33, the said low temperature regenerator 3, the condenser 4, the evaporator 5 through which the cold / hot water supplied to load passes through the cold / hot water pipe 17, the absorber 6, the refrigerant | coolant pump 14, and absorption At least liquid pumps 19 and 22 are provided.

このように構成された吸収式冷凍機は、第1実施形態の吸収式冷凍機におけるバーナの燃焼ON−OFF制御に代えて、蒸気制御弁ON−OFF制御を行うものである。   The absorption refrigerator configured as described above performs steam control valve ON / OFF control instead of burner combustion ON / OFF control in the absorption refrigerator of the first embodiment.

この場合も、前記と同様に冷房運転低負荷時に、前記蒸気制御弁35をOFFに切り替える冷水の温度を設定温度よりも所定温度だけ高く設定すること、冷媒ポンプ14をOFFに切り替える冷水の温度も、設定温度よりも所定温度だけ高く設定すること、暖房運転の低負荷時に、前記高温再生器の燃焼をOFFに切り替える温水の温度を設定温度よりも所定温度だけ低く設定すること等を実行することができる。   Also in this case, similarly to the above, when the cooling operation is under a low load, the temperature of the chilled water for switching off the steam control valve 35 is set higher than the set temperature by a predetermined temperature, and the temperature of the chilled water for switching off the refrigerant pump 14 is also set. Setting a predetermined temperature higher than the set temperature, setting the temperature of the hot water for switching the combustion of the high-temperature regenerator OFF when the heating operation is under a low load, a predetermined temperature lower than the set temperature, etc. Can do.

又、蒸気制御弁35のON−OFF制御の判定方法として、前記と同様に前記冷温水管を介して蒸発器内を通過する冷水の蒸発器入口温度と出口温度との差が所定温度以下であり、且つ当該所定温度以下の状態が所定時間継続した場合、冷房能力が定格の所定割合以下となり、且つその所定割合以下の状態が所定時間継続した場合、所定時間当たりの冷媒ポンプのOFF回数が所定回数以上となった場合等を利用することができる。   In addition, as a determination method of the ON / OFF control of the steam control valve 35, the difference between the evaporator inlet temperature and the outlet temperature of the cold water passing through the evaporator through the cold / hot water pipe is the predetermined temperature or less as described above. When the state below the predetermined temperature continues for a predetermined time, the cooling capacity becomes a predetermined ratio or less of the rated value, and when the state below the predetermined ratio continues for the predetermined time, the number of times of turning off the refrigerant pump per predetermined time is predetermined. The case where it becomes more than the number of times can be used.

本発明は、吸収式冷凍機により冷暖房を行う際に、負荷率が20%以下の低負荷運転時に適用することで平均COPの向上を図ることができる。   The present invention can improve the average COP when applied to a low-load operation with a load factor of 20% or less when air-conditioning is performed with an absorption refrigerator.

本発明に係る吸収式冷凍機の第1実施形態を示す構成図である。It is a lineblock diagram showing a 1st embodiment of an absorption refrigerating machine concerning the present invention. 本発明に係る吸収式冷凍機の第2実施形態を示す構成図である。It is a block diagram which shows 2nd Embodiment of the absorption refrigerator which concerns on this invention. 冷房運転低負荷時に、高温再生器のバーナの燃焼ON−OFF制御時での冷水取り出し温度を示すグラフである。It is a graph which shows the cold water taking-out temperature at the time of combustion ON-OFF control of the burner of a high temperature regenerator at the time of cooling operation low load. 冷房運転低負荷時に、冷媒ポンプON−OFF制御時での冷水取り出し温度を示すグラフである。It is a graph which shows the cold water taking-out temperature at the time of refrigerant pump ON-OFF control at the time of cooling operation low load. 制御チャート例を示すものである。It shows an example of a control chart.

符号の説明Explanation of symbols

1 高温再生器
2 バーナ
3 低温再生器
4 凝縮器
5 蒸発器
6 吸収器
7 冷媒管
8 中間吸収液管
9 高温熱交換器
10 稀吸収液管
11 冷却水管
12 冷媒ドレン熱回収器
13 冷媒液管
14 冷媒ポンプ
15 冷媒液管
16 冷媒散布器
17 冷温水管
18 吸収液散布器
19 濃吸収液ポンプ
20 濃吸収液管
21 低温熱交換器
22 稀吸収液ポンプ
23 分岐管
24 制御弁
25 入口側温度センサ
26 出口側温度センサ
27 冷媒分岐管
28 開閉弁
29 中間吸収液分岐管
30 開閉弁
31 冷媒液分岐管
32 開閉弁
33 高温再生器
34 蒸気管
35 蒸気制御弁
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Burner 3 Low temperature regenerator 4 Condenser 5 Evaporator 6 Absorber 7 Refrigerant pipe 8 Intermediate absorption liquid pipe 9 High temperature heat exchanger 10 Rare absorption liquid pipe 11 Cooling water pipe 12 Refrigerant drain heat recovery device 13 Refrigerant liquid pipe DESCRIPTION OF SYMBOLS 14 Refrigerant pump 15 Refrigerant liquid pipe 16 Refrigerant spreader 17 Cold / hot water pipe 18 Absorbed liquid spreader 19 Concentrated liquid pump 20 Concentrated liquid pipe 21 Low temperature heat exchanger 22 Rare absorbent liquid pump 23 Branch pipe 24 Control valve 25 Inlet side temperature sensor 26 outlet side temperature sensor 27 refrigerant branch pipe 28 on-off valve 29 intermediate absorbing liquid branch pipe 30 on-off valve 31 refrigerant liquid branch pipe 32 on-off valve 33 high temperature regenerator 34 steam pipe 35 steam control valve

Claims (13)

高温再生器と、低温再生器と、凝縮器と、負荷に供給する冷温水が冷温水管を介して通過する蒸発器と、吸収器と、冷媒ポンプ及び吸収液ポンプを少なくとも備えた吸収式冷凍機であって、冷房運転低負荷時に、前記高温再生器の燃焼をOFFに切り替える冷水の温度を設定温度よりも所定温度だけ高く設定したことを特徴とする吸収式冷凍機。   Absorption refrigerator comprising at least a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator through which cold / hot water supplied to a load passes through a cold / hot water pipe, an absorber, a refrigerant pump and an absorption liquid pump An absorption chiller characterized in that the temperature of cold water for switching off the combustion of the high-temperature regenerator is set higher by a predetermined temperature than the set temperature when the cooling operation is under a low load. 前記冷媒ポンプをOFFに切り替える冷水の温度を、設定温度よりも所定温度だけ低く設定したことを特徴とする請求項1に記載の吸収式冷凍機。   The absorption chiller according to claim 1, wherein the temperature of the cold water for switching off the refrigerant pump is set lower than a set temperature by a predetermined temperature. 前記冷温水管を介して蒸発器内を通過する冷水の蒸発器入口温度と出口温度との差が所定温度以下であり、且つ当該所定温度以下の状態が所定時間継続した場合に、前記冷房運転低負荷時における高温再生器の燃焼をOFFに切り替えることを特徴とする請求項1に記載の吸収式冷凍機。   When the difference between the evaporator inlet temperature and the outlet temperature of the cold water passing through the evaporator through the cold / hot water pipe is equal to or lower than a predetermined temperature and the predetermined temperature or lower continues for a predetermined time, the cooling operation is reduced. The absorption refrigerator according to claim 1, wherein combustion of the high-temperature regenerator at the time of load is switched to OFF. 請求項2と請求項3を組み合わせることにより、高温再生器の燃焼をOFFに切り替えることを特徴とする請求項1に記載の吸収式冷凍機。   The absorption refrigerating machine according to claim 1, wherein combustion of the high-temperature regenerator is switched to OFF by combining claim 2 and claim 3. 冷房能力が定格の所定割合以下となり、且つその所定割合以下の状態が所定時間継続した場合に、前記冷房運転低負荷時における高温再生器の燃焼をOFFに切り替えることを特徴とする請求項1に記載の吸収式冷凍機。   The combustion of the high-temperature regenerator at the time of the cooling operation low load is switched to OFF when the cooling capacity is equal to or less than a predetermined ratio of the rating and the state of the predetermined ratio or less continues for a predetermined time. The absorption refrigerator described. 所定時間当たりの前記高温再生器の燃焼OFFの回数、及び蒸発器に接続された冷媒ポンプのOFFの回数がいずれも所定回数以上となった場合に、前記冷房運転低負荷時における高温再生器の燃焼をOFFに切り替えることを特徴とする請求項1に記載の吸収式冷凍機。   When the number of times of combustion OFF of the high-temperature regenerator per predetermined time and the number of times of turn-off of the refrigerant pump connected to the evaporator are equal to or more than a predetermined number of times, The absorption refrigerator according to claim 1, wherein combustion is switched off. 請求項3、5、6のいずれかを2つ以上組み合わせて、前記冷房運転低負荷時における高温再生器の燃焼をOFF、又は冷媒ポンプの運転をOFFに切り替えることを特徴とする請求項1に記載の吸収式冷凍機。   A combination of any two or more of claims 3, 5 and 6, wherein the combustion of the high-temperature regenerator at the time of the cooling operation low load is turned off or the operation of the refrigerant pump is turned off. The absorption refrigerator described. 高温再生器と、低温再生器と、凝縮器と、負荷に供給する冷温水が冷温水管を介して通過する蒸発器と、吸収器と、冷媒ポンプ及び吸収液ポンプとを少なくとも備えた吸収式冷凍機であって、暖房運転低負荷時に、前記高温再生器の燃焼をOFFに切り替える温水の温度を設定温度よりも所定温度だけ低く設定したことを特徴とする吸収式冷凍機。   Absorption refrigeration comprising at least a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator through which cold / hot water supplied to a load passes through a cold / hot water pipe, an absorber, a refrigerant pump and an absorption liquid pump An absorption refrigeration machine, wherein the temperature of hot water for switching off combustion of the high-temperature regenerator is set lower than a set temperature by a predetermined temperature when the heating operation is under a low load. 前記冷温水管を介して蒸発器内を通過する温水の蒸発器入口温度と出口温度との差が所定温度以上であり、且つ当該所定温度以上の状態が所定時間継続した場合に、前記高温再生器の燃焼をOFFに切り替えることを特徴とする請求項8に記載の吸収式冷凍機。   When the difference between the evaporator inlet temperature and the outlet temperature of the hot water passing through the evaporator through the cold / hot water pipe is equal to or higher than a predetermined temperature, and the state of the predetermined temperature or higher continues for a predetermined time, the high temperature regenerator The absorption refrigerator according to claim 8, wherein the combustion of is switched to OFF. 暖房能力が定格の所定割合以上であり、且つその所定割合以上の状態が所定時間継続した場合に、前記高温再生器の燃焼をOFFに切り替えることを特徴とする請求項8に記載の吸収式冷凍機。   9. The absorption refrigeration according to claim 8, wherein when the heating capacity is equal to or higher than a predetermined ratio of the rating and the state exceeding the predetermined ratio continues for a predetermined time, the combustion of the high-temperature regenerator is switched to OFF. Machine. 所定時間当たりの前記高温再生器の燃焼OFFの回数及び蒸発器に接続された冷媒ポンプのOFFの回数がいずれも所定回数以上となった場合に、前記高温再生器の燃焼をOFFに切り替えることを特徴とする請求項8に記載の吸収式冷凍機。   The combustion of the high temperature regenerator is switched off when both the number of times the high temperature regenerator burns off per predetermined time and the number of times the refrigerant pump connected to the evaporator turns off exceed a predetermined number. The absorption refrigerator according to claim 8, wherein 請求項9、10、11のいずれかを2つ以上組み合わせて、前記高温再生器の燃焼をOFFに切り替えることを特徴とする請求項8に記載の吸収式冷凍機。   The absorption refrigerator according to claim 8, wherein two or more of any one of claims 9, 10, and 11 are combined to switch the combustion of the high-temperature regenerator to OFF. 前記高温再生器は、熱源としてバーナの燃焼に代えて蒸気又は温水が用いられることを特徴とする請求項1又は8に記載の吸収式冷凍機。   The absorption refrigerating machine according to claim 1 or 8, wherein the high-temperature regenerator uses steam or hot water as a heat source instead of burner combustion.
JP2008250813A 2008-09-29 2008-09-29 Absorption refrigerator Pending JP2010078298A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008250813A JP2010078298A (en) 2008-09-29 2008-09-29 Absorption refrigerator
CN2009101791606A CN101713597B (en) 2008-09-29 2009-09-29 Absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008250813A JP2010078298A (en) 2008-09-29 2008-09-29 Absorption refrigerator

Publications (1)

Publication Number Publication Date
JP2010078298A true JP2010078298A (en) 2010-04-08

Family

ID=42208950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008250813A Pending JP2010078298A (en) 2008-09-29 2008-09-29 Absorption refrigerator

Country Status (2)

Country Link
JP (1) JP2010078298A (en)
CN (1) CN101713597B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020808A (en) * 2015-10-05 2016-02-04 東芝三菱電機産業システム株式会社 Fluid spray device
JP2019190707A (en) * 2018-04-24 2019-10-31 パナソニックIpマネジメント株式会社 Absorptive refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6754981B2 (en) * 2016-05-16 2020-09-16 パナソニックIpマネジメント株式会社 Absorption chiller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454178A (en) * 1987-08-26 1989-03-01 Sanyo Electric Co Float valve for absorption refrigerator
JP2000274864A (en) * 1999-03-19 2000-10-06 Sanyo Electric Co Ltd Method for controlling absorption refrigerator
JP2006057991A (en) * 2004-07-23 2006-03-02 Kawasaki Thermal Engineering Co Ltd Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation
JP2006183959A (en) * 2004-12-28 2006-07-13 Kawasaki Thermal Engineering Co Ltd Method for controlling temperature of cooling water in absorption type water cooler/heater and absorption type water cooler/heater
JP2007278540A (en) * 2006-04-03 2007-10-25 Sanyo Electric Co Ltd Absorption cold/hot water combined supplying device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3732877B2 (en) * 1995-09-29 2006-01-11 三洋電機株式会社 Absorption refrigerator control method and control apparatus
KR0177718B1 (en) * 1996-03-26 1999-04-15 구자홍 Ammonia absorptive cooler/heater
JP2001012820A (en) * 1999-06-29 2001-01-19 Hitachi Ltd Absorption hot and chilled water generator, and method for operating the same
JP2002295917A (en) * 2001-03-28 2002-10-09 Sanyo Electric Co Ltd Control method for absorption freezer
JP2003279186A (en) * 2002-03-26 2003-10-02 Sanyo Electric Co Ltd Absorption type refrigerator and method for controlling same
JP3883894B2 (en) * 2002-03-28 2007-02-21 三洋電機株式会社 Absorption refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454178A (en) * 1987-08-26 1989-03-01 Sanyo Electric Co Float valve for absorption refrigerator
JP2000274864A (en) * 1999-03-19 2000-10-06 Sanyo Electric Co Ltd Method for controlling absorption refrigerator
JP2006057991A (en) * 2004-07-23 2006-03-02 Kawasaki Thermal Engineering Co Ltd Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation
JP2006183959A (en) * 2004-12-28 2006-07-13 Kawasaki Thermal Engineering Co Ltd Method for controlling temperature of cooling water in absorption type water cooler/heater and absorption type water cooler/heater
JP2007278540A (en) * 2006-04-03 2007-10-25 Sanyo Electric Co Ltd Absorption cold/hot water combined supplying device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020808A (en) * 2015-10-05 2016-02-04 東芝三菱電機産業システム株式会社 Fluid spray device
JP2019190707A (en) * 2018-04-24 2019-10-31 パナソニックIpマネジメント株式会社 Absorptive refrigerator
JP2022066605A (en) * 2018-04-24 2022-04-28 パナソニックIpマネジメント株式会社 Absorption type refrigerator and control method for absorption type refrigerator
JP7365612B2 (en) 2018-04-24 2023-10-20 パナソニックIpマネジメント株式会社 Absorption chiller, absorption chiller control method and controller

Also Published As

Publication number Publication date
CN101713597A (en) 2010-05-26
CN101713597B (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP2006343042A (en) Operating method for single/double effect absorption refrigerating machine
JP4551233B2 (en) Absorption-type refrigerator control method and absorption-type refrigerator installation for controlling cooling water temperature in conjunction with cooling load control operation
JP2002147885A (en) Absorption refrigerating machine
JP5390426B2 (en) Absorption heat pump device
JP2008116173A (en) Absorption type refrigerating machine
JP2010078298A (en) Absorption refrigerator
JP2009243706A (en) Absorption heat pump
JP4901655B2 (en) Absorption chiller / heater
KR102010832B1 (en) Low load control system for 2-stage low temperature hot water absorption chiller
JP6603066B2 (en) Waste heat input type absorption chiller / heater
JP2001099474A (en) Air conditioner
JP4079570B2 (en) Control method of absorption refrigerator
JP2650654B2 (en) Absorption refrigeration cycle device
KR20030078703A (en) Absorption type refrigerator
JP5456368B2 (en) Absorption refrigerator
JP4278315B2 (en) Absorption refrigerator
JP6765056B2 (en) Absorption chiller
JP2005300069A (en) Absorption refrigerating machine
JP2011202948A (en) Absorption refrigerating machine
JP2011220675A (en) Absorption refrigerating machine
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP2022044138A (en) Absorption type refrigeration system and absorption type refrigerator
KR0136049Y1 (en) Absorption room cooler
JP4115020B2 (en) Control method of absorption refrigerator
JP3735744B2 (en) Cooling operation control method for absorption air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107