JP2006057991A - Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation - Google Patents
Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation Download PDFInfo
- Publication number
- JP2006057991A JP2006057991A JP2005028864A JP2005028864A JP2006057991A JP 2006057991 A JP2006057991 A JP 2006057991A JP 2005028864 A JP2005028864 A JP 2005028864A JP 2005028864 A JP2005028864 A JP 2005028864A JP 2006057991 A JP2006057991 A JP 2006057991A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- cooling water
- temperature
- control
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
本発明は、吸収式冷凍機の冷房負荷制御運転に連動させて冷却水温度を制御することにより、システム全体の省エネルギーを図ることができる吸収式冷凍機制御方法及びこの方法を実施する吸収式冷凍機設備に関するものである。なお、吸収式冷凍機には吸収式冷温水機をも含むものとする。 The present invention relates to an absorption chiller control method capable of saving energy of the entire system by controlling the cooling water temperature in conjunction with the cooling load control operation of the absorption chiller, and an absorption refrigeration implementing this method. It relates to machine equipment. The absorption refrigerator includes an absorption chiller / heater.
従来から、蒸気式二重効用吸収冷凍機として、図8に例示したようなものが知られている。この吸収冷凍機は、吸収液(例えば、臭化リチウム水溶液)が吸収器aから低温再生器cを経て高温再生器eに流されるというリバースサイクルを構成している。この吸収冷凍機における吸収サイクルを説明すると、まず、吸収器aで多量の冷媒蒸気を吸収して濃度が薄められた吸収液(稀吸収液)が吸収器aから低温熱交換器bに送給され、この低温熱交換器bにより加熱された後に低温再生器cに送給される。前記稀吸収液は、この低温再生器cにおいて低温再生され、吸収している冷媒の一部を放出し濃度がその分高くなって中間濃度の吸収液(中間吸収液)となる。次に、この中間吸収液は、低温再生器cから高温熱交換器dに送給され、この高温熱交換器dにより加熱された後に高温再生器eに送給される。 Conventionally, what is illustrated in FIG. 8 is known as a vapor | steam type double effect absorption refrigerator. This absorption refrigerator constitutes a reverse cycle in which an absorption liquid (for example, an aqueous solution of lithium bromide) flows from the absorber a to the high temperature regenerator e through the low temperature regenerator c. The absorption cycle in this absorption refrigerator will be explained. First, an absorption liquid (a rare absorption liquid) whose concentration has been reduced by absorbing a large amount of refrigerant vapor in the absorber a is supplied from the absorber a to the low-temperature heat exchanger b. Then, after being heated by the low-temperature heat exchanger b, it is fed to the low-temperature regenerator c. The rare absorbent is regenerated at a low temperature in the low temperature regenerator c, and a part of the absorbed refrigerant is released, and the concentration is increased by that amount to become an intermediate concentration absorbent (intermediate absorbent). Next, the intermediate absorbent is fed from the low temperature regenerator c to the high temperature heat exchanger d, heated by the high temperature heat exchanger d, and then fed to the high temperature regenerator e.
前記中間吸収液は、この高温再生器eにおいて高温再生され、吸収している冷媒(例えば、水蒸気)の一部を放出し濃度がさらに高くなって高濃度の吸収液(濃吸収液)となる。そして、この濃吸収液が前記高温熱交換器dの加熱側に前記中間吸収液を加熱する加熱源として戻され、さらに、低温熱交換器bの加熱側に前記稀吸収液を加熱する加熱源として戻された後、前記吸収器aに帰還する。この帰還した濃吸収液は吸収器aにおいて伝熱管上に散布され、冷却水により冷却されながら再び冷媒蒸気を吸収して前記稀吸収液となる。 The intermediate absorption liquid is regenerated at a high temperature in the high temperature regenerator e, and a part of the absorbed refrigerant (for example, water vapor) is released to further increase the concentration to become a high concentration absorption liquid (concentrated absorption liquid). . The concentrated absorbent is returned to the heating side of the high temperature heat exchanger d as a heating source for heating the intermediate absorbent, and further the heating source for heating the rare absorbent on the heating side of the low temperature heat exchanger b. Is returned to the absorber a. The returned concentrated absorbing liquid is sprayed on the heat transfer tube in the absorber a and absorbs the refrigerant vapor again while being cooled by the cooling water to become the rare absorbing liquid.
このような蒸気式二重効用吸収冷凍機においては、前記高温再生器eには蒸気ボイラfから高温の蒸気(スチーム)が加熱源として供給されるようになっており、この蒸気により中間吸収液が加熱されて吸収していた冷媒が放出され、この放出された冷媒蒸気は、低温再生器cにこの低温再生器cでの加熱源として利用された後、凝縮器gに戻されて凝縮する。凝縮器gからの冷媒液(例えば、水)は蒸発器hに入り、この凝縮した冷媒液が冷媒ポンプにより蒸発器hの伝熱管(水が流通している)に散布され蒸発潜熱により冷却されて冷水が得られる。
また、低温再生器cからの吸収液配管iと、高温熱交換器dと低温熱交換器bとの間の加熱側の吸収液配管jとを接続するバイパス管kが設けられ、低温再生器cを出て高温再生器eへ供給される中間濃縮吸収液の一部を、吸収器aへ戻る濃吸収液配管にバイパスさせるように構成されている。
In such a steam double effect absorption refrigerator, high-temperature steam (steam) is supplied from the steam boiler f to the high-temperature regenerator e as a heating source. The refrigerant that was absorbed by heating is released, and the discharged refrigerant vapor is used as a heating source in the low-temperature regenerator c by the low-temperature regenerator c, and then returned to the condenser g to condense. . The refrigerant liquid (for example, water) from the condenser g enters the evaporator h, and the condensed refrigerant liquid is sprayed on the heat transfer pipe (water is circulating) of the evaporator h by a refrigerant pump and cooled by latent heat of evaporation. Cold water is obtained.
In addition, a bypass pipe k is provided to connect the absorption liquid pipe i from the low temperature regenerator c and the heating side absorption liquid pipe j between the high temperature heat exchanger d and the low temperature heat exchanger b. A part of the intermediate concentrated absorbent that exits c and is supplied to the high-temperature regenerator e is bypassed to the concentrated absorbent pipe that returns to the absorber a.
ボイラは通常、単独で運転する場合の制御は、外部の負荷変化によって変化するボイラ出口部の蒸気圧力変化を検出して、蒸気圧力が定められた圧力範囲内に入るように燃焼量を制御している。また、運転中はボイラ内の保有水が定められた水位の範囲内に入るよう給水ポンプを発停制御して水位を制御している。
一方、図8に示すような従来の吸収冷凍機においては、外部の負荷変化によって変化する冷凍機出口部又は入口部の冷水温度変化を検出して、冷凍機出口部又は入口部の温度が定められた温度になるよう、供給される熱源の量を制御している。
Normally, when a boiler is operated independently, the steam pressure at the outlet of the boiler, which changes due to external load changes, is detected, and the combustion amount is controlled so that the steam pressure falls within the specified pressure range. ing. During operation, the water level is controlled by controlling the water supply pump so that the water held in the boiler falls within a predetermined water level range.
On the other hand, in the conventional absorption refrigerator as shown in FIG. 8, the temperature of the refrigerator outlet or inlet is determined by detecting a change in the chilled water temperature at the outlet or inlet of the refrigerator that changes due to an external load change. The amount of the heat source to be supplied is controlled so as to reach the specified temperature.
上記のボイラと吸収冷凍機については、インターロックを組んで連動運転をするなどの運転システムがあるが、制御はそれぞれ独立しているのが通常の運転システムである。ボイラは内部圧力が大気圧を越える圧力容器に該当し、吸収冷凍機は内部圧力が大気圧力以下の真空容器に該当する。このため、従来は両者を一体にして運転、制御することなどは無理なこととしてあきらめられていた。
しかし、環境問題などから、さらに省エネルギーとなる冷凍機の開発が求められており、今回開発された本発明における冷凍機は、時代の要請に応えたものとなっている。
吸収冷凍機は、内部を循環し熱エネルギーの交換をする媒体として、例えば臭化リチウム水溶液を保有している。一般的には吸収液と呼ばれ、冷媒となる水を吸収、蒸発させることによって冷房効果を発揮するように構成されている。
As for the above boiler and absorption refrigerator, there is an operation system such as interlocking operation with an interlock, but the normal operation system has independent control. A boiler corresponds to a pressure vessel whose internal pressure exceeds atmospheric pressure, and an absorption refrigerator corresponds to a vacuum vessel whose internal pressure is below atmospheric pressure. For this reason, it has been conventionally given up that it is impossible to operate and control the two together.
However, development of a refrigerator that further saves energy is required due to environmental problems and the like, and the refrigerator according to the present invention developed this time meets the needs of the times.
The absorption refrigerator has, for example, an aqueous lithium bromide solution as a medium for circulating inside and exchanging heat energy. Generally called absorption liquid, it is configured to exhibit a cooling effect by absorbing and evaporating water as a refrigerant.
従来から、吸収冷温水機において、冷却水流量を冷温水機出口温度を判断条件として制御し、省エネルギーを図る冷却水流量制御方法が知られている(例えば、特許文献1参照)。また、三重効用形吸収冷温水機において、貫流ボイラ方式の高温再生器の液面を最適に制御する方式が知られている(例えば、特許文献2参照)。さらに、吸収式冷凍機において、再生器の温度、圧力、濃度を検出し、最も大きい制御値から冷却水流量を決定する省エネルギー運転方法が知られている(例えば、特許文献3参照)。
しかし、上記の特許文献1においては、冷却水流量を減少させると吸収冷温水機出口部での冷却水出口温度が上昇し、当然吸収冷温水機内の吸収液温度が上がって再生器の圧力があがるので、連続して運転を継続するためには吸収冷温水機内の再生器温度・圧力も同時に監視し、制御する必要がある。しかし、それらを監視・制御して、かつ運転を継続する方法については、この特許文献1に述べられていない。すなわち、冷却水流量の制御に主眼が置かれ、冷温水機の制御は安全監視程度で、省エネルギー運転を継続する方法については述べられていない。
また、上記の特許文献2においては、主に、安全面から見た制御を中心とした液面制御方法が記載されているが、省エネルギー運転の面から液面を制御する方法については述べられていない。
However, in the above-mentioned
Further, in the above-mentioned
また、上記の特許文献3においては、再生器の温度、圧力、濃度を検出しても吸収液を加熱濃縮する再生器の液溜り量又は液面を無視して冷却水の循環量を増減することは、高温再生器本体の過熱及び空缶運転をする恐れがある。安全に連続して運転を継続するためには、再生器の温度、圧力濃度の検出よりも先に、再生器の液溜り量又は液面を維持する制御と監視が必要になる。省エネルギー運転のための検出条件として効果があるが、連続して安全な運転を継続するための制御については述べられていない。また、負荷が高いが冷却水温度(外気温度)が低い場合の制御については述べられていない。 Further, in the above-mentioned Patent Document 3, even if the temperature, pressure, and concentration of the regenerator are detected, the circulation amount of the cooling water is increased or decreased by ignoring the liquid pool amount or the liquid level of the regenerator that heats and concentrates the absorbing liquid. This may cause overheating of the high-temperature regenerator body and empty can operation. In order to continue operation safely and continuously, it is necessary to control and monitor the amount of liquid pool or level of the regenerator before detecting the temperature and pressure concentration of the regenerator. Although effective as a detection condition for energy-saving operation, control for continuously continuing safe operation is not described. Further, there is no description about control when the load is high but the cooling water temperature (outside air temperature) is low.
一般的な空調では、起動から停止までの間の冷房運転のほとんどが部分負荷で運転している。性能を落とさずに省エネルギー運転をする有効策として、部分負荷運転時の省エネルギーを図ることが有効と考えられる。特に電力消費量を削減する運転制御方法、及び部分負荷効率を改善する制御システムを構築することが有効になる。ガス、油、蒸気などを熱源とする吸収式冷凍機は多重効用の原理を採用したサイクルで運転され、成績係数は1を越えているが、ポンプなど周辺の動力機器は効率100%を越えることはない。そこで、定格負荷運転時以外は負荷に合わせて冷却水循環量を変流量運転することが、電力削減につながり省エネルギー効果が大きい。 In general air conditioning, most of the cooling operation from start to stop is operated with a partial load. As an effective measure for energy saving operation without reducing performance, it is considered effective to save energy during partial load operation. In particular, it is effective to construct an operation control method that reduces power consumption and a control system that improves partial load efficiency. Absorption chillers that use gas, oil, steam, etc. as the heat source are operated in a cycle that employs the principle of multiple effects, and the coefficient of performance exceeds 1, but the peripheral power equipment such as pumps exceeds 100% efficiency. There is no. Therefore, variable-flow operation of the cooling water circulation amount according to the load, except during rated load operation, leads to a reduction in electric power and a large energy saving effect.
吸収式冷凍機の省エネルギーもさることながら、周辺の動力機器の省エネルギーを図りながら運転する方が、システムとして効率が上がり、省エネルギー効果が上がることに着目し、省エネルギー運転方案を提案する。しかし一方で、吸収式冷凍機の部分負荷運転時に冷却水流量などを制御してしまうと、吸収式冷凍機本体の省エネルギー性が薄れてしまうデメリットもある。
そこで、本発明では、吸収式の部分負荷運転時に、吸収式冷凍機からの制御信号で冷却塔ファンモータの運転を制御し、外気による冷却効果を利用して冷却水温度を吸収式の部分負荷運転に最適となるように温度設定を変えて運転することができるようにした制御方法及び吸収式冷凍機を提案する。冷房負荷と冷却水温度の一般的な関係は表1に示すごとくである。
In addition to the energy saving of the absorption chiller, we will propose an energy saving operation plan, paying attention to the fact that the operation while saving energy of the surrounding power equipment increases the efficiency and energy saving effect as a system. However, on the other hand, if the cooling water flow rate or the like is controlled during the partial load operation of the absorption chiller, there is a demerit that the energy saving performance of the absorption chiller body is reduced.
Therefore, in the present invention, during the absorption partial load operation, the operation of the cooling tower fan motor is controlled by the control signal from the absorption refrigerator, and the cooling water temperature is absorbed by the cooling effect by the outside air. Proposed are a control method and an absorption chiller that can be operated at different temperature settings so as to be optimal for operation. The general relationship between the cooling load and the cooling water temperature is as shown in Table 1.
また、負荷が変動する運転条件での吸収式冷凍機と周辺機器の一般的な制御動作は、表2に示すごとくである。 Table 2 shows general control operations of the absorption chiller and peripheral devices under operating conditions in which the load fluctuates.
夏期の最盛期1週間程度は冷房負荷、冷却水温度ともに最高となる日が続くが、それ以外の夏期、中間期は、用途により若干の差異はある。しかし、負荷が高い日であっても冷却水温度は最盛期より低くなる。特に朝晩の温度は低く、ほぼ全ての用途で冷却水温度制御を行っている。この制御は、吸収式冷凍機の制御とは別回路で独立した制御方式として採られている。
冷却水温度制御では、ファン発停のみの場合や三方弁制御の場合、又はその両者を併用する場合などがあるが、そのいずれの場合でも、冷却水温度の冷え過ぎを防止するための制御で、吸収式冷凍機の負荷率による加熱量制御とは分離した制御を行っている。なお、夏の最盛期に、冷却水を定格温度まで冷却する能力を有する冷却塔と吸収式冷凍機が1対1の組合せの場合を想定している。
The day when the cooling load and the cooling water temperature become the highest continues for about one week in the heyday of summer, but there are some differences depending on the use in other summer and intermediate periods. However, even on a day with a high load, the cooling water temperature is lower than the peak. The morning and evening temperatures are particularly low, and the cooling water temperature is controlled in almost all applications. This control is adopted as a control method independent of the control of the absorption refrigerator by a separate circuit.
In cooling water temperature control, there are cases of fan on / off only, three-way valve control, or a combination of both, but in either case, control to prevent overcooling of the cooling water temperature. The heating amount control by the load factor of the absorption refrigerator is performed separately from the control. It is assumed that the cooling tower having the ability to cool the cooling water to the rated temperature and the absorption refrigerator are in a one-to-one combination at the peak of summer.
冷却水の温度は、従来の制御ではあらかじめ設定した温度近辺で一定になるように制御されている。それは、冷却塔ファンモータの発停制御、又はそれに加えて冷却塔へ行く冷却水量の一部をバイパスさせる三方弁制御などの手段を用いている。冷却水の温度制御は外気による冷却効果を利用しているため、冷却水温度が一定になるよう制御しており、負荷が高いが外気温度が低い時や、冷房負荷が低いが外気温度が高い時などいろいろな運転パターンでも単純な冷却水温度一定の制御を採用している。
最近の制御方式の中には、負荷の増減に合わせて、冷却水流量を変化させる変流量制御や、同時に冷水流量を変化させる変流量制御を組み合せて制御する方法が、冷却塔ファンモータによる冷却水温度制御に加えて採用される場合もある。また、冷却水流量の変化及び冷水流量の変化は、吸収式冷凍機の制御信号を利用して、吸収冷温水機の加熱量制御による冷水出口温度制御と併用されることが知られている。
In the conventional control, the temperature of the cooling water is controlled to be constant around a preset temperature. It uses means such as a start / stop control of the cooling tower fan motor, or a three-way valve control for bypassing a part of the cooling water amount going to the cooling tower. Because the cooling water temperature control uses the cooling effect of the outside air, the cooling water temperature is controlled to be constant. When the load is high but the outside air temperature is low, or when the cooling load is low but the outside air temperature is high Simple control of the cooling water temperature is adopted even in various operation patterns such as time.
Among the recent control methods, the cooling tower fan motor cooling is a combination of variable flow control that changes the cooling water flow rate and variable flow control that changes the cooling water flow rate as the load increases and decreases. It may be used in addition to water temperature control. Further, it is known that the change of the cooling water flow rate and the change of the cold water flow rate are used in combination with the cold water outlet temperature control by the heating amount control of the absorption cold water heater using the control signal of the absorption chiller.
解決しようとする問題点は、上記従来の方式においても、冷却水温度制御は、吸収式冷凍機の制御とは別に独立した設備側の制御回路からの制御信号で制御されているため、吸収式冷凍機の効率(省エネルギー運転)に配慮した最適制御にはなっていない点である。 The problem to be solved is that the cooling water temperature control is controlled by a control signal from an independent control circuit separately from the control of the absorption chiller, even in the above-described conventional method. This is not optimal control considering the efficiency (energy saving operation) of the refrigerator.
一般的な冷房運転の例では、夏場の最盛期1週間程度を乗りきれば、あとはほとんどの運転時間帯で冷水と冷却水の温度制御を行っていると言える。すなわち冷水、冷却水の冷え過ぎ防止の制御をしている。その冷水、冷却水温度制御を行っている時間帯で、負荷変化とのバランスを取りながら冷却水の流量制御と温度制御を行って、冷却水ポンプ動力と冷却塔ファン動力の運転動力費用を削減するようにすることが最も省エネルギー省コストに効果のある使い方となる。 In the case of general cooling operation, it can be said that the temperature control of the cold water and the cooling water is performed in almost all operation hours if the summer season is reached for about one week. In other words, cold water and cooling water are controlled to prevent overcooling. During the time period during which the cooling water and cooling water temperature are controlled, the cooling water flow control and temperature control are performed while balancing the load change, reducing the operating power costs of the cooling water pump power and cooling tower fan power. This is the most effective way to save energy and costs.
さらに加えて、低負荷運転領域で加熱量制御により加熱熱源を遮断して、内部に保有する冷媒の蒸発熱を利用する蓄熱冷媒運転時においても、冷媒として蓄熱されている冷熱を有効に利用して、低負荷運転領域で加熱熱源を遮断している時でも、冷水温度制御ができるようにして、低負荷運転時の効率を上げ、100%から極低負荷運転領域まで広い運転領域で高効率な運転が可能となるように、冷却水温度も吸収式冷凍機から発信する制御信号で制御するようにして従来の制御よりさらに部分負荷運転特性と部分負荷効率を良くするような新規な制御を加えた制御方法及び吸収式冷凍機設備が本発明の特徴である。 In addition, in the low-load operation region, the heat source is shut off by controlling the heating amount, and the cold energy stored as the refrigerant is effectively used even during the heat storage refrigerant operation that uses the heat of evaporation of the refrigerant held inside. Even when the heating heat source is shut off in the low-load operation area, the chilled water temperature can be controlled to increase the efficiency during low-load operation, and high efficiency in a wide operation area from 100% to the extremely low-load operation area New control to improve the partial load operating characteristics and partial load efficiency over the conventional control by controlling the cooling water temperature with the control signal transmitted from the absorption chiller so that it can be operated smoothly. The added control method and absorption chiller equipment are features of the present invention.
したがって、本発明は、吸収式冷凍機の制御に加えて冷却水温度の制御も吸収式冷凍機側に加えて、吸収式冷凍機の制御だげでなく、周辺機器である冷却水ポンプ動力の制御と冷却塔ファンの制御を行い、大幅な省エネルギー運転と部分負荷運転時の吸収式冷凍機の特性、効率を改善しようとする制御方法及び吸収式冷凍機設備を最も主要な特徴としている。 Therefore, the present invention provides not only control of the absorption chiller in addition to control of the absorption chiller, but also control of the cooling chiller pump power, which is a peripheral device. The main feature is the control method and the absorption chiller equipment that improve the characteristics and efficiency of the absorption chiller at the time of significant energy saving operation and partial load operation by controlling the cooling tower fan.
本発明の吸収式冷凍機制御方法は、燃料の燃焼により吸収液を加熱する構造の再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを少なくとも有する吸収式冷温水機と設備(又は装置)において、冷水出口温度を制御する加熱量制御信号を利用して冷却水ポンプの循環量を100%から50%の範囲で制御し、冷房負荷が50%以下となり0〜30%の範囲で加熱量がゼロになると、冷却水量を30〜40%の最低流量まで低下させ、加熱量ゼロ信号、すなわち燃焼停止信号を利用して冷却水流量を最低流量に変更する信号を出すことを特徴としている。なお、周辺機器である冷却水ポンプ、冷却塔等は吸収式冷凍機とは別に設けられている設備であるので、これらを併わせて吸収式冷凍機と設備、又は吸収式冷凍機設備と称する。 The absorption chiller control method of the present invention includes a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution pump, a refrigerant pump, a cooling water pump, In an absorption chiller / heater and equipment (or apparatus) having at least a water pump, a cooling tower and a cooling tower fan motor, the circulating amount of the cooling water pump is reduced from 100% using a heating amount control signal for controlling the chilled water outlet temperature. When the control is performed in the range of 50%, and the cooling load becomes 50% or less and the heating amount becomes zero in the range of 0 to 30%, the cooling water amount is reduced to the minimum flow rate of 30 to 40%, and the heating amount zero signal, that is, combustion The stop signal is used to output a signal for changing the coolant flow rate to the minimum flow rate. In addition, since the peripheral equipment such as the cooling water pump and the cooling tower are facilities provided separately from the absorption chiller, they are collectively referred to as an absorption chiller and a facility, or an absorption chiller facility. .
また、本発明の方法は、燃料の燃焼により吸収液を加熱する構造の再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを少なくとも有する吸収式冷温水機と設備において、冷房負荷が50%以下となり0〜30%の範囲で加熱量がゼロになった場合は、冷水出口温度の下がり過ぎを防止するために冷媒ポンプを発停制御運転し、この時、冷水出口温度が冷媒ポンプの発停により上下変動しないように、また冷水出口温度が安定するようにするために、冷却水温度で冷水出口温度が安定するように冷却塔ファンモータの運転を制御し、冷水が下がり過ぎれば冷却塔ファンの運転を止め、冷水温度が上がれば冷却塔ファンを運転するように冷却塔ファンモータの回転数制御及び発停制御する制御信号を吸収式冷凍機から出すことを特徴としている。 Further, the method of the present invention includes a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution pump, a refrigerant pump, a cooling water pump, a cold / hot water pump having a structure for heating an absorbing liquid by burning fuel. In an absorption chiller / heater and equipment having at least a cooling tower and a cooling tower fan motor, if the cooling load is 50% or less and the heating amount becomes zero in the range of 0 to 30%, the chilled water outlet temperature is too low. In order to prevent this, the refrigerant pump is controlled to start / stop. Control the operation of the cooling tower fan motor so that the outlet temperature is stable, stop the cooling tower fan operation if the chilled water falls too low, and operate the cooling tower fan motor if the chilled water temperature rises It is characterized by issuing a control signal for speed control and start-stop control from the absorption refrigerator.
また、本発明の方法は、燃料の燃焼により吸収液を加熱する構造の再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを少なくとも有する吸収式冷温水機と設備において、冷房負荷が50%以下となり0〜30%の範囲で加熱量がゼロになった場合は、冷水出口温度の下がり過ぎを防止するために冷水出口温度の設定温度を上げ、負荷側の冷え過ぎを防止すると同時に、吸収冷温水機内に保有する蓄熱冷媒の冷熱を有効に利用して省エネルギー運転を継続させるように、冷水制御の設定温度を自動的に変動させることを特徴としている。 Further, the method of the present invention includes a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution pump, a refrigerant pump, a cooling water pump, a cold / hot water pump having a structure for heating an absorbing liquid by burning fuel. In an absorption chiller / heater and equipment having at least a cooling tower and a cooling tower fan motor, if the cooling load is 50% or less and the heating amount becomes zero in the range of 0 to 30%, the chilled water outlet temperature is too low. In order to prevent this, the chilled water outlet temperature is raised to prevent over-cooling on the load side, and at the same time, the chilled water control is implemented so that energy-saving operation is continued by effectively using the cold energy of the heat storage refrigerant in the absorption chiller The set temperature is automatically changed.
また、本発明の方法は、燃料の燃焼により吸収液を加熱する構造の再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを少なくとも有する吸収式冷温水機と設備において、冷房負荷が50%以下となり0〜30%の範囲で加熱量がゼロになった場合は、冷水出口温度の下がり過ぎを防止するために冷水出口温度の設定温度を上げ(例えば、冷水温度設定を7℃から10℃や12℃に上げる)、同時に、冷却水温度の設定温度を冷水出口温度の設定温度と同じか、又は近辺まで下げて、冷却水温度低下による冷却効果で、吸収式冷凍機の冷房運転ができる範囲を増やし、加熱熱源を利用した冷房運転時間を少なくなるようにして省エネルギー効果を高めることを特徴としている。具体的な効果として、外気の冷却熱を利用した吸収式冷凍機の冷房運転(フリークーリング)が可能になる。 Further, the method of the present invention includes a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution pump, a refrigerant pump, a cooling water pump, a cold / hot water pump having a structure for heating an absorbing liquid by burning fuel. In an absorption chiller / heater and equipment having at least a cooling tower and a cooling tower fan motor, if the cooling load is 50% or less and the heating amount becomes zero in the range of 0 to 30%, the chilled water outlet temperature is too low. In order to prevent, raise the set temperature of the chilled water outlet temperature (for example, raise the chilled water temperature setting from 7 ° C. to 10 ° C. or 12 ° C.), and at the same time, set the cooling water temperature set temperature equal to the set temperature of the chilled water outlet temperature, Or, it can be lowered to the vicinity to increase the range in which the cooling operation of the absorption chiller can be performed by the cooling effect due to the cooling water temperature decrease, and the cooling operation time using the heating heat source can be reduced to increase the energy saving effect. It is characterized in. As a specific effect, the cooling operation (free cooling) of the absorption refrigerator using the cooling heat of the outside air becomes possible.
以下、このフリークーリングについて説明する。外気温度が低い時に冷凍機をバイパスして冷却塔に冷水を流して、外気による冷房運転が可能になることが良く知られている。冷水を直接冷却塔に流すと、冷水系配管に外気の汚れを持ち込む懸念があり、外気冷房する場合には密閉式冷却塔を使用するか、又は間に熱交換器を入れて間接的に冷却する方式が一般的である。吸収冷凍機をバイパスさせず、通常の運転サイクルのままでフリークーリングができると、省エネルギー面でのメリットに加え設備面でも大きなメリットがある。
従来、このような運転を行うと、冷凍機側内部を循環する吸収液、冷媒の保有水量のバランスがくずれ、冷媒ポンプのキャビテーションや吸収液の結晶などさまざまなトラブルを引き起こす恐れがあり、無理な運転は避けるようメーカー側から通知していた。しかし、最近の冷凍機は省エネルギー化が進み、運転中の吸収液濃度も低くして運転する傾向にある。また、冷凍機の運転を制御する運転盤及び制御盤の制御機能も、電子化により各段に上昇・進歩し、温度監視や複雑なコントロールも比較的容易に行うことが可能になった。
Hereinafter, this free cooling will be described. It is well known that when the outside air temperature is low, the refrigerator is bypassed and cold water is allowed to flow through the cooling tower to enable cooling operation by outside air. If chilled water is flowed directly to the cooling tower, there is a concern that dirt from outside air may be brought into the chilled water system piping. When cooling the outside air, use a closed cooling tower or indirectly cool it with a heat exchanger in between. The method to do is common. If free cooling can be performed in the normal operation cycle without bypassing the absorption chiller, there is a great merit in terms of equipment as well as energy saving.
Conventionally, if such an operation is performed, there is a risk that the balance between the absorption liquid circulating inside the refrigerator and the amount of water held in the refrigerant will be lost, and various problems such as cavitation of the refrigerant pump and crystals of the absorption liquid may occur. The manufacturer notified them to avoid driving. However, recent refrigerators are becoming more energy efficient and tend to operate with a lower absorbent concentration during operation. In addition, the operation panel for controlling the operation of the refrigerator and the control function of the control panel have been increased and advanced to each stage by computerization, and it has become possible to perform temperature monitoring and complex control relatively easily.
これら最近の傾向を前向きに取り込んでいくと、かなり複雑な制御が可能となり、結晶防止やキャビテーション防止のセンサを多数取り入れることが、標準の盤でも比較的容易に行えるようになる。従来のフリークーリングだと、冷水温度は外気による影響を強く受けるので、安定した冷水を確保することが難しく、お天気次第になってしまうので、省エネルギーになることは分かっていても積極的に採用しにくく、この事がフリークーリングが普及しにくい原因となっている。
このような背景から、吸収式冷凍機をうまく使いこなすことを考えると、中間期や低負荷時にはフリークーリング運転を主と考えて、バックアップ用に燃焼装置を利用するような運転方法が非常に有効な運転手法となる。冷凍機側で対処することは、低負荷運転が続くと、吸収液濃度が低下し吸収力が低下する。しかし、冷却水温度を下げてやれば、そこそこの吸収力が維持でき、冷媒ポンプを回せば、そこそこの冷水温度を維持することができる。
ここで問題になるのは、低負荷運転を長時間続けると冷媒溜りの冷媒が空になり、冷媒ポンプの運転が継続できなくなることであるが、冷媒液面、冷媒温度、冷媒ポンプの電流値又はポンプ軸受けの振動などを検知して、断続的に燃焼運転を繰り返すことで所定の冷媒を再生し、冷媒ポンプの運転に必要な冷媒量を確保することができる。冷水温度が下がり過ぎた場合は、当然冷媒ポンプの運転を止め、冷却水温度の設定を上げる。この繰返しで低負荷運転時のフリークーリング運転が継続できるようになる。
By incorporating these recent trends in a positive manner, it becomes possible to perform fairly complex control, and it becomes relatively easy to incorporate many sensors for preventing crystallization and cavitation even with a standard board. With conventional free cooling, the cold water temperature is strongly influenced by the outside air, so it is difficult to secure stable cold water and it depends on the weather, so it is difficult to actively adopt even if you know that it will save energy This is the reason why free cooling is difficult to spread.
Given this background, considering the good use of absorption refrigerators, it is very effective to use a combustion device for backup, considering free-cooling operation mainly during intermediate periods and low loads. It becomes a driving method. The countermeasure on the refrigerator side is that when the low-load operation continues, the concentration of the absorbing solution decreases and the absorbing power decreases. However, if the cooling water temperature is lowered, moderate absorption power can be maintained, and if the refrigerant pump is turned, moderate cooling water temperature can be maintained.
The problem here is that if the low-load operation is continued for a long time, the refrigerant in the refrigerant pool is emptied and the operation of the refrigerant pump cannot be continued, but the refrigerant liquid level, the refrigerant temperature, the current value of the refrigerant pump Alternatively, it is possible to regenerate a predetermined refrigerant by detecting the vibration of the pump bearing and the like and intermittently repeating the combustion operation to secure the amount of refrigerant necessary for the operation of the refrigerant pump. If the chilled water temperature is too low, naturally the refrigerant pump is stopped and the cooling water temperature is set higher. By repeating this, free cooling operation during low load operation can be continued.
また、本発明の方法は、燃料の燃焼により吸収液を加熱する構造の再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを少なくとも有する吸収式冷温水機と設備において、前記4番目の発明(請求項4)の状態を永く継続すると、吸収式冷凍機内部に溜まっている蓄熱冷媒は蒸発して冷熱を得ることができなくなり、循環する冷媒が不足して冷媒ポンプがキャビテーションを起すので、冷媒ポンプの吸入口又は吐出口に取り付けた振動検知センサー又は冷媒の温度又は冷媒ポンプの温度を検知する温度センサーの検知信号により冷媒ポンプを止め、この時、冷水温度が上昇し設定温度を超えた場合には自動的に通常の加熱制御運転に戻り冷房負荷運転及び冷媒溜りへ凝縮冷媒を溜める蓄冷運転に入ることを特徴としている。 Further, the method of the present invention includes a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution pump, a refrigerant pump, a cooling water pump, a cold / hot water pump having a structure for heating an absorbing liquid by burning fuel. In an absorption chiller / heater and equipment having at least a cooling tower and a cooling tower fan motor, if the state of the fourth invention (invention 4) is continued for a long time, the heat storage refrigerant accumulated in the absorption chiller evaporates. As a result, it becomes impossible to obtain cold heat, and the refrigerant pump cavitates due to insufficient circulating refrigerant, so the vibration detection sensor attached to the inlet or outlet of the refrigerant pump or the temperature of the refrigerant or the temperature of the refrigerant pump is detected. The refrigerant pump is stopped by the detection signal of the temperature sensor. At this time, if the chilled water temperature rises and exceeds the set temperature, it automatically returns to the normal heating control operation and the cooling load operation and It is characterized in that into the cold-storage operation for storing the condensed refrigerant to the medium reservoir.
また、本発明の方法は、燃料の燃焼により吸収液を加熱する構造の再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを少なくとも有する吸収式冷温水機と設備において、冷房負荷が100〜0%の範囲において、冷却水温度の設定温度を負荷率に応じて変動するようにして、冷房負荷が減って加熱熱量を減らした場合、又は外気温度が下がり外気による冷却効果が増した場合には、冷却水温度の設定温度を段階的に下げていくように冷却水設定温度を変更し、冷却塔ファンモータの回転数制御信号及び冷却塔ファンモータの起動・停止を制御する制御信号を吸収式冷凍機から出すことを特徴としている。 Further, the method of the present invention includes a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution pump, a refrigerant pump, a cooling water pump, a cold / hot water pump having a structure for heating an absorbing liquid by burning fuel. In an absorption chiller / heater and facility having at least a cooling tower and a cooling tower fan motor, the cooling load is changed in accordance with the load factor in the cooling load range of 100 to 0%. If the heating heat quantity is reduced by reducing the temperature, or if the outside air temperature decreases and the cooling effect by outside air increases, the cooling water set temperature is changed so that the set temperature of the cooling water temperature is lowered step by step. The rotation speed control signal of the tower fan motor and the control signal for controlling the start / stop of the cooling tower fan motor are output from the absorption refrigerator.
この方法において、加熱量を制御する冷房負荷運転範囲、例えば100〜30%では冷却水温度の上限値を下げるように制御し、冷媒ポンプの発低制御運転範囲、例えば30〜0%では、冷却水温度の下限値を下げるように制御することが好ましい。
また、加熱量を制御する冷房負荷運転範囲では冷却水温度の上限値を下げるように制御し、冷媒ポンプの発低制御運転範囲では、冷却水温度の下限値を下げるように制御し、かつ冷水出口温度の設定を上げるように制御することもできる。
In this method, in the cooling load operation range for controlling the heating amount, for example, 100 to 30%, control is performed so as to lower the upper limit value of the cooling water temperature, and in the cooling control operation range for the refrigerant pump, for example, 30 to 0%, cooling is performed. It is preferable to control to lower the lower limit of the water temperature.
In the cooling load operation range for controlling the heating amount, control is performed to lower the upper limit value of the cooling water temperature, and in the operation control range of the refrigerant pump, control is performed to lower the lower limit value of the cooling water temperature. It can also be controlled to increase the outlet temperature setting.
さらに、本発明の方法は、燃料の燃焼により吸収液を加熱する構造の再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを少なくとも有する吸収式冷温水機と設備において、外気温度又は外部負荷の影響を受けて変化する吸収式冷温水機を循環する冷水温度と、外気で冷却されて吸収式冷温水機を循環する冷却水の温度を検知して、定格負荷運転時の冷却水温度設定値を変更する制御機能を有し、負荷が低下した時は吸収式冷温水機を循環する冷却水の設定温度を下げ、吸収式冷温水機の低冷却水温度特性を生かして運転効率を上げ、同様に冷房負荷が低下した時には冷却水循環流量を減少させ、循環ポンプのエネルギー消費量を減らすように制御し、冷水の冷え過ぎを防止して運転効率を上げ、高負荷から低負荷まで高効率で省エネルギーとなる運転を行うように構成される。この方法において、冷却水温度設定値の変化に対応して、冷却塔ファンモータの回転数制御信号及び発停制御信号を出力する。 Furthermore, the method of the present invention includes a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution pump, a refrigerant pump, a cooling water pump, a cold / hot water pump having a structure in which the absorbing liquid is heated by combustion of fuel, In an absorption chiller / heater and equipment having at least a cooling tower and a cooling tower fan motor, the chilled water temperature circulating through the absorption chiller / heater that changes under the influence of the outside air temperature or external load, and the absorption chiller cooled by the outside air Cooling water circulating through the absorption chiller / heater when the load is reduced by detecting the temperature of the chilled water circulating through the chiller / heater and changing the setting value of the coolant during rated load operation. The cooling water temperature characteristics of the absorption chiller / heater are reduced to increase the operating efficiency. Similarly, when the cooling load is reduced, the cooling water circulation flow rate is decreased to reduce the energy consumption of the circulation pump. Control and cold Of preventing excessive cooling increases the operating efficiency, configured to perform driving as the energy-saving high-efficiency to the low load from the heavy load. In this method, the rotation speed control signal and start / stop control signal of the cooling tower fan motor are output in response to the change of the cooling water temperature set value.
吸収式冷凍機は冷房負荷により吸収式冷凍機の入口温度と出口温度が変化する。冷水温度が低下すれば、冷え過ぎを防止するために制御装置が働き、吸収液を加熱、再生する加熱エネルギー量を調節する。加熱エネルギーには、天然ガスのような高級な化石エネルギーもあれば、ガスエンジン排熱温水のように低品位のエネルギーもある。それらのエネルギーを単独又は併用して吸収式冷温水機を運転する。一般的に、加熱エネルギー量を調節する信号は、冷水出口温度の変化率(量)や冷水出入り口温度差を検知して負荷率(制御量)を演算し制御信号を電流値や抵抗値に変換して出力する。
この時、冷却水温度は冷却塔のファン発停や三方弁制御により、吸収式冷凍機入口温度が一定になるように制御されている。一般的には、冷房負荷が外気温度とほぼ一致して変化するので大きな問題はないが、デパートやスーパーなどのように外気温度の他に人間の出入数で負荷が決まるような商業施設やプロセス冷却施設の場合には、冷房負荷は外気温度すなわち冷却水温度には関係なく変化する。この様な運転をする場合には、吸収式冷凍機の運転・制御盤の制御機能、データ記憶機能を利用して、吸収式冷凍機の制御信号データ及び温度データから、その時その時の運転条件に最適となる冷却水温度設定値を算出して新たな設定値とすれば、吸収式冷凍機の省エネルギー運転が非常に効果的にまた容易に実施できる。
また、これらの方法において、吸収式冷凍機が一重効用形吸収式冷凍機、二重効用形吸収式冷凍機及び三重効用形吸収式冷凍機のいずれかであるように構成される。
In the absorption refrigerator, the inlet temperature and the outlet temperature of the absorption refrigerator change depending on the cooling load. When the temperature of the chilled water decreases, the control device works to prevent overcooling and adjusts the amount of heating energy for heating and regenerating the absorbent. Heating energy includes high-grade fossil energy such as natural gas and low-grade energy such as gas engine exhaust hot water. The absorption chiller / heater is operated by using these energy alone or in combination. In general, the signal that adjusts the amount of heating energy is used to detect the change rate (amount) of the chilled water outlet temperature and the temperature difference between the chilled water outlet and outlet, calculate the load factor (control amount), and convert the control signal to a current value or resistance value. And output.
At this time, the cooling water temperature is controlled so that the absorption chiller inlet temperature is constant by the cooling tower fan start / stop and three-way valve control. In general, there is no major problem because the cooling load changes almost in line with the outside air temperature, but there are commercial facilities and processes such as department stores and supermarkets where the load is determined by the number of people coming and going in addition to the outside air temperature. In the case of a cooling facility, the cooling load changes regardless of the outside air temperature, that is, the cooling water temperature. When operating in this way, use the absorption chiller operation / control panel control function and data storage function to determine the operating conditions at that time from the absorption chiller control signal data and temperature data. If the optimum coolant temperature set value is calculated and set as a new set value, the energy-saving operation of the absorption chiller can be carried out very effectively and easily.
In these methods, the absorption refrigerator is configured to be any one of a single effect absorption refrigerator, a double effect absorption refrigerator, and a triple effect absorption refrigerator.
本発明の吸収式冷凍機設備は、燃料の燃焼により吸収液を加熱する構造の高温再生器、中温再生器、低温再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを主構成機器として有し、吸収器の吸収液を低温再生器から中温再生器へ、ついで高温再生器へ導くリバースフロー式の三重効用形吸収式冷温水機と設備において、冷温水ポンプの入口温度センサ、冷温水ポンプの出口温度センサ、冷却水ポンプの入口温度センサ及び冷却水ポンプの出口温度センサと、運転・制御盤とを接続し、この運転・制御盤と、燃料の燃焼・制御装置、冷温水ポンプの回転制御装置、冷却水ポンプの回転制御装置及び冷却塔ファンモータの回転制御装置とを接続し、冷水出口温度を制御する加熱量制御信号を利用して冷却水ポンプの循環量を制御し、冷房負荷に応じて冷却水量を制御し、加熱量ゼロ信号、すなわち燃焼停止信号を利用して冷却水流量を最低流量に変更する信号を出すようにしたことを特徴としている。 The absorption refrigeration equipment of the present invention comprises a high temperature regenerator, a medium temperature regenerator, a low temperature regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution pump, A reverse flow system that has a refrigerant pump, cooling water pump, cold / hot water pump, cooling tower and cooling tower fan motor as the main components, and guides the absorber absorption liquid from the low temperature regenerator to the medium temperature regenerator, and then to the high temperature regenerator Triple-effect absorption chiller / heater and equipment, cold / hot water pump inlet temperature sensor, chilled / hot water pump outlet temperature sensor, cooling water pump inlet temperature sensor, cooling water pump outlet temperature sensor, and operation / control panel The operation / control panel is connected to a fuel combustion / control device, a chilled / hot water pump rotation control device, a cooling water pump rotation control device, and a cooling tower fan motor rotation control device. The amount of cooling water pump is controlled using the heating amount control signal that controls the degree of cooling, the amount of cooling water is controlled according to the cooling load, and the cooling water flow rate is controlled using the heating amount zero signal, that is, the combustion stop signal. It is characterized by issuing a signal to change to the minimum flow rate.
また、本発明の吸収式冷凍機設備は、燃料の燃焼、水蒸気又は温水により吸収液を加熱する構造の高温再生器、低温再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを主構成機器として有し、吸収器の吸収液を低温再生器から高温再生器へ導くリバースフロー式の二重効用形吸収式冷温水機と設備において、冷温水ポンプの入口温度センサ、冷温水ポンプの出口温度センサ、冷却水ポンプの入口温度センサ及び冷却水ポンプの出口温度センサと、運転・制御盤とを接続し、この運転・制御盤と、燃料の燃焼・制御装置、冷温水ポンプの回転制御装置、冷却水ポンプの回転制御装置及び冷却塔ファンモータの回転制御装置とを接続し、冷水出口温度を制御する加熱量制御信号を利用して冷却水ポンプの循環量を制御し、冷房負荷に応じて冷却水量を制御し、加熱量ゼロ信号、すなわち燃焼停止信号を利用して冷却水流量を最低流量に変更する信号を出すようにしたことを特徴としている。 Further, the absorption refrigeration equipment of the present invention includes a high-temperature regenerator, a low-temperature regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution having a structure in which the absorption liquid is heated by fuel combustion, steam or hot water. It has a pump, refrigerant pump, cooling water pump, cold / hot water pump, cooling tower and cooling tower fan motor as main components, and reverse flow double-effect that guides the absorption liquid of the absorber from the low temperature regenerator to the high temperature regenerator Connects the operation / control panel to the inlet / outlet temperature sensor of the chilled / hot water pump, the outlet temperature sensor of the chilled / hot water pump, the inlet temperature sensor of the cooling water pump, and the outlet temperature sensor of the cooling water pump in the absorption water chiller / heater and equipment This operation / control panel is connected to the fuel combustion / control device, the chilled / hot water pump rotation control device, the cooling water pump rotation control device, and the cooling tower fan motor rotation control device to control the chilled water outlet temperature. The cooling water pump circulation rate is controlled using the heating amount control signal, the cooling water amount is controlled according to the cooling load, and the cooling water flow rate is set to the minimum flow rate using the heating amount zero signal, that is, the combustion stop signal. It is characterized by issuing a signal to be changed.
また、本発明の吸収式冷凍機設備は、燃料の燃焼、水蒸気又は温水により吸収液を加熱する構造の高温再生器、低温再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを主構成機器として有し、吸収器の吸収液を低温再生器と高温再生器に同時に送るパラレルフロー式の二重効用形吸収式冷温水機と設備において、冷温水ポンプの入口温度センサ、冷温水ポンプの出口温度センサ、冷却水ポンプの入口温度センサ及び冷却水ポンプの出口温度センサと、運転・制御盤とを接続し、この運転・制御盤と、燃料の燃焼・制御装置、冷温水ポンプの回転制御装置、冷却水ポンプの回転制御装置及び冷却塔ファンモータの回転制御装置とを接続し、冷水出口温度を制御する加熱量制御信号を利用して冷却水ポンプの循環量を制御し、冷房負荷に応じて冷却水量を制御し、加熱量ゼロ信号、すなわち燃焼停止信号を利用して冷却水流量を最低流量に変更する信号を出すようにしたことを特徴としている。 Further, the absorption refrigeration equipment of the present invention includes a high-temperature regenerator, a low-temperature regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution having a structure in which the absorption liquid is heated by fuel combustion, steam or hot water. A parallel flow type dual pump that has a pump, a refrigerant pump, a cooling water pump, a cold / hot water pump, a cooling tower and a cooling tower fan motor as main components, and sends the absorption liquid of the absorber to the low temperature regenerator and the high temperature regenerator simultaneously In the utility absorption chiller / heater and equipment, the cold / hot water pump inlet temperature sensor, the cold / hot water pump outlet temperature sensor, the cooling water pump inlet temperature sensor, the cooling water pump outlet temperature sensor, and the operation / control panel Connect this operation / control panel to the fuel combustion / control device, the rotation control device for the cold / hot water pump, the rotation control device for the cooling water pump, and the rotation control device for the cooling tower fan motor. Controls the circulating amount of the cooling water pump using the heating amount control signal to be controlled, controls the cooling water amount according to the cooling load, and uses the heating amount zero signal, that is, the combustion stop signal, to reduce the cooling water flow rate to the minimum flow rate. It is characterized in that a signal to change to is output.
また、本発明の吸収式冷凍機設備は、燃料の燃焼、水蒸気又は温水により吸収液を加熱する構造の高温再生器、低温再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを主構成機器として有し、吸収器の吸収液を高温再生器から低温再生器に送るシリーズフロー式の二重効用形吸収式冷温水機と設備において、冷温水ポンプの入口温度センサ、冷温水ポンプの出口温度センサ、冷却水ポンプの入口温度センサ及び冷却水ポンプの出口温度センサと、運転・制御盤とを接続し、この運転・制御盤と、燃料の燃焼・制御装置、冷温水ポンプの回転制御装置、冷却水ポンプの回転制御装置及び冷却塔ファンモータの回転制御装置とを接続し、冷水出口温度を制御する加熱量制御信号を利用して冷却水ポンプの循環量を制御し、冷房負荷に応じて冷却水量を制御し、加熱量ゼロ信号、すなわち燃焼停止信号を利用して冷却水流量を最低流量に変更する信号を出すようにしたことを特徴としている。 Further, the absorption refrigeration equipment of the present invention includes a high-temperature regenerator, a low-temperature regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution having a structure in which the absorption liquid is heated by fuel combustion, steam or hot water. It has a pump, refrigerant pump, cooling water pump, cold / hot water pump, cooling tower and cooling tower fan motor as the main components, and a series flow double-effect that sends the absorption liquid of the absorber from the high temperature regenerator to the low temperature regenerator Connects the operation / control panel to the inlet / outlet temperature sensor of the chilled / hot water pump, the outlet temperature sensor of the chilled / hot water pump, the inlet temperature sensor of the cooling water pump, and the outlet temperature sensor of the cooling water pump in the absorption water chiller / heater and equipment This operation / control panel is connected to the fuel combustion / control device, the chilled / hot water pump rotation control device, the cooling water pump rotation control device, and the cooling tower fan motor rotation control device to control the chilled water outlet temperature. The cooling water pump circulation rate is controlled using the heating amount control signal, the cooling water amount is controlled according to the cooling load, and the cooling water flow rate is set to the minimum flow rate using the heating amount zero signal, that is, the combustion stop signal. It is characterized by issuing a signal to be changed.
また、本発明の吸収式冷凍機設備は、燃料の燃焼、水蒸気又は温水により吸収液を加熱する構造の再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを主構成機器として有し、吸収器の吸収液を再生器へ導く一重効用形吸収式冷温水機と設備において、冷温水ポンプの入口温度センサ、冷温水ポンプの出口温度センサ、冷却水ポンプの入口温度センサ及び冷却水ポンプの出口温度センサと、運転・制御盤とを接続し、この運転・制御盤と、燃料の燃焼・制御装置、冷温水ポンプの回転制御装置、冷却水ポンプの回転制御装置及び冷却塔ファンモータの回転制御装置とを接続し、冷水出口温度を制御する加熱量制御信号を利用して冷却水ポンプの循環量を制御し、冷房負荷に応じて冷却水量を制御し、加熱量ゼロ信号、すなわち燃焼停止信号を利用して冷却水流量を最低流量に変更する信号を出すようにしたことを特徴としている。 Further, the absorption refrigeration equipment of the present invention includes a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution pump, a refrigerant pump, a structure that heats the absorbing liquid by combustion of fuel, water vapor or hot water, A cooling water pump, a cold / hot water pump, a cooling tower and a cooling tower fan motor are the main components, and the inlet of the cold / hot water pump in a single-effect absorption cold / hot water machine and equipment that guides the absorption liquid of the absorber to the regenerator The temperature sensor, the outlet temperature sensor of the cold / hot water pump, the inlet temperature sensor of the cooling water pump, the outlet temperature sensor of the cooling water pump, and the operation / control panel are connected to the operation / control panel and the fuel combustion / control device. The cooling water pump rotation control device, the cooling water pump rotation control device and the cooling tower fan motor rotation control device are connected, and the cooling water pump circulation amount is controlled by using the heating amount control signal for controlling the cold water outlet temperature. Control And to control the amount of cooling water in accordance with the cooling load, it is characterized in that it has to issue a signal for changing the amount of heating zero signal, i.e. the cooling water flow rate by use of combustion stop signal to the minimum flow.
さらに、本発明の吸収式冷凍機設備は、燃料の燃焼により吸収液を加熱する構造の再生器、凝縮器、吸収器、蒸発器、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、冷温水ポンプ、冷却塔及び冷却塔ファンモータを少なくとも有する吸収式冷温水機と設備において、外気温度又は外部負荷の影響を受けて変化する吸収式冷温水機を循環する冷水温度と、外気で冷却されて吸収式冷温水機を循環する冷却水の温度を検知して、定格負荷運転時の冷却水温度設定値を変更する制御機能を有し、負荷が低下した時は吸収式冷温水機を循環する冷却水の設定温度を下げ、吸収式冷温水機の低冷却水温度特性を生かして運転効率を上げ、同様に冷房負荷が低下した時には冷却水循環流量を減少させる制御機能を有し、循環ポンプのエネルギー消費量を減らすように制御し、冷水の冷え過ぎを防止して運転効率を上げ、高負荷から低負荷まで高効率で省エネルギーとなる運転を実現するようにしたことを特徴としている。この設備において、冷却水温度設定値の変化に対応して、冷却塔ファンモータの回転数制御信号及び発停制御信号を出力するようにしている。また、吸収式冷凍機としては、一重効用形吸収式冷凍機、二重効用形吸収式冷凍機及び三重効用形吸収式冷凍機のいずれかとすることができる。 Furthermore, the absorption refrigeration equipment of the present invention includes a regenerator, a condenser, an absorber, an evaporator, a heat exchanger, a solution pump, a refrigerant pump, a cooling water pump having a structure for heating an absorbing liquid by burning fuel. In an absorption chiller / heater having at least a chilled water pump, a cooling tower, and a cooling tower fan motor, and the equipment, the chilled water temperature circulating through the absorption chiller / heater that changes under the influence of outside air temperature or external load, and cooling with outside air It has a control function that detects the temperature of the cooling water circulating through the absorption chiller / heater and changes the cooling water temperature setting value during rated load operation. Lowering the set temperature of circulating cooling water, taking advantage of the low cooling water temperature characteristics of the absorption chiller / heater to increase operating efficiency, and similarly having a control function to reduce the cooling water circulation flow rate when the cooling load is reduced Pump energy consumption Controlled to reduce the amount, increase the operation efficiency by preventing cold water excessive cooling, it is characterized in that so as to realize the operation as the energy-saving high-efficiency to the low load from the heavy load. In this facility, the rotation speed control signal and start / stop control signal of the cooling tower fan motor are output in response to the change in the cooling water temperature set value. The absorption refrigerator can be any of a single-effect absorption refrigerator, a double-effect absorption refrigerator, and a triple-effect absorption refrigerator.
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) 吸収式冷凍機の冷房負荷制御に加えて冷却水温度の制御をも吸収式冷凍機側に加えて、吸収式冷凍機の制御だけでなく、周辺機器である冷却水ポンプ動力の制御と冷却塔ファンの制御を行うことにより、大幅な省エネルギー運転と部分負荷運転時の吸収式冷凍機設備の特性、効率を改善することができる。
Since this invention is comprised as mentioned above, there exist the following effects.
(1) In addition to the cooling load control of the absorption chiller, the cooling water temperature is also controlled on the absorption chiller side, not only the absorption chiller control, but also the control of the cooling water pump power, which is a peripheral device. By controlling the cooling tower fan, it is possible to improve the characteristics and efficiency of the absorption refrigeration equipment during significant energy saving operation and partial load operation.
吸収式冷温水機設備におけるシステム全体の省エネルギー運転という目的を、吸収式冷凍機の冷房負荷制御運転に連動させて冷却水温度の制御をも行い、吸収式冷凍機の制御だけでなく、周辺機器である冷却水ポンプ動力の制御と冷却塔ファンの制御を行うように構成することにより実現した。 The cooling water temperature is controlled in conjunction with the cooling load control operation of the absorption chiller for the purpose of energy-saving operation of the entire system in the absorption chiller / heater equipment, and not only the absorption chiller control but also peripheral devices. This was achieved by controlling the cooling water pump power and the cooling tower fan.
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。
図1は、本発明の実施の第1形態による多重効用形吸収式冷温水機の一例として、三重効用形吸収式冷温水機と周辺システム、すなわち、周辺設備(装置)との組合せを示している。図2は、図1に示す三重効用形吸収冷温水機における制御フローを示している。
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.
FIG. 1 shows a combination of a triple effect absorption chiller / heater and a peripheral system, that is, peripheral equipment (apparatus) as an example of a multi-effect absorption chiller / heater according to the first embodiment of the present invention. Yes. FIG. 2 shows a control flow in the triple effect absorption chiller / heater shown in FIG.
図1に示す三重効用形吸収冷温水機設備は、燃料の燃焼により吸収液を間接的に加熱する構造の高温再生器10、中温再生器12、低温再生器14、凝縮器16、吸収器18、蒸発器20、熱交換器類、溶液ポンプ、冷媒ポンプ、冷却水ポンプ22、冷温水ポンプ24、冷却塔26及び冷却塔ファンモータ28を主構成機器として有し、吸収器18の吸収液を低温再生器14から中温再生器12へ、ついで高温再生器10へ導くリバースフロー式の三重効用形吸収式冷温水機である。
The triple effect absorption chiller / heater equipment shown in FIG. 1 has a high-
そして、このように構成された吸収式冷温水機設備において、冷温水ポンプ24の入口温度センサ30、冷温水ポンプ24の出口温度センサ32、冷却水ポンプ22の入口温度センサ34及び冷却水ポンプ22の出口温度センサ36と、運転・制御盤38とを接続し、この運転・制御盤38と、燃料の燃焼・制御装置40、冷温水ポンプ24の回転制御装置42、冷却水ポンプ22の回転制御装置44及び冷却塔ファンモータ28とを接続し、冷水出口温度を制御する加熱量制御信号を利用して冷却水ポンプ22の循環量を100%から50%の範囲で制御し、冷房負荷が50%以下となり0〜30%の範囲で加熱量がゼロになると、冷却水量を最低流量(30〜40%)まで低下させる制御を行い、加熱量ゼロ信号、すなわち燃焼停止信号を利用して冷却水流量を最低流量に変更する信号を出すように構成されている。46は燃料制御弁、48は冷却塔ファン、50は冷却塔ファンモータの回転制御装置である。
In the absorption chiller / heater equipment configured as described above, the
吸収式冷温水機、例えば吸収式冷凍機は、吸収式冷凍機が本来持っている制御機能を生かして、さらに、吸収式冷凍機の部分負荷特性の改善と冷却水ポンプなど周辺動力設備の省エネルギーを効率的に、かつ大きな費用負担を発生させずに実現する制御システムを採用したものである。そして、この吸収式冷凍機は、冷水出口温度を制御する加熱量制御信号を出すと同時に、冷却水ポンプ22の循環量を制御する信号を出して、部分負荷運転時又は冷却水温度が低い時に冷却水ポンプ動力を節減し、省エネルギーを図る制御をするものである。ただし、このような制御を行う省エネルギーシステムはすでに公知のシステムとして実施されている。この場合、安全性を重視して冷却水流量は定格運転時の50%までとし、それ以下にしないのが通例である。
Absorption chiller / heaters, such as absorption chillers, take advantage of the inherent control functions of absorption chillers, further improve the partial load characteristics of absorption chillers and save energy in peripheral power equipment such as cooling water pumps. This is a control system that realizes the system efficiently and without incurring a large cost burden. And this absorption refrigeration machine gives the signal which controls the circulation amount of the cooling
そこで、本発明における吸収式冷凍機システムでは、従来と同様に冷却水流量は吸収式冷凍機の制御に合わせて流量を変化させ、50%流量を下限値の目安とする。しかし、吸収式冷凍機の負荷制御量が50%を下回り、最低燃焼制御量(通常20〜30%負荷)を下回って、燃焼が停止し、冷媒ポンプのみが運転する極低負荷運転状態(通常0〜30%負荷)の場合には、冷却水流量を50%からさらに絞って、冷却水ポンプ22が運転を継続する上で支障の起きない最低流量まで冷却水流量を絞る制御信号を出す(図1、図2における(3)の冷却水流量制御)。通常、燃焼が停止している場合のみ冷却水流量を30〜40%まで絞ることとして、低負荷運転時の冷却水ポンプ22動力を減らす省エネルギー運転を可能にしている。
Therefore, in the absorption chiller system according to the present invention, the cooling water flow rate is changed in accordance with the control of the absorption chiller as in the conventional case, and the 50% flow rate is used as a guideline for the lower limit value. However, the load control amount of the absorption refrigeration machine is less than 50%, less than the minimum combustion control amount (usually 20-30% load), combustion is stopped, and an extremely low load operation state in which only the refrigerant pump is operated (normally) In the case of 0 to 30% load), the flow rate of the cooling water is further reduced from 50%, and a control signal for reducing the flow rate of the cooling water to the lowest flow rate that does not hinder the operation of the cooling
吸収式冷凍機の冷水出口温度を制御する燃焼量の制御下限値を下回り、燃焼停止した時に限り、冷却水流量を定格流量に対して30〜40%まで絞る。これにより、冷却水循環水量の制御幅を広げられるようになり、従来は100%〜50%の幅で制御することが限界であったが、冷却水ポンプ22の回転数制御の限界から決まる100%〜約30%の幅まで運転することが可能になり、大幅な省エネルギー運転が可能となる。省エネルギーの要求度合い又は用途によって、冷温水出入り口の温度差の平均が一定となるよう冷温水ポンプ24の回転数を制御して冷水流量を制御してもよい(図1、図2における(1)の冷水出口温度制御)。
The cooling water flow rate is reduced to 30 to 40% of the rated flow rate only when the combustion amount is below the lower limit value of the combustion amount that controls the cold water outlet temperature of the absorption chiller and combustion is stopped. As a result, the control range of the cooling water circulating water amount can be expanded. Conventionally, the control range of 100% to 50% was the limit, but 100% determined from the limit of the rotational speed control of the cooling
つぎに、燃焼停止中に、冷媒溜りに溜まっている冷媒の蒸発熱を利用して冷房運転を行う蓄熱冷媒運転時の冷水温度制御を新規に加え、吸収冷温水機の特性、効率を改善し低負荷運転時の運転効率を改善する。通常、燃焼が停止中で、冷媒ポンプのみで冷房運転を行っている場合には、吸収式冷凍機の冷水出口制御はなく、制御信号の制御量はゼロとなっている。この低負荷運転領域では、冷水温度は成行きとなり冷水出口温度の制御は行われていない。 Next, the cooling water temperature control during the operation of the regenerative refrigerant that performs cooling operation using the evaporation heat of the refrigerant accumulated in the refrigerant pool while combustion is stopped has been newly added to improve the characteristics and efficiency of the absorption chiller water heater. Improve operating efficiency during low-load operation. Normally, when the combustion is stopped and the cooling operation is performed only by the refrigerant pump, there is no cooling water outlet control of the absorption chiller, and the control amount of the control signal is zero. In this low load operation region, the chilled water temperature is normal, and the chilled water outlet temperature is not controlled.
しかし、この時にも冷媒ポンプ運転中(冷媒散布中)は、冷媒は冷水から熱を取り蒸発を行い、吸収器18で散布される吸収液は冷媒を吸収している。そこで、この時に吸収式冷凍機に入る冷却水温度の設定条件を変更して、冷却塔ファン48の運転を、吸収式冷凍機の冷水出口温度をあらかじめ設定した温度で制御運転することを可能にするように、冷水出口温度を低負荷運転で余力のある冷却塔26の能力を利用して冷却水温度で制御する、低負荷運転時に冷却塔ファン48を運転する制御信号を出す運転切替え機能を備えている(図1、図2における(2)の冷却水入口温度制御)。
さらに、定格冷房負荷運転中においても外気温度が低く冷却水温度が低下傾向の時には、冷却水温度の設定値を下げて定格冷房負荷運転時の省エネルギー運転が可能になるように、吸収式冷凍機の運転・制御盤38で冷却水温度設定値を変更し、冷却塔ファンモータ28の運転を制御する。
However, at this time as well, while the refrigerant pump is operating (refrigerant spraying), the refrigerant takes heat from the cold water to evaporate, and the absorbing liquid sprayed by the
In addition, when the outside air temperature is low and the cooling water temperature tends to decrease even during rated cooling load operation, the absorption chiller is set so that the set value of the cooling water temperature is lowered to enable energy-saving operation during rated cooling load operation. The operation /
図3は、本発明の請求項1に係る場合で、冷却水温度制御による冷房負荷制御を追加し、部分負荷特性を改善する制御を行う場合を示している。図3(a)は従来の制御と動作を示す冷房負荷率と燃料消費量割合との関係を示すグラフ、図3(b)は従来の制御と動作を示す冷房負荷率と負荷制御範囲との関係を示すグラフ、図3(c)は変更後(本発明)の制御と動作を示す冷房負荷範囲と燃料消費量割合との関係を示すグラフ、図3(d)は変更後(本発明)の制御と動作を示し冷房負荷率と負荷制御範囲との関係を示すグラフである。
FIG. 3 shows a case according to
図3(c)における斜線の部分が、冷却水温度制御による省エネルギー改善効果になる部分である。また、図3(b)における冷媒ポンプ発停による負荷制御範囲が、図3(d)における冷却水温度制御による冷房負荷制御範囲と、冷媒ポンプ発停による負荷制御範囲とに分割され、冷媒ポンプ発停による負荷制御範囲が小さくなる。 The hatched portion in FIG. 3C is a portion that provides an energy saving improvement effect by cooling water temperature control. Further, the load control range by the refrigerant pump start / stop in FIG. 3B is divided into the cooling load control range by the coolant temperature control and the load control range by the refrigerant pump start / stop in FIG. The load control range due to start / stop is reduced.
図4は、本発明の請求項2に係る場合で、冷房負荷変化による冷却水流量制御を追加し、低負荷時の冷却水ポンプ電力消費量を改善する制御を行う場合を示している。図4(a)は従来の制御と動作を示す冷房負荷率と冷却水流量割合との関係を示すグラフ、図4(b)は従来の制御と動作を示す冷房負荷率と、冷却水流量割合及び制御信号との関係を示すグラフ、図4(c)は変更後(本発明)の制御と動作を示す冷房負荷範囲と冷却水流量割合との関係を示すグラフ、図4(d)は変更後(本発明)の制御と動作を示し冷房負荷率と、冷却水流量割合及び制御信号との関係を示すグラフである。
FIG. 4 shows a case in which cooling water flow rate control based on a change in cooling load is added and control for improving cooling water pump power consumption at low load is performed in the case of
図4(c)における斜線の部分が、冷却水流量制御による省エネルギー改善効果の範囲である。また、図4(d)において、冷房負荷に応じて増減する制御信号が、冷房負荷30〜50%に相当する制御信号出力の時、冷却水流量が50%を維持するよう冷却水ポンプの回転数を制御する。また、冷房負荷に応じて増減する制御信号が、冷房負荷0〜30%の範囲で加熱量ゼロを指示する制御信号出力の時、冷却水流量を35%に変更するよう冷却水ポンプの回転数を制御する。 The hatched portion in FIG. 4C is the range of the energy saving improvement effect by the cooling water flow rate control. In FIG. 4D, when the control signal that increases or decreases according to the cooling load is a control signal output corresponding to 30 to 50% of the cooling load, the cooling water pump rotates so that the cooling water flow rate is maintained at 50%. Control the number. In addition, when the control signal that increases or decreases according to the cooling load is a control signal output that indicates zero heating amount in the range of 0 to 30% of the cooling load, the number of rotations of the cooling water pump so as to change the cooling water flow rate to 35%. To control.
図5は、本発明の請求項4、6、7に係る場合で、冷房負荷変化及び外気温度変化による冷却水温度変化を省エネルギー運転に利用する制御、すなわち、冷却水設定温度を運転条件の変化により自動的に変更する制御を行う場合を示している。図5(a)は従来の制御と動作を示す冷房負荷率と冷却水温度との関係を示すグラフ、図5(b)は変更後(本発明)の制御と動作を示す冷房負荷範囲と冷却水温度との関係を示すグラフである。 FIG. 5 is a case according to claims 4, 6 and 7 of the present invention, in which the cooling water temperature change due to the cooling load change and the outside air temperature change is utilized for energy saving operation, that is, the cooling water set temperature is changed in the operating condition. The case where the control which changes automatically is performed is shown. FIG. 5A is a graph showing the relationship between cooling load factor and cooling water temperature showing conventional control and operation, and FIG. 5B is a cooling load range and cooling showing control and operation after change (the present invention). It is a graph which shows the relationship with water temperature.
図5(a)に示すように、従来は冷却水設定温度を32℃として、冷却塔ファンモータの発停制御により冷却水温度を冷却水設定温度付近に保つ制御が行われていた。しかし、本発明の方式においては、図5(b)に示すように、加熱量ゼロの時に冷水温度制御をするため、冷却水設定温度の下限値を下げて、例えば22℃から10℃に下げて冷却水の冷却効果を利用して省エネルギー運転をする。このようにすることにより、外気温度の変動により変化する冷却水温度が低下した時に、冷却水設定温度の上限値を下げて冷却水の冷却効果を利用して省エネルギー運転をすることができる。 As shown in FIG. 5A, conventionally, the cooling water set temperature is set to 32 ° C., and the cooling water temperature is controlled near the cooling water set temperature by the start / stop control of the cooling tower fan motor. However, in the method of the present invention, as shown in FIG. 5 (b), the cooling water temperature is controlled when the heating amount is zero, so the lower limit value of the cooling water set temperature is lowered, for example, from 22 ° C. to 10 ° C. To save energy using the cooling effect of cooling water. By doing in this way, when the cooling water temperature which changes with the fluctuation | variation of outside temperature falls, the upper limit of a cooling water preset temperature can be lowered | hung and an energy saving operation can be performed using the cooling effect of a cooling water.
前述のように、吸収式冷凍機は冷房負荷により吸収式冷凍機の入口温度と出口温度が変化する。冷水温度が低下すれば、冷え過ぎを防止するために制御装置が働き、吸収液を加熱、再生する加熱エネルギー量を調節する。加熱エネルギーには、天然ガスのような高級な化石エネルギーもあれば、ガスエンジン排熱温水のように低品位のエネルギーもある。それらのエネルギーを単独又は併用して吸収式冷温水機を運転する。一般的に、加熱エネルギー量を調節する信号は、冷水出口温度の変化率(量)や冷水出入り口温度差を検知して負荷率(制御量)を演算し制御信号を電流値や抵抗値に変換して出力する。
この時、冷却水温度は冷却塔26のファン発停や三方弁制御により、吸収式冷凍機入口温度が一定になるように制御されている。一般的には、冷房負荷が外気温度とほぼ一致して変化するので大きな問題はないが、デパートやスーパーなどのように外気温度の他に人間の出入数で負荷が決まるような商業施設やプロセス冷却施設の場合には、冷房負荷は外気温度すなわち冷却水温度には関係なく変化する。この様な運転をする場合には、吸収式冷凍機の運転・制御盤の制御機能、データ記憶機能を利用して、吸収式冷凍機の制御信号データ及び温度データから、その時その時の運転条件に最適となる冷却水温度設定値を算出して新たな設定値とすれば、吸収式冷凍機の省エネルギー運転が非常に効果的にまた容易に実施できる。
As described above, in the absorption refrigerator, the inlet temperature and the outlet temperature of the absorption refrigerator change depending on the cooling load. When the temperature of the chilled water decreases, the control device works to prevent overcooling and adjusts the amount of heating energy for heating and regenerating the absorbent. Heating energy includes high-grade fossil energy such as natural gas and low-grade energy such as gas engine exhaust hot water. The absorption chiller / heater is operated by using these energy alone or in combination. In general, the signal that adjusts the amount of heating energy is used to detect the change rate (amount) of the chilled water outlet temperature and the temperature difference between the chilled water outlet and outlet, calculate the load factor (control amount), and convert the control signal to a current value or resistance value And output.
At this time, the cooling water temperature is controlled so that the inlet temperature of the absorption chiller becomes constant by the fan start / stop of the
例えば、冷房負荷100%の時に、冷却塔水槽の温度(外気温度)が32℃近辺の時は循環する冷却水設定温度は32℃のままでよいが、冷房負荷100%の時に、冷却塔水槽の温度(外気温度)が22℃近辺まで低下するような温度まで外気温度が低下した時は、循環する冷却水設定温度を27℃(吸収液の結晶防止を考慮して温度を決める)に変更する等、事前に設定した演算基準と後述の温度テーブルにより、吸収式冷凍機運転中は、吸収式冷凍機の負荷制御・運転装置による演算結果から、循環する冷却水の設定温度を変える信号を出力して、冷却塔26のファン発停やファンモータ28の回転数制御などによる冷却水温度調節を行うようにする。負荷が変化した時は、変更後の設定温度を基準として冷房能力(負荷率)に連動して比例的に冷却水の温度が変化するように制御すれば、全負荷領域において吸収式冷凍機に最適な冷却水温度条件による省エネルギー運転が可能となる。同様に冷房負荷が低下した時には冷却水循環流量を減少させる制御機能を有し、外部信号出力により循環ポンプの回転数を減らし、循環水量を減らして循環ポンプのエネルギー消費量を減らす。
For example, if the cooling tower water tank temperature (outside air temperature) is around 32 ° C. when the cooling load is 100%, the circulating cooling water set temperature may remain at 32 ° C., but when the cooling load is 100%, the cooling tower water tank When the outside air temperature drops to a temperature where the temperature of the water (outside air temperature) drops to around 22 ° C, the circulating cooling water set temperature is changed to 27 ° C (the temperature is determined taking into consideration the prevention of crystallization of the absorption liquid) Based on the calculation criteria set in advance and the temperature table described later, a signal that changes the set temperature of the circulating cooling water is calculated from the calculation results of the load control / operating device of the absorption chiller during operation of the absorption chiller. Then, the cooling water temperature is adjusted by starting and stopping the fan of the
図6は、図1に示す吸収式冷温水機において、冷房負荷変化及び外気温度変化による冷却水温度変化を省エネルギー運転に利用する制御、すなわち、冷却水設定温度を運転条件の変化により自動的に変更する制御を示す説明図であり、図7はこの場合の冷却水温度テーブルの一例を示している。 FIG. 6 shows the control for using the cooling water temperature change due to the cooling load change and the outside air temperature change for energy saving operation in the absorption chiller / heater shown in FIG. 1, that is, the cooling water set temperature is automatically changed according to the change of the operating condition. It is explanatory drawing which shows the control to change, and FIG. 7 has shown an example of the cooling water temperature table in this case.
図6(a)、(b)に示すように、冷房負荷100%の時に、冷却塔水槽の温度(外気温度)が32℃近辺の時は循環する冷却水設定温度は32℃のままでよいが、冷房負荷100%の時に、冷却塔水槽の温度(外気温度)が22℃近辺まで低下するような温度まで外気温度が低下した時は、循環する冷却水設定温度を27℃(吸収液の結晶防止を考慮して温度を決める)に変更する等、事前に設定した演算基準と、図6に示す冷却水温度テーブルにより、吸収式冷温水機運転中は、吸収式冷温水機の負荷制御・運転装置による演算結果から、循環する冷却水の設定温度を変える信号を出力して、冷却塔26のファン48の発停やファンモータ28の回転数制御などによる冷却水温度調節を行うようにする。
負荷が変化した時は、変更後の設定温度を基準として冷房能力(負荷率)に連動して比例的に冷却水の温度が変化するように制御すれば、全負荷領域において吸収式冷温水機に最適な冷却水温度条件による省エネルギー運転が可能となる。同様に冷房負荷が低下した時には冷却水循環流量を減少させる制御機能を有し、外部信号出力により冷却水循環ポンプ100の回転数を減らし、循環水量を減らして循環ポンプのエネルギー消費量を減らす。
As shown in FIGS. 6A and 6B, when the cooling load is 100%, when the temperature of the cooling tower water tank (outside air temperature) is around 32 ° C., the circulating cooling water set temperature may remain at 32 ° C. However, when the temperature of the cooling tower water tank (outside air temperature) decreases to a temperature that decreases to around 22 ° C. when the cooling load is 100%, the circulating cooling water set temperature is set to 27 ° C. In order to control the load of the absorption chiller / hot water machine during the operation of the absorption chiller / hot water machine, the calculation criteria set in advance, such as changing the temperature to take into account the prevention of crystallization, and the cooling water temperature table shown in FIG. A signal for changing the set temperature of the circulating cooling water is output from the calculation result by the operating device, and the cooling water temperature is adjusted by starting / stopping the
If the load changes, the absorption chiller water heater can be used in the entire load range by controlling the cooling water temperature to change proportionally with the cooling capacity (load factor) based on the changed set temperature. Energy-saving operation is possible under the optimum coolant temperature conditions. Similarly, when the cooling load is reduced, it has a control function to reduce the cooling water circulation flow rate, and the external signal output reduces the number of rotations of the cooling
また、夏期の冷房運転のピークを過ぎた後で、冷却水温度が低下し、加えて冷房負荷が低下し、低負荷運転が長時間に及ぶ場合には、冷水の設定温度を、通常7℃で設定している場合には8℃、9℃、10℃のように、事前に設定した演算基準と冷却水温度テーブルにより、吸収式冷温水機の負荷制御・運転装置による演算結果から冷水の設定温度を変え、加熱エネルギーの使用量を制限するようにして冷え過ぎを防止し、省エネルギー運転が行えるようにする。この場合、冷却水温度設定値の変化に対応して、冷却塔ファンモータ28の回転数制御信号及び発停制御信号を出力するように構成することもできる。
In addition, when the cooling water temperature decreases after the peak of the cooling operation in summer and the cooling load decreases and the low load operation extends for a long time, the set temperature of the cooling water is usually 7 ° C. In the case of setting in the case of 8 ° C, 9 ° C, 10 ° C, etc., based on the calculation criteria set in advance and the cooling water temperature table, the cooling water is calculated from the calculation results by the load control / operating device of the absorption chiller / heater. Change the set temperature and limit the amount of heating energy used to prevent overcooling and enable energy saving operation. In this case, the rotation speed control signal and start / stop control signal of the cooling
上記の実施形態では、三重効用形吸収式冷凍機の場合について説明したが、二重効用形吸収式冷凍機、一重効用形吸収式冷凍機、さらには四重以上の多重効用形吸収冷凍機にも、勿論適用することができる。また、二重効用形吸収式冷凍機の場合は、リバースフロー式に限らず、パラレルフロー式、シリーズフロー式にも適用することができる。 In the above embodiment, the case of a triple effect absorption refrigerator has been described, but in a double effect absorption refrigerator, a single effect absorption refrigerator, and a quadruple or more multiple effect absorption refrigerator. Of course, it can also be applied. Moreover, in the case of a double-effect absorption refrigerator, the present invention can be applied not only to the reverse flow type but also to the parallel flow type and the series flow type.
10 高温再生器
12 中温再生器
14 低温再生器
16 凝縮器
18 吸収器
20 蒸発器
22 冷却水ポンプ
24 冷温水ポンプ
26 冷却塔
28 冷却塔ファンモータ
30、34 入口温度センサ
32、36 出口温度センサ
38 運転・制御盤
40 燃焼・制御装置
42、44、50 回転制御装置
46 燃料制御弁
48 冷却塔ファン
DESCRIPTION OF
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005028864A JP4551233B2 (en) | 2004-07-23 | 2005-02-04 | Absorption-type refrigerator control method and absorption-type refrigerator installation for controlling cooling water temperature in conjunction with cooling load control operation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004215459 | 2004-07-23 | ||
JP2005028864A JP4551233B2 (en) | 2004-07-23 | 2005-02-04 | Absorption-type refrigerator control method and absorption-type refrigerator installation for controlling cooling water temperature in conjunction with cooling load control operation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006057991A true JP2006057991A (en) | 2006-03-02 |
JP4551233B2 JP4551233B2 (en) | 2010-09-22 |
Family
ID=36105598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005028864A Expired - Fee Related JP4551233B2 (en) | 2004-07-23 | 2005-02-04 | Absorption-type refrigerator control method and absorption-type refrigerator installation for controlling cooling water temperature in conjunction with cooling load control operation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4551233B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007315717A (en) * | 2006-05-29 | 2007-12-06 | Hasegawa Electric Industry Co | Operation control method for cold/hot water pump in air conditioning facility |
JP2010078298A (en) * | 2008-09-29 | 2010-04-08 | Sanyo Electric Co Ltd | Absorption refrigerator |
JP2010196987A (en) * | 2009-02-25 | 2010-09-09 | Yamatake Corp | Device and method of controlling cooling tower fan |
JP2010230264A (en) * | 2009-03-27 | 2010-10-14 | Sanki Eng Co Ltd | Steam compression refrigerator system |
JP2010243014A (en) * | 2009-04-02 | 2010-10-28 | Kawasaki Thermal Engineering Co Ltd | Method of operating absorption water chiller/heater |
CN111219905A (en) * | 2020-02-21 | 2020-06-02 | 中国电力工程顾问集团西南电力设计院有限公司 | Cold and heat source combined configuration structure and operation method of centralized refrigeration and heating system of power plant |
CN112954944A (en) * | 2019-11-26 | 2021-06-11 | 中车大连电力牵引研发中心有限公司 | Vehicle-mounted converter thermal management system and method and vehicle-mounted converter |
CN113865166A (en) * | 2021-03-31 | 2021-12-31 | 合肥工业大学 | Cooling and heating system strategy optimization based on energy balance and load rate of each energy supply unit |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102010832B1 (en) * | 2017-01-18 | 2019-08-14 | (주)월드이엔씨 | Low load control system for 2-stage low temperature hot water absorption chiller |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61128042A (en) * | 1984-11-28 | 1986-06-16 | Shinryo Air Conditioning Co Ltd | Air conditioner having cold water producing circuit |
JPH02106666A (en) * | 1988-10-17 | 1990-04-18 | Hitachi Ltd | Absorptive type freezer |
JPH06241603A (en) * | 1993-02-19 | 1994-09-02 | Hitachi Ltd | Absorption type water cooling/heating device and operating method thereof |
JPH07218028A (en) * | 1994-01-31 | 1995-08-18 | Hitachi Ltd | Absorption type refrigerating machine |
JPH09145194A (en) * | 1995-11-20 | 1997-06-06 | Takuma Co Ltd | Absorption cycle operation equipment |
JPH09236352A (en) * | 1996-03-01 | 1997-09-09 | Yazaki Corp | Hot water heating absorption refrigerating machine |
JPH1123090A (en) * | 1997-06-30 | 1999-01-26 | Mitsubishi Heavy Ind Ltd | Exhaust heat absorbing absorption heater cooler |
JP2000274864A (en) * | 1999-03-19 | 2000-10-06 | Sanyo Electric Co Ltd | Method for controlling absorption refrigerator |
JP2002310528A (en) * | 2001-04-06 | 2002-10-23 | Sanyo Electric Co Ltd | Control device for absorption type refrigerator |
JP2003042588A (en) * | 2001-07-26 | 2003-02-13 | Rinnai Corp | Absorption type cooling and heating machine |
JP2003214720A (en) * | 2002-01-25 | 2003-07-30 | Kawasaki Thermal Engineering Co Ltd | Triple-effect absorption water cooler/heater with level control function |
JP2004036957A (en) * | 2002-07-02 | 2004-02-05 | Yazaki Corp | Method of controlling flow rate of cooling water in absorption chiller and heater |
JP2004101129A (en) * | 2002-09-12 | 2004-04-02 | Toshiba Corp | Control method for refrigerator and refrigeration device |
-
2005
- 2005-02-04 JP JP2005028864A patent/JP4551233B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61128042A (en) * | 1984-11-28 | 1986-06-16 | Shinryo Air Conditioning Co Ltd | Air conditioner having cold water producing circuit |
JPH02106666A (en) * | 1988-10-17 | 1990-04-18 | Hitachi Ltd | Absorptive type freezer |
JPH06241603A (en) * | 1993-02-19 | 1994-09-02 | Hitachi Ltd | Absorption type water cooling/heating device and operating method thereof |
JPH07218028A (en) * | 1994-01-31 | 1995-08-18 | Hitachi Ltd | Absorption type refrigerating machine |
JPH09145194A (en) * | 1995-11-20 | 1997-06-06 | Takuma Co Ltd | Absorption cycle operation equipment |
JPH09236352A (en) * | 1996-03-01 | 1997-09-09 | Yazaki Corp | Hot water heating absorption refrigerating machine |
JPH1123090A (en) * | 1997-06-30 | 1999-01-26 | Mitsubishi Heavy Ind Ltd | Exhaust heat absorbing absorption heater cooler |
JP2000274864A (en) * | 1999-03-19 | 2000-10-06 | Sanyo Electric Co Ltd | Method for controlling absorption refrigerator |
JP2002310528A (en) * | 2001-04-06 | 2002-10-23 | Sanyo Electric Co Ltd | Control device for absorption type refrigerator |
JP2003042588A (en) * | 2001-07-26 | 2003-02-13 | Rinnai Corp | Absorption type cooling and heating machine |
JP2003214720A (en) * | 2002-01-25 | 2003-07-30 | Kawasaki Thermal Engineering Co Ltd | Triple-effect absorption water cooler/heater with level control function |
JP2004036957A (en) * | 2002-07-02 | 2004-02-05 | Yazaki Corp | Method of controlling flow rate of cooling water in absorption chiller and heater |
JP2004101129A (en) * | 2002-09-12 | 2004-04-02 | Toshiba Corp | Control method for refrigerator and refrigeration device |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007315717A (en) * | 2006-05-29 | 2007-12-06 | Hasegawa Electric Industry Co | Operation control method for cold/hot water pump in air conditioning facility |
WO2007138734A1 (en) * | 2006-05-29 | 2007-12-06 | Hasegawa Electric Industry Co., Ltd | Operation control method of cold and hot water pump in air conditioning facility |
JP4699285B2 (en) * | 2006-05-29 | 2011-06-08 | 株式会社 長谷川電気工業所 | Operation control method of cold / hot water pump in air conditioning equipment |
US8019480B2 (en) | 2006-05-29 | 2011-09-13 | Hasegawa Electric Industry Co., Ltd. | Method for controlling cooled or heated water pump of air conditioning installation |
JP2010078298A (en) * | 2008-09-29 | 2010-04-08 | Sanyo Electric Co Ltd | Absorption refrigerator |
JP2010196987A (en) * | 2009-02-25 | 2010-09-09 | Yamatake Corp | Device and method of controlling cooling tower fan |
JP2010230264A (en) * | 2009-03-27 | 2010-10-14 | Sanki Eng Co Ltd | Steam compression refrigerator system |
JP2010243014A (en) * | 2009-04-02 | 2010-10-28 | Kawasaki Thermal Engineering Co Ltd | Method of operating absorption water chiller/heater |
CN112954944A (en) * | 2019-11-26 | 2021-06-11 | 中车大连电力牵引研发中心有限公司 | Vehicle-mounted converter thermal management system and method and vehicle-mounted converter |
CN111219905A (en) * | 2020-02-21 | 2020-06-02 | 中国电力工程顾问集团西南电力设计院有限公司 | Cold and heat source combined configuration structure and operation method of centralized refrigeration and heating system of power plant |
CN111219905B (en) * | 2020-02-21 | 2024-04-16 | 中国电力工程顾问集团西南电力设计院有限公司 | Cold and heat source combined configuration structure and operation method of concentrated refrigeration and heating system of power plant |
CN113865166A (en) * | 2021-03-31 | 2021-12-31 | 合肥工业大学 | Cooling and heating system strategy optimization based on energy balance and load rate of each energy supply unit |
Also Published As
Publication number | Publication date |
---|---|
JP4551233B2 (en) | 2010-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4551233B2 (en) | Absorption-type refrigerator control method and absorption-type refrigerator installation for controlling cooling water temperature in conjunction with cooling load control operation | |
US4471630A (en) | Cooling system having combination of compression and absorption type units | |
JP6415378B2 (en) | Air conditioning system | |
JP2011089722A (en) | Method and device for refrigeration/air conditioning | |
CN105423590B (en) | Absorption refrigeration system | |
JP4398360B2 (en) | Cooling water temperature control method for absorption chiller / heater | |
JP5390426B2 (en) | Absorption heat pump device | |
JP6603066B2 (en) | Waste heat input type absorption chiller / heater | |
JP2005003312A (en) | Triple effect absorption refrigerating plant | |
JP6871015B2 (en) | Absorption refrigeration system | |
JP3554858B2 (en) | Absorption refrigerator | |
JP2010078298A (en) | Absorption refrigerator | |
JP5092668B2 (en) | Absorption refrigeration system | |
JP2005300069A (en) | Absorption refrigerating machine | |
JP3819727B2 (en) | Absorption refrigerator control system | |
JP2017172897A (en) | Absorption type refrigerating machine | |
CN101688704A (en) | Be used to expand the method and system of the adjusting ratio of absorption chiller | |
JP3138164B2 (en) | Absorption refrigerator | |
JP2006010194A (en) | Triple effect type absorbing water cooler-heater | |
JP4149653B2 (en) | Operation method of absorption chiller using exhaust heat | |
JP3902912B2 (en) | Control device | |
JPS5854343B2 (en) | Air conditioning equipment | |
JP5098561B2 (en) | Absorption refrigeration system | |
JP3182233B2 (en) | Operation control method in absorption refrigerator | |
JPS6330946Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100706 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100709 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4551233 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |