JPH0810090B2 - Double-effect air cooling absorption type water heater - Google Patents

Double-effect air cooling absorption type water heater

Info

Publication number
JPH0810090B2
JPH0810090B2 JP814887A JP814887A JPH0810090B2 JP H0810090 B2 JPH0810090 B2 JP H0810090B2 JP 814887 A JP814887 A JP 814887A JP 814887 A JP814887 A JP 814887A JP H0810090 B2 JPH0810090 B2 JP H0810090B2
Authority
JP
Japan
Prior art keywords
air
temperature
cooled
heating amount
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP814887A
Other languages
Japanese (ja)
Other versions
JPS63176965A (en
Inventor
茂吉 黒沢
義一 永岡
真一 閑納
貞寿 竹本
滋郎 杉本
富久 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP814887A priority Critical patent/JPH0810090B2/en
Publication of JPS63176965A publication Critical patent/JPS63176965A/en
Publication of JPH0810090B2 publication Critical patent/JPH0810090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二重効用空冷吸収式冷温水機に係り、特
に、水を冷媒とし、リチウムブロマイドを吸収剤とし、
外気温が異常上昇したときにも運転するのに好適な二重
効用空冷吸収式冷温水機に関するものである。
The present invention relates to a double-effect air-cooled absorption type chiller-heater, and particularly water as a refrigerant and lithium bromide as an absorbent,
The present invention relates to a double-effect air-cooled absorption type chiller-heater suitable for operation even when the outside air temperature rises abnormally.

〔従来の技術〕[Conventional technology]

従来、広く用いられていた水冷式の二重効用吸収式冷
凍機は、クーリングタワーを始めとする冷却水系の据付
工事,保守および水管理にコストがかかるという問題が
あり、二重効用空冷吸収式冷凍機の開発が急速に進めら
れるに至つた。
The water-cooled double-effect absorption chiller that has been widely used in the past has a problem that it costs a lot to install, maintain, and manage water for a cooling water system such as a cooling tower. The development of the machine has proceeded rapidly.

そこで、水を冷媒とし、リチウムブロマイドを吸収剤
とする空冷吸収式冷水機として、例えば、特開昭61−49
970号公報記載の技術が開発された。すなわち、当該公
報記載のものは、吸収器,凝縮器を、フアンによる空気
の流れで冷却するように、垂直管の管外にフインを設け
た構成のものとし、一方、高温再生器温度を上昇させて
凝縮器での冷媒の過冷却度を増大させ、空冷吸収器を出
た溶液または冷媒蒸気が混在する溶液を、凝縮器で液化
した前記過冷却冷媒で冷却するようにして、空冷吸収式
冷水機を実現している。
Therefore, as an air-cooled absorption type chiller using water as a refrigerant and lithium bromide as an absorbent, for example, JP-A-61-49
The technology described in Japanese Patent No. 970 was developed. That is, the one described in the publication has a structure in which fins are provided outside the vertical pipe so that the absorber and the condenser are cooled by the air flow by the fan, while the temperature of the high temperature regenerator is increased. By increasing the degree of supercooling of the refrigerant in the condenser, the solution exiting the air-cooled absorber or the solution mixed with the refrigerant vapor is cooled by the supercooled refrigerant liquefied in the condenser, air-cooled absorption type Realizes a chiller.

すなわち、外気乾球温度が33℃程度においては、機内
圧力が大気圧以下となり、溶液温度も実用的な範囲にお
さまつて運転できる二重効用空冷吸収式冷温水機が提供
された。
That is, when the outside air dry-bulb temperature is about 33 ° C., the internal pressure becomes equal to or lower than the atmospheric pressure, and the double-effect air-cooled absorption chiller-heater capable of operating while keeping the solution temperature within a practical range was provided.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記のように、例えば特開昭61−49970号公報記載の
技術では、吸収サイクルや、空冷吸収器,空冷凝縮器に
特別の工夫がなされているが、外気温が異常に高くなつ
たときの配慮がなされていなかつた。
As described above, for example, in the technique described in Japanese Patent Laid-Open No. 61-49970, the absorption cycle, the air-cooled absorber, and the air-cooled condenser are specially devised, but when the outside temperature becomes abnormally high, It was never considered.

一般に外気乾球温度は、夏期における日中最高気温の
月別平均値では東京で30.8℃であり、上記技術による二
重効用空冷吸収式冷温水機の運転は可能である。しか
し、夏期における外気温の最高値は、気象統計によると
東京で38.4℃に上昇することになり、このように外気温
が異常に高くなると、空冷吸収器内溶液温度が高くな
り、機内(特に高圧再生器内)の圧力が大気圧以上とな
り、もつとも冷房の必要なときに冷凍運転ができないと
いう不具合が発生する問題があつた。また、高圧再生器
内の溶液温度が高くなり、リチウムブロマイドによる腐
食の問題も生じる。
In general, the outside air dry-bulb temperature is 30.8 ° C in Tokyo, which is the monthly average of the daytime maximum temperature in summer, and it is possible to operate the double-effect air-cooled absorption chiller-heater with the above technology. However, according to meteorological statistics, the maximum value of the outside temperature in the summer will rise to 38.4 ° C in Tokyo, and if the outside temperature becomes abnormally high in this way, the solution temperature inside the air-cooled absorber will rise, and The pressure in the high-pressure regenerator) is higher than atmospheric pressure, and there is a problem that refrigeration cannot be performed when cooling is required. Further, the solution temperature in the high-pressure regenerator becomes high, which causes a problem of corrosion due to lithium bromide.

本発明は、前述の従来技術の問題点を解決するために
なされたもので、外気温が異常に上昇したときにも、空
冷吸収器内溶液温度を下げ、高温再生器内圧力が大気圧
を超えることがなく運転が継続できる二重効用空冷吸収
式冷温水機を提供することを、その目的としている。
The present invention has been made to solve the above-mentioned problems of the conventional technique. Even when the outside air temperature rises abnormally, the temperature of the solution inside the air-cooled absorber is lowered, and the pressure inside the high temperature regenerator is kept at atmospheric pressure. It is an object of the present invention to provide a double-effect air-cooled absorption type chiller-heater that can continue operation without exceeding it.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明に係る二重効用空
冷吸収式冷温水機の構成は、蒸発器、空冷吸収器、空冷
凝縮器、低温再生器、高温再生器、溶液熱交換器、溶液
ポンプ、冷媒ポンプ、およびこれらを作動的に接続する
配管系からなり、前記空冷吸収器,空冷凝縮器へ冷却空
気を供給するファンを備えた二重効用空冷吸収式冷温水
機において、前記高温再生器に対する熱源供給系に加熱
量制御弁を設け、 前記冷却空気の温度の上昇に応じて前記高温再生器の加
熱量を絞る方向に前記加熱量制御弁を制御する制御手段
を設けたものである。
In order to achieve the above object, the structure of the double-effect air-cooled absorption type chiller-heater according to the present invention includes an evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, and a solution. In the double-effect air-cooled absorption chiller-heater, which comprises a pump, a refrigerant pump, and a piping system that operatively connects these, and which has a fan that supplies cooling air to the air-cooled absorber and the air-cooled condenser, the high-temperature regeneration is performed. A heating amount control valve is provided in the heat source supply system for the regenerator, and a control means for controlling the heating amount control valve in a direction of reducing the heating amount of the high temperature regenerator according to the rise of the temperature of the cooling air is provided. .

なお、本発明を開発した考え方を付記すると、次のと
おりである。
The concept of developing the present invention is as follows.

水を冷媒とし、リチウムブロマイドを吸収剤とする二
重効用空冷吸収式冷凍機の機内圧力、特に高温再生器内
圧力を決定するのは、低温再生器内の溶液温度であり、
この溶液温度は空冷凝縮器内の冷媒凝縮温度により決定
される。
It is the solution temperature in the low-temperature regenerator that determines the internal pressure of the dual-effect air-cooled absorption type refrigerator with water as a refrigerant and lithium bromide as the absorbent, particularly the high-temperature regenerator internal pressure,
This solution temperature is determined by the refrigerant condensation temperature in the air-cooled condenser.

また、空冷式は、冷却空気の出入口温度差が大きく、
冷却量が若干減ると大巾に圧力,温度が低下する。した
がつて、高温再生器内の加熱量をわずかに絞ることによ
り冷却空気温度の出入口温度差が小さくなる。その結
果、空冷吸収器内溶液温度が下ることと、空冷凝縮器内
の凝縮温度が下ることのため、機内圧力の低下が2重に
効き、機内圧力(高温再生器内圧力)が大幅に低下す
る。
In addition, the air-cooled type has a large temperature difference between the inlet and outlet of cooling air,
When the cooling rate is slightly reduced, the pressure and temperature drop significantly. Therefore, the inlet / outlet temperature difference of the cooling air temperature is reduced by slightly reducing the heating amount in the high temperature regenerator. As a result, the solution temperature in the air-cooled absorber and the condensation temperature in the air-cooled condenser are lowered, so that the internal pressure drop is doubled, and the internal pressure (high-temperature regenerator internal pressure) drops significantly. To do.

〔作用〕[Action]

上記の動作を、第4図の溶液濃度線図を参照して説明
する。
The above operation will be described with reference to the solution concentration diagram of FIG.

第4図は、二重効用空冷吸収式冷温水機の溶液濃度線
図であり、吸収溶液濃度をパラメータとして、空冷吸収
サイクルを示したものであり、加熱量制御弁を制御しな
かつた場合を破線,加熱量制御弁を制御し加熱量を絞つ
た場合を実線で示している。
FIG. 4 is a solution concentration diagram of a double-effect air-cooled absorption type chiller-heater, showing an air-cooled absorption cycle with the concentration of the absorption solution as a parameter, and showing a case where the heating amount control valve is not controlled. The broken line and the solid line show the case where the heating amount is controlled by controlling the heating amount control valve.

第4図は、横軸に温度をとり、基準となる外気温度,
空気吸収器溶液温度を示している。また、縦軸には圧力
をとり、空冷サイクルにおける蒸発圧力,凝縮圧力,高
温再生器圧力の各等圧レベルを二点鎖線で示している。
斜めの一点鎖線は冷媒の水飽和曲線を示す。
In Fig. 4, the horizontal axis represents temperature, and the reference outside air temperature,
The air absorber solution temperature is shown. Further, the vertical axis represents pressure, and each of the isobaric pressure levels of the evaporation pressure, the condensation pressure, and the high temperature regenerator pressure in the air cooling cycle is indicated by a two-dot chain line.
The diagonal one-dot chain line shows the water saturation curve of the refrigerant.

加熱量制御弁を制御しなかつた場合、外気温度が高く
なると、空冷凝縮器圧力は凝縮圧力レベル水飽和曲線と
の交点aとなり、これに対応する低温再生器内の溶液温
度はbとなる。これより、Δtだけ高い温度で低温再生
器加熱蒸気が凝縮することになり、その圧力がc点とな
るため、高温再生器内圧力が大気圧を超える。
When the heating amount control valve is not controlled and the outside air temperature rises, the air-cooled condenser pressure becomes the intersection point a with the condensation pressure level water saturation curve, and the corresponding solution temperature in the low temperature regenerator becomes b. From this, the low-temperature regenerator heating vapor condenses at a temperature higher by Δt, and the pressure becomes point c, so the internal pressure of the high-temperature regenerator exceeds atmospheric pressure.

一方、加熱量制御弁を設けて高温再生器の加熱量を絞
つた場合、空冷吸収器,空冷凝縮器の交換熱量が減る。
その結果、冷却空気温度の出入口温度差が小さくなり、
空冷吸収器,空冷凝縮器の出入口温度が低くなる。この
ことにより、空冷吸収器内部の溶液温度が低下し、凝縮
圧力が第4図のa′に低下し、これに対応する低温再生
器内の溶液温度がb′に低下する。このように、高温再
生器の加熱量を絞ると、空冷吸収器内の溶液濃度の低下
と、凝縮温度の低下の相乗効果で、低温再生器加熱蒸気
の凝縮圧力がcからc′に大幅に低下し、高温再生器の
圧力が大気圧以下に下る。
On the other hand, when the heating amount control valve is provided to reduce the heating amount of the high temperature regenerator, the heat exchange amount of the air cooling absorber and the air cooling condenser is reduced.
As a result, the inlet / outlet temperature difference of the cooling air temperature becomes small,
The inlet / outlet temperature of the air-cooled absorber and air-cooled condenser becomes low. As a result, the solution temperature inside the air-cooled absorber is lowered, the condensing pressure is lowered to a'in FIG. 4, and the corresponding solution temperature in the low temperature regenerator is lowered to b '. In this way, if the heating amount of the high temperature regenerator is reduced, the condensing pressure of the low temperature regenerator heating vapor greatly changes from c to c ′ due to the synergistic effect of the decrease of the solution concentration in the air-cooled absorber and the decrease of the condensation temperature. The temperature of the high temperature regenerator drops below atmospheric pressure.

高温再生器加熱量を制御する加熱量制御弁は、高温再
生器内の発生蒸気をコントロールするもので、適当な絞
りを与えることによつて低温再生器加熱蒸気の凝縮圧力
が低下し、機内圧力を大気圧以下に保持することができ
る。
The heating amount control valve that controls the heating amount of the high temperature regenerator controls the steam generated in the high temperature regenerator.By giving an appropriate throttle, the condensing pressure of the low temperature regenerator heating steam decreases and Can be maintained below atmospheric pressure.

加熱量制御弁を制御する手段としては、高温再生器内
圧力,凝縮冷媒液温度,外気温度などの検知信号に従つ
て制御信号を出力する圧力調節器,温度調節器などが用
いられる。
As a means for controlling the heating amount control valve, a pressure controller, a temperature controller or the like that outputs a control signal according to a detection signal such as the internal pressure of the high temperature regenerator, the temperature of the condensed refrigerant liquid, the temperature of the outside air, etc. is used.

〔実施例〕〔Example〕

以下、本発明の各実施例を第1図ないし第3図を参照
して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

まず、第1図は、本発明の一実施例に係る二重効用空
冷吸収式冷温水機のサイクル系統図である。
First, FIG. 1 is a cycle system diagram of a double-effect air-cooled absorption type chiller-heater according to an embodiment of the present invention.

第1図において、1は蒸発器、2は冷媒ポンプ、3は
冷水の通る冷水管を示す。
In FIG. 1, 1 is an evaporator, 2 is a refrigerant pump, and 3 is a cold water pipe through which cold water passes.

4は空冷吸収器で、この空冷吸収器4は、垂直管4aの
管外に冷却用のフイン4bが形成され、垂直管4aの上部に
蒸気通路5による上部ヘツダ、垂直管4aの下部に下部ヘ
ツダ4cを備えた構成である。
Reference numeral 4 denotes an air-cooled absorber. In this air-cooled absorber 4, a fin 4b for cooling is formed outside the vertical pipe 4a, an upper header is formed by a vapor passage 5 above the vertical pipe 4a, and a lower portion is formed below the vertical pipe 4a. This is a configuration including a Hezda 4c.

6は溶液ポンプ、7は溶液熱交換器、10は高温再生
器、11は低温再生器である。
6 is a solution pump, 7 is a solution heat exchanger, 10 is a high temperature regenerator, and 11 is a low temperature regenerator.

15は空冷凝縮器で、この空冷凝縮器15は、垂直管15a
の管外に冷却用のフイン15bが形成され、垂直管15aの上
部は蒸気通路14による上部ヘツダ、垂直管15aの下部に
下部ヘツダ15cを備えた構成である。
15 is an air-cooled condenser, and this air-cooled condenser 15 is a vertical pipe 15a.
A fin 15b for cooling is formed outside the pipe, the upper part of the vertical pipe 15a is provided with an upper header by the steam passage 14, and the lower part of the vertical pipe 15a is provided with a lower header 15c.

空冷吸収器4および空冷凝縮器15は、フアン20による
室外空気の流れによつて空冷されるもので、図中の太い
矢印は冷却空気の流れ方向を示している。
The air-cooled absorber 4 and the air-cooled condenser 15 are air-cooled by the flow of outdoor air by the fan 20, and the thick arrow in the figure indicates the flow direction of the cooling air.

上記の各機器は、冷媒配管,溶液配管によつて作動的
に接続されてサイクルが形成されている。
The above devices are operatively connected by a refrigerant pipe and a solution pipe to form a cycle.

21は、冷水管3に設けた、冷水の温度を検知する温度
検出器、22は、高温再生器10に対する外部熱源12の供給
管路に設けた加熱量制御弁、23は、高温再生器10内の冷
媒蒸気圧を検知する圧力検出器、24は、加熱量制御弁に
制御信号を送るためのローセレクター、25は、温度検出
器21の検知結果に従つて制御信号を出力する温度調節
器、26は、圧力検出器23の検知結果に従つて制御信号を
出力する圧力調節器である。これら温度検出器21,23,圧
力検出器23,温度調節器25,圧力調節器26、およびローセ
レクター24は、加熱量制御弁22の開閉を制御する制御手
段を構成しており、その電気的接続を図では破線をもつ
て示している。
Reference numeral 21 is a temperature detector provided in the cold water pipe 3 for detecting the temperature of the cold water, 22 is a heating amount control valve provided in the supply pipeline of the external heat source 12 to the high temperature regenerator 10, and 23 is the high temperature regenerator 10. A pressure detector for detecting the refrigerant vapor pressure in the inside, 24 is a low selector for sending a control signal to the heating amount control valve, and 25 is a temperature controller for outputting a control signal according to the detection result of the temperature detector 21. , 26 are pressure regulators that output a control signal in accordance with the detection result of the pressure detector 23. The temperature detectors 21, 23, the pressure detector 23, the temperature controller 25, the pressure controller 26, and the low selector 24 constitute control means for controlling the opening / closing of the heating amount control valve 22, and their electrical The connections are shown with dashed lines in the figure.

このような構成の二重効用空冷吸収式冷温水機につい
て、まず基本的なサイクルの作用を説明する。
With regard to the double-effect air-cooled absorption type chiller-heater having such a configuration, the basic operation of the cycle will be described first.

蒸発器1内の冷媒(水)は、冷媒ポンプ2によつて冷
水の通る冷水管3上に撒布され、冷水から蒸発熱を奪つ
て低圧の冷媒蒸気となり、蒸気通路5を経て空冷吸収器
4に流入する。空冷吸収器4は、フアン20によつて外気
により直接冷却されており、前記冷媒蒸気は、上部ヘツ
ダから撒布されて垂直管4a内を流下するリチウムブロマ
イド濃溶液に吸収されて稀溶液となる。
The refrigerant (water) in the evaporator 1 is sprinkled by the refrigerant pump 2 onto the cold water pipe 3 through which the cold water passes, and the heat of evaporation is taken from the cold water to become low-pressure refrigerant vapor, which passes through the vapor passage 5 and the air-cooled absorber 4 Flow into. The air-cooled absorber 4 is directly cooled by the outside air by the fan 20, and the refrigerant vapor is sprayed from the upper header and is absorbed by the concentrated lithium bromide solution flowing down the vertical pipe 4a to become a dilute solution.

この稀溶液は、溶液ポンプ6によつて送り出され、溶
液熱交換器7を経て稀溶液管8,9を介して高温再生器10,
低温再生器11に送り込まれる。
This dilute solution is sent out by the solution pump 6, passes through the solution heat exchanger 7, and passes through the dilute solution pipes 8 and 9 to obtain the high temperature regenerator 10,
It is sent to the low temperature regenerator 11.

高温再生器10には外部熱源12が供給され、炉10aで燃
焼するときに生じる熱により稀溶液を濃縮し、このとき
蒸気を発生する。この発生冷媒蒸気は、冷媒管路13の伝
熱管部13aを介して低温再生器11内の稀溶液を加熱濃縮
し、冷媒みずからは凝縮液化して液冷媒となり、空冷凝
縮器15の下部ヘツダ15cに送られる。
An external heat source 12 is supplied to the high temperature regenerator 10, and the dilute solution is concentrated by the heat generated when burning in the furnace 10a, and steam is generated at this time. This generated refrigerant vapor heats and concentrates the dilute solution in the low-temperature regenerator 11 via the heat transfer pipe portion 13a of the refrigerant pipe 13, condenses and liquefies from the refrigerant itself into a liquid refrigerant, and the lower header 15c of the air-cooled condenser 15 is condensed. Sent to.

低温再生器11で濃縮された稀溶液から発生した蒸気
は、蒸気通路14を通つて空冷凝縮器15の垂直管15aに流
入し、ここでやはりフアン20によつて外部により冷却さ
れて液冷媒となり下部ヘツダ15cから冷媒管16を経て蒸
発器1に戻る。
The vapor generated from the dilute solution concentrated in the low temperature regenerator 11 flows into the vertical pipe 15a of the air-cooled condenser 15 through the vapor passage 14 and is cooled by the fan 20 to the outside to become a liquid refrigerant. It returns from the lower header 15c to the evaporator 1 through the refrigerant pipe 16.

高温再生器10,低温再生器11でそれぞれ濃縮された溶
液は、濃溶液管17,18により溶液熱交換器7を経たのち
濃溶液管19を介して空冷吸収器4の上部ヘツダへ送られ
撒布され、再び吸収過程がくり返される。
The solutions concentrated respectively in the high temperature regenerator 10 and the low temperature regenerator 11 pass through the solution heat exchanger 7 by the concentrated solution pipes 17 and 18, and then are sent to the upper head of the air-cooled absorber 4 via the concentrated solution pipe 19 and spread. The absorption process is repeated again.

次に、加熱量制御弁およびその制御手段の作用を説明
する。
Next, the operation of the heating amount control valve and its control means will be described.

通常の運転時は、冷水管3における温度検出器21の検
知信号を受け、温度調節器25の制御信号で、高温再生器
10の熱源供給管路にある加熱量制御弁22を制御し、冷水
温度を一定に保持するようにしている。
During normal operation, the detection signal of the temperature detector 21 in the cold water pipe 3 is received, and the high temperature regenerator is controlled by the control signal of the temperature controller 25.
The heating amount control valve 22 in the heat source supply conduit 10 is controlled to keep the cold water temperature constant.

外気温度が特別高い場合は、空冷吸収器4における溶
液温度が上り、溶液濃度が上昇するとともに、空冷濃縮
器温度が上昇し、低温再生器11内の溶液温度が上昇する
ため、高温再生器10の内圧が上昇する。
When the outside air temperature is particularly high, the solution temperature in the air-cooled absorber 4 rises, the solution concentration rises, the air-cooling concentrator temperature rises, and the solution temperature in the low-temperature regenerator 11 rises. Internal pressure rises.

高温再生器10の内圧、すなわち冷媒蒸気圧が上昇する
と、圧力検出器23の検知信号を受けて圧力調節器26は、
加熱量制御弁22を閉方向へ制御する信号を出力する。ロ
ーセレクター24は、この信号と、温度調節器25の信号と
を比較して、高温再生機10の加熱量を絞る方向の信号を
選択して前記加熱量制御弁22に出力する。
When the internal pressure of the high temperature regenerator 10, that is, the refrigerant vapor pressure rises, the pressure regulator 26 receives the detection signal of the pressure detector 23,
A signal for controlling the heating amount control valve 22 in the closing direction is output. The low selector 24 compares this signal with the signal of the temperature controller 25, selects a signal in the direction of reducing the heating amount of the high temperature regenerator 10, and outputs it to the heating amount control valve 22.

高圧再生器10に対する加熱量が絞られると、空冷吸収
器4,空冷凝縮器15の交換熱量が減る。そこで空冷吸収器
4内部の溶液温度が低下し、これに対応する低温再生器
11内の溶液温度が低下する。空冷吸収器4内の溶液濃度
の低下と凝縮温度の低下との相乗効果で、低温再生器加
熱蒸気の凝縮圧力が大幅に低下し、高温再生器10の内圧
が大気圧以下に下る。
When the heating amount for the high-pressure regenerator 10 is reduced, the heat exchange amount of the air-cooled absorber 4 and the air-cooled condenser 15 is reduced. Therefore, the temperature of the solution inside the air-cooled absorber 4 decreases, and a low-temperature regenerator corresponding to this decreases.
The solution temperature in 11 drops. Due to the synergistic effect of the decrease of the solution concentration in the air-cooled absorber 4 and the decrease of the condensation temperature, the condensation pressure of the low-temperature regenerator heating vapor is significantly reduced, and the internal pressure of the high-temperature regenerator 10 is reduced to the atmospheric pressure or lower.

本実施例によれば、外気温が特別高い場合でも、空冷
吸収器4内溶液温度を低下し、高温再生器10内圧力が大
気圧以下に保持することができ、冷凍運転が継続でき
る。
According to this embodiment, even when the outside air temperature is extremely high, the temperature of the solution inside the air-cooled absorber 4 can be lowered, the inside pressure of the high temperature regenerator 10 can be kept below the atmospheric pressure, and the refrigeration operation can be continued.

次に、本発明の他の実施例を第2図を参照して説明す
る。
Next, another embodiment of the present invention will be described with reference to FIG.

ここに第2図は、本発明の他の実施例に係る二重効用
空冷吸収式冷温水機のサイクル系統図であり、図中、第
1図と同一符号のものは、先の実施例と同等のものであ
るから、その説明を省略する。
FIG. 2 is a cycle system diagram of a double-effect air-cooled absorption type chiller-heater according to another embodiment of the present invention. In the figure, the same reference numerals as in FIG. Since they are equivalent, the description thereof will be omitted.

第2図において、27は、低温再生器11の溶液を加熱す
る伝熱管部13aの、低温再生器出口における凝縮冷媒温
度を検知する温度検出器、28は、温度検出器27の検知結
果に従つて制御信号を出力する温度調節器である。
In FIG. 2, 27 is a temperature detector for detecting the temperature of the condensed refrigerant at the outlet of the low temperature regenerator of the heat transfer tube portion 13a for heating the solution of the low temperature regenerator 11, and 28 is the result of detection by the temperature detector 27. It is a temperature controller that outputs a control signal.

冷媒管路13における凝縮冷媒温度と高温再生器10にお
ける冷媒蒸気圧とは1対1で対応するものであるから、
温度検出器27の検知結果に従つて作動する温度調節器28
の出力信号によつて加熱量制御弁22を制御するようにし
ても、先の第1図の実施例と全く同様の効果が期待でき
る。
Since the condensed refrigerant temperature in the refrigerant line 13 and the refrigerant vapor pressure in the high temperature regenerator 10 have a one-to-one correspondence,
Temperature controller 28 that operates according to the detection result of temperature detector 27
Even if the heating amount control valve 22 is controlled by the output signal of, the same effect as that of the embodiment shown in FIG. 1 can be expected.

同様に、図示しないが、空冷凝縮器内の凝縮冷媒圧力
を検知する圧力検出器を設け、その検知結果に従つて作
動する圧力調節器の出力信号によつて、加熱量制御弁を
制御するようにしてもよい。
Similarly, although not shown, a pressure detector that detects the pressure of the condensed refrigerant in the air-cooled condenser is provided, and the heating amount control valve is controlled by the output signal of the pressure regulator that operates according to the detection result. You may

次に、第3図を参照して、本発明のさらに他の実施例
を説明する。
Next, still another embodiment of the present invention will be described with reference to FIG.

第3図は、本発明のさらに他の実施例に係る二重効用
空冷吸収式冷温水機のサイクル系統図であり、図中、第
1図と同一符号のものには、第1図の実施例と同等のも
のであるから、その説明を省略する。
FIG. 3 is a cycle system diagram of a double-effect air-cooled absorption type hot and cold water machine according to still another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. The description is omitted because it is the same as the example.

第3図において、29は、外気温度を検知する温度検出
器である。
In FIG. 3, 29 is a temperature detector for detecting the outside air temperature.

外気温が異常に高くなつたときは、温度検出器29は、
外気温を検知し、特定温度を越えたときに高温再生機10
の加熱量を絞る方向の信号を加熱量制御弁22に出力す
る。
When the outside temperature becomes abnormally high, the temperature detector 29
High temperature regenerator 10 when it detects the outside temperature and exceeds a specific temperature
A signal in the direction of reducing the heating amount of is output to the heating amount control valve 22.

本実施例によれば、フアン20による冷却空気に相当す
る外気温度に対応して高温再生器10に対する加熱量を制
御するので、先の第1図,第2図の各実施例と全く同様
の効果が期待できる。
According to the present embodiment, the heating amount for the high temperature regenerator 10 is controlled in accordance with the outside air temperature corresponding to the cooling air by the fan 20, so that it is exactly the same as the respective embodiments of FIGS. 1 and 2 above. You can expect an effect.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、外気温が異常に
上昇したときにも、空冷吸収器内溶液温度を下げ、高温
再生器内圧力が大気圧を超えることがなく運転が継続で
きる二重効用空冷吸収式冷温水機を提供することができ
る。
As described above, according to the present invention, even when the outside air temperature rises abnormally, the solution temperature inside the air-cooled absorber is lowered, and the operation can be continued without the pressure inside the high temperature regenerator exceeding the atmospheric pressure. It is possible to provide a heavy-duty air-cooled absorption type chiller-heater.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例に係る二重効用空冷吸収式
冷温水機のサイクル系統図、第2図は、本発明の他の実
施例に係る二重効用空冷吸収式冷温水機のサイクル系統
図、第3図は、本発明のさらに他の実施例に係る二重効
用空冷吸収式冷温水機のサイクル系統図、第4図は、二
重効用空冷吸収式冷温水機の溶液濃度線図である。 1……蒸発器、2……冷媒ポンプ、4……空冷吸収器、
6……溶液ポンプ、7……溶液熱交換器、10……高温再
生器、11……低温再生器、15……空冷凝縮器、20……フ
アン、22……加熱量制御弁、23……圧力検出器、25,28
……温度調節器、26……圧力調節器、21,27,29……温度
検出器。
FIG. 1 is a cycle system diagram of a double-effect air-cooled absorption type water heater / cooler according to an embodiment of the present invention, and FIG. 2 is a double-effect air-cooled absorption type water heater / chiller according to another embodiment of the present invention. FIG. 3 is a cycle system diagram of a double-effect air-cooled absorption type chiller-heater according to still another embodiment of the present invention, and FIG. 4 is a solution of the double-effect air-cooled absorption type chiller-heater. It is a concentration diagram. 1 ... Evaporator, 2 ... Refrigerant pump, 4 ... Air-cooled absorber,
6 ... Solution pump, 7 ... Solution heat exchanger, 10 ... High temperature regenerator, 11 ... Low temperature regenerator, 15 ... Air cooling condenser, 20 ... Huan, 22 ... Heating amount control valve, 23 ... … Pressure detector, 25,28
...... Temperature controller, 26 …… Pressure controller, 21,27,29 …… Temperature detector.

フロントページの続き (72)発明者 永岡 義一 東京都世田谷区上祖師谷5−22−4 上祖 師谷ハイツ302号 (72)発明者 閑納 真一 大阪府羽曳野市高鷲4丁目9−4−303 (72)発明者 竹本 貞寿 愛知県名古屋市千種区豊年町11−8 (72)発明者 杉本 滋郎 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 (72)発明者 大内 富久 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (56)参考文献 特開 昭55−95073(JP,A) 特開 昭58−136957(JP,A)Front page continuation (72) Inventor Yoshikazu Nagaoka 5-22-4 Kamisoshiya, Setagaya-ku, Tokyo Kamisoshiya Heights No. 302 (72) Inventor Shinichi Kanno 4-9-4-303 Takawashi, Habikino-shi, Osaka ( 72) Inventor Sadaju Takemoto 11-8 Toyonen-cho, Chikusa-ku, Nagoya-shi, Aichi Prefecture (72) Inventor Shigero Sugimoto 603, Kazunachi-cho, Tsuchiura-shi, Ibaraki Hitate Works Co., Ltd. Tsuchiura Plant (72) Inventor Tomihisa Ouchi Ibaraki 502 Jinritsucho, Tsuchiura City, Japan (56) References, Hiritsu Seisakusho Co., Ltd. (56) Reference JP-A-55-95073 (JP, A) JP-A-58-136957 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】蒸発器、空冷吸収器、空冷凝縮器、低温再
生器、高温再生器、溶液熱交換器、溶液ポンプ、冷媒ポ
ンプ、およびこれらを作動的に接続する配管系からな
り、 前記空冷吸収器,空冷凝縮器へ冷却空気を供給するファ
ンを備えた二重効用空冷吸収式冷温水機において、 前記高温再生器に対する熱源供給系に加熱量制御弁を設
け、 前記冷却空気の温度の上昇に応じて前記高温再生器の加
熱量を絞る方向に前記加熱量制御弁を制御する制御手段
を設けたことを特徴とする二重効用空冷吸収式冷温水
機。
1. An evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, a solution pump, a refrigerant pump, and a piping system for operatively connecting them, In a dual-effect air-cooled absorption type hot and cold water machine equipped with a fan that supplies cooling air to an absorber and an air-cooled condenser, a heating amount control valve is provided in a heat source supply system for the high temperature regenerator, and the temperature of the cooling air rises. A double-effect air-cooled absorption-type chiller-heater equipped with control means for controlling the heating amount control valve in a direction to reduce the heating amount of the high-temperature regenerator.
【請求項2】特許請求の範囲第1項記載のものにおい
て、加熱量制御弁を制御する制御手段は、少なくとも、
高温再生器内の冷媒蒸気圧を検知する圧力検出器と、そ
の検知結果に従って作動する圧力調節器とを備えたもの
であることを特徴とする二重効用空冷吸収式冷温水機。
2. The device according to claim 1, wherein the control means for controlling the heating amount control valve is at least:
A double-effect air-cooled absorption chiller-heater equipped with a pressure detector that detects the refrigerant vapor pressure in the high-temperature regenerator and a pressure regulator that operates according to the detection result.
【請求項3】特許請求の範囲第1項記載のものにおい
て、加熱量制御弁を制御する制御手段は、少なくとも、
空冷凝縮器内の凝縮冷媒圧力を検知する圧力検出器と、
その検知結果に従って作動する圧力調節器とを備えたも
のであることを特徴とする二重効用空冷吸収式冷温水
機。
3. The control means for controlling the heating amount control valve according to claim 1, wherein:
A pressure detector for detecting the pressure of the condensed refrigerant in the air-cooled condenser,
A double-effect air-cooled absorption type hot and cold water machine, comprising: a pressure regulator that operates according to the detection result.
【請求項4】特許請求の範囲第1項記載のものにおい
て、加熱量制御弁を制御する制御手段は、少なくとも、
低温再生機出口の凝縮冷媒温度を検知する温度検出器
と、その検知結果に従って作動する温度調節器とを備え
たものであることを特徴とする二重効用空冷吸収式冷温
水機。
4. The control means for controlling the heating amount control valve according to claim 1, wherein:
A double-effect air-cooled absorption chiller-heater, comprising a temperature detector for detecting the temperature of condensed refrigerant at the outlet of the low-temperature regenerator, and a temperature controller that operates according to the detection result.
【請求項5】特許請求の範囲第1項記載のものにおい
て、加熱量制御弁を制御する制御手段は、少なくとも、
ファンによる冷却空気の温度を検知する温度検出器と、
その検知結果に従って作動する温度調節器とを備えたも
のであることを特徴とする二重効用空冷吸収式冷温水
機。
5. The control means for controlling the heating amount control valve according to claim 1, wherein
A temperature detector that detects the temperature of the cooling air by the fan,
A double-effect air-cooled absorption type hot and cold water machine, comprising: a temperature controller that operates according to the detection result.
JP814887A 1987-01-19 1987-01-19 Double-effect air cooling absorption type water heater Expired - Lifetime JPH0810090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP814887A JPH0810090B2 (en) 1987-01-19 1987-01-19 Double-effect air cooling absorption type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP814887A JPH0810090B2 (en) 1987-01-19 1987-01-19 Double-effect air cooling absorption type water heater

Publications (2)

Publication Number Publication Date
JPS63176965A JPS63176965A (en) 1988-07-21
JPH0810090B2 true JPH0810090B2 (en) 1996-01-31

Family

ID=11685228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP814887A Expired - Lifetime JPH0810090B2 (en) 1987-01-19 1987-01-19 Double-effect air cooling absorption type water heater

Country Status (1)

Country Link
JP (1) JPH0810090B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140564A (en) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd Controlling method for absorption refrigerator
JP2747348B2 (en) * 1989-12-21 1998-05-06 株式会社日立製作所 Absorption chiller / heater controller
JPH06257879A (en) * 1993-03-03 1994-09-16 Yazaki Corp Controlling method for absorption water cooler-heater

Also Published As

Publication number Publication date
JPS63176965A (en) 1988-07-21

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
JP2960218B2 (en) Control method of absorption air conditioner
JPH0810090B2 (en) Double-effect air cooling absorption type water heater
JP2541960B2 (en) Double-effect air cooling absorption type water heater
JP3225155B2 (en) Absorption air conditioner
JP2708809B2 (en) Control method of absorption refrigerator
JPH0621736B2 (en) Absorption refrigerator
JP3813348B2 (en) Absorption refrigerator
JPH0796977B2 (en) Double-effect air cooling absorption type water heater
JPH0424623B2 (en)
JP2639969B2 (en) Absorption refrigerator
JP3086594B2 (en) Single double effect absorption refrigerator
JPH05312429A (en) Absorption water cooling/heating apparatus
JP2883372B2 (en) Absorption chiller / heater
JP3138164B2 (en) Absorption refrigerator
JP3429905B2 (en) Absorption refrigerator
JPS6117319Y2 (en)
JPH0225641A (en) Refrigerant natural circulation type heat migrating device
JPH0868572A (en) Dual-effect absorption refrigerator
KR0173495B1 (en) Absorptive type air conditioner
JP2520974Y2 (en) Proportional control absorption chiller / heater
JP3183988B2 (en) Operation control method and device for air conditioner using absorption chiller
JPH0480312B2 (en)
JPS5921957A (en) Absorption cold and hot water machine
JPH0222312B2 (en)