JPH02106666A - Absorptive type freezer - Google Patents

Absorptive type freezer

Info

Publication number
JPH02106666A
JPH02106666A JP25948288A JP25948288A JPH02106666A JP H02106666 A JPH02106666 A JP H02106666A JP 25948288 A JP25948288 A JP 25948288A JP 25948288 A JP25948288 A JP 25948288A JP H02106666 A JPH02106666 A JP H02106666A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
evaporator
control valve
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25948288A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kishi
岸 吉旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25948288A priority Critical patent/JPH02106666A/en
Publication of JPH02106666A publication Critical patent/JPH02106666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide a fast adjustment of output of a refrigerant capability and prevent entering a super cooling limit by a method wherein a discharging system for a refrigerant pump is provided with a three-way control valve for performing an opening or closing operation of a valve in response to a temperature of cold water port and the three-way control valve controls a spraying system for a spraying nozzle of an evaporator and a bypassing system for a refrigerant tank. CONSTITUTION:Refrigerant discharged from a refrigerant pump 8 distributes its flow rate into a spraying system (a) and a bypassing system (b) by a three- way control valve 10 arranged at a discharging side. Distributing amount at the spraying system (a) and the bypassing system (b) of the three-way control valve 10 is applied for a flow rate control in response to a detected temperature of a temperature sensor 12 arranged at an outlet port of an evaporator of a cold water system 11. With this arrangement, a spraying amount of refrigerant is limited as a cold water temperature is lowered and then a limitation of cooling power is controlled in an internal cycle system without any heat loss.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸収式冷凍機に係り、特に、中間期。[Detailed description of the invention] [Industrial application field] TECHNICAL FIELD The present invention relates to an absorption refrigerator, particularly an intermediate stage refrigerator.

冬期における冷房運転に好適な過冷却防止手段を有する
吸収式冷凍機に関するものである。
The present invention relates to an absorption refrigerator having supercooling prevention means suitable for cooling operation in winter.

〔従来の技術〕[Conventional technology]

冬期の冷房運転は、一般に低負荷であり、夏期のピーク
時を想定して冷凍機のサイクル、温度調節(以下温調と
いう)が設定されていることから、中間期、冬期には、
冷却水の温度降下等の相乗作用もあって冷水過冷却に陥
るため、この対策として自動冷媒ブロ一方式を取り入れ
ることがある。
Cooling operation in winter is generally low-load, and the chiller cycle and temperature control (hereinafter referred to as temperature control) are set assuming peak times in summer.
A synergistic effect such as a drop in the temperature of the cooling water causes chilled water supercooling, so an automatic refrigerant blower system may be adopted as a countermeasure.

このため、省エネルギーに反し、熱損失となっている。This results in heat loss, which is contrary to energy conservation.

なお、この種の冷凍機として関連するものには、例えば
特開昭62−80461号公報が挙げられる。
Note that related refrigerators of this type include, for example, Japanese Unexamined Patent Publication No. 80461/1983.

[発明が解決しようとする課題] 従来、冷水過冷却に対しては、冷水出口温度をバロメー
ターにし、冷媒を吸収器側ヘブローする冷媒ブロ一方式
が一般的に実施されている。
[Problems to be Solved by the Invention] Conventionally, for cold water supercooling, a refrigerant blowing method has been generally implemented in which the cold water outlet temperature is used as a barometer and the refrigerant is blown to the absorber side.

しかし、これにより、冷凍能力が低下し、冷水出口温度
が一時的に上昇する。そのため、温調指令は、冷水温度
が上ることから、熱源側の垣を増加する指令を出し、冷
凍能力をアップさせる。したがって、負荷側とのバラン
スがとれないことになり、内部熱量の反省エネルギーと
なり、温調のアンバランスより、冷凍機の能力がハンチ
ング出力となり、結果として負荷側への不安定供給とな
っていた。
However, this reduces the refrigerating capacity and temporarily increases the cold water outlet temperature. Therefore, since the temperature of the cold water increases, the temperature control command issues a command to increase the wall on the heat source side, thereby increasing the refrigerating capacity. Therefore, the balance with the load side could not be maintained, and the internal heat amount was reflected energy, and due to the unbalanced temperature control, the capacity of the refrigerator became a hunting output, resulting in unstable supply to the load side. .

本発明は、上記従来技術の問題点を解決するためになさ
れたもので、冷水の過冷却を防止し、温調バランスを安
定させ、内部熱損失を防止し、低負荷時においても効率
の良い省エネルギー運転を可能にする吸収式冷凍機の提
供を、その目的とするものである。
The present invention was made in order to solve the problems of the prior art described above, and it prevents supercooling of cold water, stabilizes the temperature control balance, prevents internal heat loss, and achieves high efficiency even under low load. The purpose is to provide an absorption chiller that enables energy-saving operation.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の吸収式冷凍機に係
る第1の発明の構成は、蒸発器、吸収器。
In order to achieve the above object, a first aspect of the absorption refrigerator of the present invention includes an evaporator and an absorber.

凝縮器、熱源となる再生器、溶液熱交換器、溶液ポンプ
、冷媒ポンプ、およびこれらを作動的に接続する配管系
を備えた吸収式冷凍機において、前記冷媒ポンプの吐出
系に、蒸発器撒布ノズルへ通じるスプレー系と、冷媒タ
ンクへ通じるバイパス系とを制御する三方制御弁を設け
、蒸発器内のチューブ群に連通ずる冷水系に温度センサ
ーを設け、冷水温度条件に連通して前記蒸発器のチュー
ブ群上へ撒布する冷媒量を制御する制御回路を構成した
ものである。
In an absorption refrigerator equipped with a condenser, a regenerator serving as a heat source, a solution heat exchanger, a solution pump, a refrigerant pump, and a piping system that operatively connects these, an evaporator spray is applied to the discharge system of the refrigerant pump. A three-way control valve is provided to control the spray system leading to the nozzle and a bypass system leading to the refrigerant tank, and a temperature sensor is provided in the cold water system communicating with the tube group in the evaporator, and a temperature sensor is provided in the cold water system communicating with the tube group in the evaporator. This is a control circuit that controls the amount of refrigerant sprayed onto the tube group.

また、第2の発明の構成は、蒸発器、吸収器。Further, the configuration of the second invention includes an evaporator and an absorber.

凝縮器、熱源となる再生器、溶液熱交換器、溶液ポンプ
、冷媒ポンプ、およびこれらを作動的に接続する配管系
を備えた吸収式冷凍機において、前記冷媒ポンプの吐出
系に、蒸発器内を通る冷水系の冷水温度条件に連動して
前記蒸発器のチューブ群上へ撒布する冷媒量を制御する
三方制御弁と、入熱量を制御する燃料制御弁と、この燃
料制御弁に電気的に接続する燃料制御用温調計と、冷却
水入口温度、冷水mg湿温度検出する手段と、冷却水入
口温度が所定温度以下となったときに、降下温度値に見
合って前記燃料制御用温調計の冷水温調温度を高く変換
させて入熱量を制御する信号を出力する演算制御手段と
を設けたものである。
In an absorption refrigerator equipped with a condenser, a regenerator serving as a heat source, a solution heat exchanger, a solution pump, a refrigerant pump, and a piping system that operatively connects these, the discharge system of the refrigerant pump is provided with a a three-way control valve that controls the amount of refrigerant sprayed onto the tube group of the evaporator in conjunction with the temperature condition of the chilled water in the chilled water system passing through the evaporator; a fuel control valve that controls the amount of heat input; A connected fuel control temperature controller, means for detecting cooling water inlet temperature and cold water mg humidity temperature, and when the cooling water inlet temperature becomes a predetermined temperature or less, the fuel control temperature controller is connected to the fuel control temperature controller in accordance with the temperature drop value. The apparatus is provided with arithmetic control means for outputting a signal for controlling the amount of heat input by converting the controlled cold water temperature of the meter to a higher value.

なお付記すると、本発明を開発した考え方と発明の構成
との関係は次のとおりである。
Additionally, the relationship between the idea behind the development of the present invention and the structure of the invention is as follows.

本発明では、目的を2つに分けて対応している。The present invention deals with two objectives.

過冷却防止に対しては、必要以上に冷媒をスプレーさせ
ないことであり、不必要な冷媒は再び冷媒タンクに戻し
、内部熱損失を無くす機構を設けることである。その手
段として、冷媒ポンプ吐出から蒸発器冷媒スプレー機構
の間に、三方制御弁を設け、スプレー系と、冷媒タンク
へ戻るバイパス系とに分岐させている。
To prevent overcooling, it is important not to spray more refrigerant than necessary, and a mechanism is provided to return unnecessary refrigerant to the refrigerant tank and eliminate internal heat loss. As a means for this, a three-way control valve is provided between the refrigerant pump discharge and the evaporator refrigerant spray mechanism, and the system is branched into a spray system and a bypass system that returns to the refrigerant tank.

一方、中間期、冬期の冷房運転の省エネルギーを目的と
して、温調制御における温度設定を高める調整を自動的
に変換する機構を持たせる。
On the other hand, for the purpose of saving energy during air conditioning operation during the intermediate and winter seasons, the system is equipped with a mechanism that automatically converts adjustments to increase the temperature setting in temperature control.

中間期などには冷却水温度が下ることから、冷凍能力は
実質アップする。また、負荷側も夏期に比較し、大幅に
負荷が減少することから、最下限入熱でも冷凍機側の出
力が勝るため過冷却へと進むことになる。したがって、
温調設定温度を冷却水入口温度をバロメータにし、冷却
水入口温度が降下したら温調設定温度を上げる方法で?
fl調設定温度を自動的に変化させる。この結果、過冷
却トリップ限界との余裕度を持たせることができるほか
、入熱量を冷却水入口温度による冷凍能力の出力に見合
った入熱で制御することになるため省エネルギーに結び
つくことになる。
Since the cooling water temperature drops during the intermediate period, the refrigeration capacity actually increases. In addition, since the load on the load side is significantly reduced compared to the summer, even at the lowest heat input, the output of the refrigerator side is superior, leading to supercooling. therefore,
Is there a way to use the cooling water inlet temperature as a barometer for the temperature control set temperature, and then raise the temperature control set temperature when the coolant inlet temperature drops?
Automatically change the fl adjustment set temperature. As a result, it is possible to provide a margin with respect to the supercooling trip limit, and the amount of heat input is controlled to match the output of the refrigerating capacity based on the cooling water inlet temperature, leading to energy savings.

〔作用〕[Effect]

凝縮冷媒や蒸発器チューブ群に撒布した冷媒の残溜冷媒
は、冷媒タンクに集まり、再び冷媒スプレーへと循環を
繰り返す訳であるが、冷媒ポンプの吐出系に、冷水出口
温度によって弁の開閉動作を行なう三方制御弁を設置す
る。この三方制御弁は、設定温度に対し、冷水出口温度
が高い場合、温度差が大きいほど冷媒スプレー系への循
環量を比例的に増やしてやり、冷凍能力を出力させる。
The condensed refrigerant and residual refrigerant from the refrigerant sprayed in the evaporator tube group collects in the refrigerant tank and is circulated again to the refrigerant spray, but the refrigerant pump discharge system has a valve that opens and closes depending on the chilled water outlet temperature. A three-way control valve will be installed. When the chilled water outlet temperature is higher than the set temperature, this three-way control valve proportionally increases the amount of circulation to the refrigerant spray system as the temperature difference increases, thereby outputting the refrigerating capacity.

同様に設定温度に対し低い場合は、スプレー系への量を
減らし、冷媒タンクへ直接戻る量を増やす。
Similarly, if the temperature is lower than the set temperature, reduce the amount sent to the spray system and increase the amount returned directly to the refrigerant tank.

このような循環量調整をすることにより、冷凍能力の出
力を早期に調整することが可能であり、過冷却限界への
突入を未然に防止することができる。
By adjusting the circulation amount in this way, it is possible to adjust the output of the refrigerating capacity at an early stage, and it is possible to prevent the refrigerating capacity from reaching the supercooling limit.

また、低冷却水による冷凍能力アップから来る過冷却防
止には、温調動作を変換させることにより防止できる。
Further, overcooling caused by increasing the refrigerating capacity with low cooling water can be prevented by changing the temperature control operation.

入熱量の制御は、冷水温度を基準に燃料の流入量または
燃焼量を制御する制御弁によって行なっている。したが
って、冷凍能力の出力の目安は、冷水出口温度と入口温
度との差であるが、一般に冷水出口温度を一定に保とう
とする制御を行うものであるため、冷却水入口温度が降
下している場合、基準となる所定の冷却水入口温度に対
する降下温度に見合った能力アップ分の温度差を、燃料
制御用温調計の冷水温度設定温度を高くする温調変換を
行う。この操作は演算機能を有するマイコンにより、燃
料制御出力信号を変更し、事前に、早期に入熱量を制御
する動作を行う。
The amount of heat input is controlled by a control valve that controls the amount of fuel inflow or combustion based on the temperature of the cold water. Therefore, the guideline for the output of the refrigeration capacity is the difference between the chilled water outlet temperature and the inlet temperature, but since control is generally performed to keep the chilled water outlet temperature constant, the chilled water inlet temperature is decreasing. In this case, a temperature control conversion is performed to increase the set temperature of the chilled water temperature of the fuel control temperature controller by the temperature difference corresponding to the temperature drop with respect to the predetermined reference coolant inlet temperature. In this operation, a microcomputer with arithmetic functions changes the fuel control output signal and performs an operation to quickly control the amount of heat input in advance.

この結果、過冷却防止と省エネルギー化とが達成される
As a result, overcooling prevention and energy saving are achieved.

〔実施例〕〔Example〕

以下、本発明の各実施例を第1図ないし第4図を参照し
て説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は、本発明の一実施例に係る直焚吸収式二重効用
冷温水器の構成を示すサイクル系統図、第2図は、本発
明の他の実施例に係る直焚吸収式二重効用冷温水器の構
成を示すサイクル系統図である。
FIG. 1 is a cycle system diagram showing the configuration of a direct-fired absorption type dual-effect water cooler/heater according to an embodiment of the present invention, and FIG. It is a cycle system diagram showing the composition of a heavy-duty water cooler/heater.

まず、第1図を参照して第1の発明を説明する。First, the first invention will be explained with reference to FIG.

第1図において、1は蒸発器、2は吸収器、3は凝縮器
、4は高温再生器、5は低温再生器、6は溶液熱交換器
、7は溶液ポンプ、8は冷媒ポンプ、9は冷媒タンク、
10は、冷媒ポンプ8の吐出配管系に設けられた三方制
御弁で、この三方制御弁]0から蒸発器1の撒布ノズル
1aへ通じるスプレー系■と、冷媒回収タンク9へ通じ
るバイパス系■と冷媒ポンプ8の吐出側■とが分岐して
いる。11は、蒸発器1内のチューブ群11、 aに連
通ずる冷水系、12は、冷水系11の蒸発器出口側に設
けた温度センサー、13は三方弁制御器、19は、吸収
器2および凝縮器3内を通る冷却水系である。
In FIG. 1, 1 is an evaporator, 2 is an absorber, 3 is a condenser, 4 is a high temperature regenerator, 5 is a low temperature regenerator, 6 is a solution heat exchanger, 7 is a solution pump, 8 is a refrigerant pump, and 9 is the refrigerant tank,
10 is a three-way control valve provided in the discharge piping system of the refrigerant pump 8, and the three-way control valve 0 is connected to a spray system (■) that leads to the spray nozzle 1a of the evaporator 1, and a bypass system (■) that leads to the refrigerant recovery tank 9. The discharge side (2) of the refrigerant pump 8 is branched. 11 is a cold water system that communicates with the tube group 11, a in the evaporator 1; 12 is a temperature sensor provided on the evaporator outlet side of the cold water system 11; 13 is a three-way valve controller; This is a cooling water system that passes through the condenser 3.

冷水系11の冷水は、蒸発器1のチューブ群11aを通
過し、7°Cの冷水となる。蒸発器1の下部にある冷媒
は、冷媒ポンプ8によって蒸発器1の上部スプレー、す
なわち撒布ノズル1aから蒸発器チューブ群11aに撒
布され、冷水から熱を得て蒸発する。蒸発した冷媒は、
吸収器2に入り吸収器2の上部からスプレーされる溶液
に吸収される。冷媒を吸収した溶液は、溶液ポンプ7に
よって、溶液熱交換器6を通り、低温再生器5と高温再
生器4に送られる。各再生器では、溶液を加熱し溶液中
の冷媒を蒸発させ、冷媒蒸気は凝縮器3に入り冷却水系
19によって冷却され凝縮する。
The cold water in the cold water system 11 passes through the tube group 11a of the evaporator 1 and becomes cold water at 7°C. The refrigerant in the lower part of the evaporator 1 is sprayed from the upper spray of the evaporator 1, that is, the spray nozzle 1a, to the evaporator tube group 11a by the refrigerant pump 8, and is evaporated by obtaining heat from the cold water. The evaporated refrigerant is
It enters the absorber 2 and is absorbed by the solution sprayed from the top of the absorber 2. The solution that has absorbed the refrigerant is sent to the low-temperature regenerator 5 and the high-temperature regenerator 4 by the solution pump 7 through the solution heat exchanger 6 . In each regenerator, the solution is heated to evaporate the refrigerant in the solution, and the refrigerant vapor enters the condenser 3 and is cooled and condensed by the cooling water system 19.

凝縮器3で凝縮した冷媒は、すべて蒸発器1に戻り、蒸
発器1下部に設けた冷媒タンク9に集まる。戻った冷媒
は、冷媒ポンプ8によって再び蒸発器1のチューブ群1
1a上にスプレーするため圧送される。ここで冷媒ポン
プ8から吐出される冷媒は、吐出側に設けられた三方制
御弁10によってスプレー系■ と、バイパス系■に流
量を配分される。三方制御弁10の■側、■側の配分量
は、冷水系11の蒸発器出口側に設けた温度センサー1
2の検出温度によって、三方弁制御器13にて弁開度指
令の信号を三方制御弁10に送り、流量制御を行なうも
のである。これにより、冷媒スプレー量が冷水温度の低
下に伴ない制限されることになり、冷力の能力制限を内
部サイクル系で、熱損失を伴なわず制御するものである
All of the refrigerant condensed in the condenser 3 returns to the evaporator 1 and collects in a refrigerant tank 9 provided at the bottom of the evaporator 1. The returned refrigerant is sent to the tube group 1 of the evaporator 1 again by the refrigerant pump 8.
It is pumped to spray onto 1a. Here, the flow rate of the refrigerant discharged from the refrigerant pump 8 is distributed to the spray system (1) and the bypass system (2) by a three-way control valve 10 provided on the discharge side. The distribution amount on the ■ side and ■ side of the three-way control valve 10 is determined by the temperature sensor 1 installed on the evaporator outlet side of the chilled water system 11.
Based on the temperature detected in step 2, the three-way valve controller 13 sends a valve opening command signal to the three-way control valve 10 to control the flow rate. As a result, the amount of refrigerant spray is limited as the chilled water temperature decreases, and the cooling capacity is controlled by an internal cycle system without causing heat loss.

一方、温調設定温度を冷却水入口温度によって変更し、
温調温度設定帯を上限側へ自動変換させる第2の発明の
実施例を第2図を参照して説明する。
On the other hand, the temperature control set temperature is changed depending on the cooling water inlet temperature,
An embodiment of the second invention in which the temperature control temperature setting zone is automatically changed to the upper limit side will be described with reference to FIG. 2.

第2図の図中、第1図と同一符号のものは、先の実施例
と同等部であるから、その説明を省略する。
In FIG. 2, the same reference numerals as those in FIG. 1 are the same parts as in the previous embodiment, so a description thereof will be omitted.

第2図において、14は燃料制御弁、15は、この燃料
制御弁14に電気的に接続する燃料制御用温調計、16
は、冷水系11の蒸発器1人口側に設けた冷水温度温調
用センサー、17は冷水温度検出器、18は、マイコン
などを備えた演算制御手段に係る演算器、20は、冷却
水系19に設けた冷却求人[1温度センサー、21は冷
却水温度検出器である。
In FIG. 2, 14 is a fuel control valve, 15 is a fuel control temperature controller electrically connected to this fuel control valve 14, and 16 is a temperature controller for fuel control.
1 is a chilled water temperature control sensor provided on the evaporator 1 side of the chilled water system 11, 17 is a chilled water temperature detector, 18 is a computing unit for computing control means equipped with a microcomputer, etc., and 20 is a sensor for cooling water system 19. Cooling jobs provided [1 temperature sensor, 21 is a cooling water temperature detector.

冷温水器の入熱は、燃料制御弁14によって制御される
が、燃料制御弁14への信号出力は、燃料制御用温調計
15から出力される。この燃料制御用温調計15の出力
は次のようにして行われる。
Heat input to the water cooler/heater is controlled by the fuel control valve 14, and a signal output to the fuel control valve 14 is output from the fuel control temperature controller 15. The output of this fuel control temperature controller 15 is performed as follows.

冷水系11に設けられた冷水温度温調用センサー16に
よって検出した信号は冷水温度検出器17により出力さ
れ、その信号は演算器18に入力される。演算器18で
は、冷却水温度入力信号が設定温度より低い場合、設定
温度との偏差温度分を冷凍サイクル効率向上数値に置き
換え、能力アンプ分を演算し、冷水出口温度分に変換し
、冷水温度検出器17から入力した冷水温度を偏差分だ
けシフトし、燃料制御用温調計15の入力信号として置
き変えて出力する。
A signal detected by a chilled water temperature control sensor 16 provided in the chilled water system 11 is outputted by a chilled water temperature detector 17, and the signal is inputted to a computing unit 18. In the calculator 18, when the coolant temperature input signal is lower than the set temperature, the deviation temperature from the set temperature is replaced with the refrigeration cycle efficiency improvement value, the capacity amplifier is calculated, and the chilled water outlet temperature is converted to the chilled water outlet temperature. The chilled water temperature input from the detector 17 is shifted by the deviation amount, replaced as an input signal of the fuel control temperature controller 15, and output.

この結果、入熱量は、最少必要人熱分だけ燃焼させる燃
料となる制御を行うことになる。
As a result, the amount of heat input is controlled so that the minimum required amount of human heat is burned as fuel.

本実施例によって次の効果がもたらされる。This embodiment provides the following effects.

1)急激な温度変化による過冷却故障を回避できる。1) Overcooling failures caused by sudden temperature changes can be avoided.

2)低冷却水運転における過冷却故障を回避できる。2) Overcooling failures in low cooling water operation can be avoided.

3)従来の冷水温度調節に、冷却水入口温度条件を加味
することにより、省エネルギー運転が可能になった。
3) Energy-saving operation has become possible by adding the cooling water inlet temperature condition to the conventional cold water temperature control.

4)安定した連続運転を行うことができる。4) Stable continuous operation can be performed.

次に、冷水温度時間比例制御について第3図および第4
図を参照して説明する。
Next, Figures 3 and 4 show the chilled water temperature time proportional control.
This will be explained with reference to the figures.

第3図は、時間比例制御発停域を示す線図、第4図は冷
水温度変化を示す線図である。
FIG. 3 is a diagram showing the time proportional control start/stop region, and FIG. 4 is a diagram showing changes in cold water temperature.

上記第2図の直焚吸収式二重効用冷温水機により、冷水
温度の時間変化に応じて自動的に設定温度を変化させ、
負荷の状態に見合った省エネルギー運転を行うことがで
きる。
The direct-fired absorption type double-effect chiller/heater shown in Figure 2 above automatically changes the set temperature according to the change in chilled water temperature over time.
It is possible to perform energy-saving operation commensurate with the load condition.

第3図は、横軸に冷水出口温度が低下してきて12℃以
下となった時点からの経過時間(分)をとり、縦軸に設
定停止温度(’C)をとって時間比例制御の発停域(O
N域、OFF域)を示したものである。
In Figure 3, the horizontal axis shows the elapsed time (minutes) from the time when the chilled water outlet temperature decreased to 12℃ or less, and the vertical axis shows the set stop temperature ('C), and the time proportional control is activated. Stop area (O
(N area, OFF area).

冷房時、冷水出口温度が低下してきて12℃以下となっ
た時点からの経過時間によって自動停止動作温度を第3
図のように自動的に変える。すなわち、冷水温度が10
〜20分の間に11℃に達した場合、11℃で入熱を停
止し、20〜30分の間に10°Cに達した場合、10
℃で入熱を停止する。ただし、10分間は負荷の多少に
かかわらず7℃まで停止しない。
During cooling, the automatic stop operation temperature is set to 3 depending on the elapsed time since the cold water outlet temperature has decreased to 12℃ or less.
Automatically change as shown. That is, if the cold water temperature is 10
If it reaches 11 °C in ~20 minutes, stop the heat input at 11 °C, and if it reaches 10 °C in 20 to 30 minutes, 10 °C.
Stop heat input at °C. However, for 10 minutes, regardless of the load, it will not stop until the temperature reaches 7°C.

このことを横軸に時間、縦軸に冷水温度をとって、冷水
温度と時間の関係として表わすと第4回のようになる。
If this is expressed as the relationship between cold water temperature and time, with time on the horizontal axis and cold water temperature on the vertical axis, it will be as shown in Part 4.

このように1本発明では、冷水出口温度制御の温度セン
サーの設定値変換を時間経過に対応して行う。すなわち
、冷水出口温度が低下し、ある温度(例えば12℃)を
通過してから次の温度(例えば11℃)を通過するまで
の時間が短い場合、初期設定値(7℃)より高い温度で
バーナ燃焼を停止させ、時間が長い場合、初期設定値で
バーナ燃焼を停止させるような自動変換制御機構の制御
装置を備えている。
As described above, in one aspect of the present invention, the setting value of the temperature sensor for controlling the cold water outlet temperature is converted in accordance with the passage of time. In other words, if the chilled water outlet temperature decreases and the time from passing a certain temperature (e.g. 12°C) to passing through the next temperature (e.g. 11°C) is short, the temperature will be higher than the initial setting value (7°C). It is equipped with a control device for an automatic conversion control mechanism that stops burner combustion and, if the time is long, stops burner combustion at an initial setting value.

なお、暖房時も同様に温水出口温度が55℃以上となっ
た時点からの経過時間によって自動停止動作温度を変化
することができる。
In addition, during heating, the automatic stop operation temperature can be similarly changed depending on the elapsed time from the time when the hot water outlet temperature becomes 55° C. or higher.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、冷水の過冷却を防
止し、温調バランスを安定させ、内部熱損失を防止し、
低負荷時においても効率の良い省エネルギー運転を可能
にする吸収式冷凍機を提供することができる。
As described above, according to the present invention, supercooling of cold water is prevented, temperature control balance is stabilized, internal heat loss is prevented,
It is possible to provide an absorption chiller that enables efficient energy-saving operation even under low load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る直焚吸収式二重効用
冷温水器の構成を示すサイクル系統図、第2図は、本発
明の他の実施例に係る直焚吸収式二重効用冷温水器の構
成を示すサイクル系統図、第3図は、時間比例制御発停
域を示す線図、第4図は、冷水温度変化を示す線図であ
る。 1・・・蒸発器、2・・・吸収器、3・・・凝縮器、4
・・・高温再生器、5・・・低温再生器、6・・・溶液
熱交換器、7・・・溶液ポンプ、8・・冷媒ポンプ、9
・・・冷媒タンク、10・・三方制御弁、11・・・冷
水系、12・・・温度センサー、13・・・三方弁制御
器、14・・・燃料制御弁、15 燃料制御用温調計、
16・・冷水温度温調用センサー、17・・冷水温度検
出器、18・・・演算器、19・・・冷却水系、20・
・・冷却水入口温度センサー21・・冷却水温度検出器
FIG. 1 is a cycle system diagram showing the configuration of a direct-fired absorption type dual-effect water cooler/heater according to an embodiment of the present invention, and FIG. FIG. 3 is a cycle diagram showing the configuration of a heavy-duty water cooler/heater, FIG. 3 is a line diagram showing time proportional control start/stop regions, and FIG. 4 is a line diagram showing changes in chilled water temperature. 1... Evaporator, 2... Absorber, 3... Condenser, 4
...High temperature regenerator, 5...Low temperature regenerator, 6...Solution heat exchanger, 7...Solution pump, 8...Refrigerant pump, 9
... Refrigerant tank, 10 ... Three-way control valve, 11 ... Chilled water system, 12 ... Temperature sensor, 13 ... Three-way valve controller, 14 ... Fuel control valve, 15 Temperature control for fuel control total,
16... Chilled water temperature sensor, 17... Chilled water temperature detector, 18... Arithmetic unit, 19... Cooling water system, 20...
...Cooling water inlet temperature sensor 21...Cooling water temperature detector.

Claims (1)

【特許請求の範囲】 1、蒸発器、吸収器、凝縮器、熱源となる再生器、溶液
熱交換器、溶液ポンプ、冷媒ポンプ、およびこれらを作
動的に接続する配管系を備えた吸収式冷凍機において、
前記冷媒ポンプの吐出系に、蒸発器撒布ノズルへ通じる
スプレー系と、冷媒タンクへ通じるバイパス系とを制御
する三方制御弁を設け、蒸発器内のチューブ群に連通す
る冷水系に温度センサーを設け、冷水温度条件に連通し
て前記蒸発器のチューブ群上へ撒布する冷媒量を制御す
る制御回路を構成したことを特徴とする吸収式冷凍機。 2、蒸発器、吸収器、凝縮器、熱源となる再生器、溶液
熱交換器、溶液ポンプ、冷媒ポンプ、およびこれらを作
動的に接続する配管系を備えた吸収式冷凍機において、 前記冷媒ポンプの吐出系に、蒸発器内を通る冷水系の冷
水温度条件に連動して前記蒸発器のチューブ群上へ撒布
する冷媒量を制御する三方制御弁と、 入熱量を制御する燃料制御弁と、 この燃料制御弁に電気的に接続する燃料制御用温調計と
、 冷却水入口温度、冷水温調温度を検出する手段と、 冷却水入口温度が所定温度以下となつたときに、降下温
度値に見合つて前記燃料制御用温調計の冷水温調温度を
高く変換させて入熱量を制御する信号を出力する演算制
御手段とを設けたことを特徴とする吸収式冷凍機。
[Claims] 1. Absorption refrigeration equipped with an evaporator, an absorber, a condenser, a regenerator serving as a heat source, a solution heat exchanger, a solution pump, a refrigerant pump, and a piping system that operatively connects these. On the machine,
A three-way control valve is provided in the discharge system of the refrigerant pump to control a spray system leading to the evaporator spray nozzle and a bypass system leading to the refrigerant tank, and a temperature sensor is provided in the cold water system communicating with the tube group in the evaporator. An absorption refrigerator comprising: a control circuit that controls the amount of refrigerant sprayed onto the tube group of the evaporator in communication with the chilled water temperature condition. 2. In an absorption refrigerator equipped with an evaporator, an absorber, a condenser, a regenerator serving as a heat source, a solution heat exchanger, a solution pump, a refrigerant pump, and a piping system that operatively connects these, the refrigerant pump a three-way control valve that controls the amount of refrigerant sprayed onto the tube group of the evaporator in conjunction with the temperature condition of the chilled water in the chilled water system passing through the evaporator; and a fuel control valve that controls the amount of heat input. A fuel control temperature controller electrically connected to the fuel control valve; a means for detecting the cooling water inlet temperature and the chilled water temperature control temperature; an absorption refrigerating machine, characterized in that it is provided with arithmetic control means for outputting a signal for controlling the amount of heat input by converting the controlled cold water temperature of the fuel control temperature controller to a higher value in accordance with the above.
JP25948288A 1988-10-17 1988-10-17 Absorptive type freezer Pending JPH02106666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25948288A JPH02106666A (en) 1988-10-17 1988-10-17 Absorptive type freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25948288A JPH02106666A (en) 1988-10-17 1988-10-17 Absorptive type freezer

Publications (1)

Publication Number Publication Date
JPH02106666A true JPH02106666A (en) 1990-04-18

Family

ID=17334693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25948288A Pending JPH02106666A (en) 1988-10-17 1988-10-17 Absorptive type freezer

Country Status (1)

Country Link
JP (1) JPH02106666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057991A (en) * 2004-07-23 2006-03-02 Kawasaki Thermal Engineering Co Ltd Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057991A (en) * 2004-07-23 2006-03-02 Kawasaki Thermal Engineering Co Ltd Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation

Similar Documents

Publication Publication Date Title
KR102074912B1 (en) Refrigerator for controlling pump inverter depending on loading amount
JP4248099B2 (en) Control method of refrigerator or hot and cold water machine
JP4287113B2 (en) Refrigerator control method and refrigeration apparatus
JPH02106666A (en) Absorptive type freezer
JP3184034B2 (en) Control method of absorption chiller / heater
JPH07218016A (en) Absorption type chilled and warm water machine
JP2858922B2 (en) Absorption chiller / heater controller
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JP3075944B2 (en) Absorption chiller / heater
JPH0586543B2 (en)
US5722246A (en) Absorption refrigerating apparatus control method
JP2883372B2 (en) Absorption chiller / heater
JPS626449Y2 (en)
JPH11132590A (en) Absorption refrigerating machine
JP2645824B2 (en) Double effect absorption refrigerator
JP3434279B2 (en) Absorption refrigerator and how to start it
JPS6021721Y2 (en) Absorption chiller control device
JPH0379631B2 (en)
JPH0627591B2 (en) Absorption refrigerator
JP3086594B2 (en) Single double effect absorption refrigerator
JP3157668B2 (en) Absorption chiller / heater
JPH03137461A (en) Control device for regenerator
JPS6256430B2 (en)
JPH07324839A (en) Single and double effect absorption hot and chilled water generator
JPH0810090B2 (en) Double-effect air cooling absorption type water heater