JPH0480312B2 - - Google Patents

Info

Publication number
JPH0480312B2
JPH0480312B2 JP59063311A JP6331184A JPH0480312B2 JP H0480312 B2 JPH0480312 B2 JP H0480312B2 JP 59063311 A JP59063311 A JP 59063311A JP 6331184 A JP6331184 A JP 6331184A JP H0480312 B2 JPH0480312 B2 JP H0480312B2
Authority
JP
Japan
Prior art keywords
evaporator
absorber
regenerator
refrigerant
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59063311A
Other languages
Japanese (ja)
Other versions
JPS60207867A (en
Inventor
Ryohei Minowa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59063311A priority Critical patent/JPS60207867A/en
Publication of JPS60207867A publication Critical patent/JPS60207867A/en
Publication of JPH0480312B2 publication Critical patent/JPH0480312B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はエンジン排熱回収吸収式冷凍機に係
り、特に冷凍負荷減少時にエンジン冷却水の放熱
が優先的に行われ、エンジン冷却水放熱のための
補助熱交換器を必要としない経済的なエンジン排
熱回収吸収冷温水機に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an engine exhaust heat recovery absorption type refrigerating machine, and in particular, when the refrigeration load is reduced, heat radiation of the engine cooling water is performed preferentially. This invention relates to an economical engine exhaust heat recovery and absorption chiller/heater that does not require an auxiliary heat exchanger.

〔発明の背景〕[Background of the invention]

はじめに、吸収式冷凍機の一般的な冷凍方式に
ついて、第1図によつて説明する。冷媒である水
は蒸発器1の管内を流れる冷水2により加熱され
蒸発する。この時冷水から蒸発熱を奪うので、冷
却された冷水は冷房の目的に使用される。蒸発し
た冷媒ガス3は吸収器4に流入し、管内を流れる
冷却水5によつて適度に冷却された吸収溶液6に
よつて吸収され、溶液を稀釈する。稀釈された溶
液は溶液ポンプ7により熱交換器8を経て再生器
9に至り、ここで管内を流れる蒸気などの加熱源
10によつて加熱濃縮され、濃溶液11と発生蒸
気12に分離される。濃溶液は再度熱交換器8を
経て稀釈溶液と熱交換した後、吸収器4に戻り管
群上に散布され、冷媒蒸気の吸収が続けられる。
再生器9で発生した蒸気12は凝縮器13に至
り、管内を流れる冷却水により冷却液化され蒸発
器1に戻る。蒸発器にたまつた冷媒液は、冷媒ポ
ンプ14により蒸発器管群上に散布され蒸発が促
進される。以上が一般的な一重吸収式冷凍機の作
動原理であるが、次に第2図によつて、二重吸収
式冷凍機の一般的な冷凍方式について説明する。
第2図において、第1図と同一符号をつけたもの
は、それぞれ同一の機能をもつものとする。二重
効用吸収式冷凍機における溶液の流し方について
は、大別して二つの方式があり、その一つが第2
図に示す方法である。これは溶液ポンプ7から吐
出された溶液を二分割して、その1を高温再生器
15に送り、残りを並行に低温再生器9に送る方
法のもので、両再生器で加熱濃縮された濃溶液
は、再び合流して吸収器に戻る方式のものであ
り、仮にこれをパラレルフローと名付ける。もう
一つは、溶液ポンプ7から吐出された溶液を全量
高温再生器15に送り、ここで中間濃度まで濃縮
したのちに、さらにそれを全量低温再生器9に送
り込み、ここでさらに濃縮して吸収器に帰す方式
のもので、仮にこれをシリーズフローと名付け
る。二重効用吸収式冷凍機は、一重効用吸収式冷
凍機に比較して、高温再生器において濃縮の過程
で得られた蒸気を、再び低温再生器の加熱に利用
しているという点で、明らかにエネルギー効率が
2倍近く改善されるのは周知の事実である。ただ
し、二重効用吸収式冷凍機は、高温再生器15で
発生させる冷媒蒸気が、低温再生器9で溶液を加
熱濃縮させるに足る飽和温度を持つていなければ
ならないため、加熱源の温度が一重効用吸収式冷
凍機より高くなければならない。したがつて、エ
ンジン排熱を用いる吸収式冷凍機に於ては、エン
ジンジヤケツトの冷却水(70〜80℃)を一重効用
側の再生器に流し、エンジン排ガス(約400℃)
を二重効用側の高温再生器に流す方式が一般的な
方法であつた。
First, a general refrigeration method of an absorption refrigerator will be explained with reference to FIG. Water, which is a refrigerant, is heated and evaporated by cold water 2 flowing through the tubes of the evaporator 1. At this time, heat of evaporation is removed from the cold water, so the cooled water is used for cooling purposes. The evaporated refrigerant gas 3 flows into the absorber 4 and is absorbed by the absorption solution 6 which has been appropriately cooled by the cooling water 5 flowing inside the tube, thereby diluting the solution. The diluted solution is delivered to a regenerator 9 via a heat exchanger 8 by a solution pump 7, where it is heated and concentrated by a heat source 10 such as steam flowing inside a pipe, and separated into a concentrated solution 11 and generated steam 12. . After the concentrated solution passes through the heat exchanger 8 again and exchanges heat with the diluted solution, it returns to the absorber 4 and is spread over the tube group to continue absorbing refrigerant vapor.
Steam 12 generated in the regenerator 9 reaches the condenser 13, is cooled and liquefied by the cooling water flowing in the pipe, and returns to the evaporator 1. The refrigerant liquid accumulated in the evaporator is spread over the evaporator tube group by the refrigerant pump 14 to promote evaporation. The above is the operating principle of a general single absorption refrigerating machine. Next, a general refrigeration system of a double absorption refrigerating machine will be explained with reference to FIG.
In FIG. 2, components given the same reference numerals as in FIG. 1 have the same functions. There are two main ways to flow the solution in a dual-effect absorption refrigerator, one of which is the second method.
This is the method shown in the figure. This method divides the solution discharged from the solution pump 7 into two parts, sends one part to the high temperature regenerator 15, and sends the remaining part to the low temperature regenerator 9 in parallel. The solution is recombined and returned to the absorber, and this is tentatively named parallel flow. The other is to send the entire amount of the solution discharged from the solution pump 7 to the high temperature regenerator 15, where it is concentrated to an intermediate concentration, and then send the entire amount to the low temperature regenerator 9, where it is further concentrated and absorbed. This method is based on the container, and is tentatively named series flow. Compared to single-effect absorption refrigerators, dual-effect absorption refrigerators have a clear advantage in that the steam obtained during the concentration process in the high-temperature regenerator is used again to heat the low-temperature regenerator. It is a well-known fact that energy efficiency can be improved by nearly twice as much. However, in a dual-effect absorption refrigerator, the refrigerant vapor generated in the high-temperature regenerator 15 must have a saturation temperature sufficient to heat and concentrate the solution in the low-temperature regenerator 9, so the temperature of the heating source must be constant. The efficiency must be higher than that of an absorption chiller. Therefore, in an absorption chiller that uses engine exhaust heat, engine jacket cooling water (70 to 80°C) is passed through a single-effect regenerator, and engine exhaust gas (approximately 400°C) is
A common method was to flow the gas into a high-temperature regenerator on the dual-effect side.

次にこれらの吸収式冷凍機の容量制御方式につ
いて説明する。一般にエンジンは発電機の駆動な
どに使用されており、通常一定負荷で運転され
る。一方冷房負荷は外気温や室内の発熱量により
変化するため、これら排熱回収吸収式冷凍機の入
熱と、冷凍容量が一致することはない。
Next, the capacity control method of these absorption chillers will be explained. Engines are generally used to drive generators, and are usually operated at a constant load. On the other hand, since the cooling load changes depending on the outside temperature and the amount of heat generated indoors, the heat input of these exhaust heat recovery absorption refrigerators and the refrigeration capacity do not match.

したがつて従来は吸収式冷凍機の容量制御のた
め、再生器への入熱量を制御し、再生器で発生す
る冷媒蒸気量を増減させて冷凍容量を調節する方
式がとられていた。再生器への入熱量調節方式と
しては、一重効用側は再生器9の伝熱管に流入す
る加熱源(温水)10を三方弁18で再生器流入
量を増減させる方式を、二重効用側は高温再生器
15に流入するエンジン排ガス16を二方弁19
の2〜3ケの組合せにより増減させる方式がとら
れていた。これらの調節方式では一重効用側の再
生器9でエンジン側で発生する熱量を常時完全に
吸収できないため、エンジン冷却水放熱用補助熱
交換器20を設け、冷却水5と熱交換させ、再生
器9で吸収できなかつた熱量のみ放熱させる制御
装置21を備えなければならなかつた。なお、熱
交換器20は一般に冷房負荷の変動幅が大きいた
め、エンジン発熱量の全量を放熱できるだけの電
熱面積をもつたものでなければならない。つまり
エンジン冷却水の放熱のため、一重効用吸収式冷
凍機の他に、エンジン発生熱の全量を放出する熱
交換器とその制御設備が必要で設備費が高価にな
らざるをえない。
Therefore, conventionally, in order to control the capacity of an absorption chiller, a method has been adopted in which the amount of heat input to the regenerator is controlled and the amount of refrigerant vapor generated in the regenerator is increased or decreased to adjust the refrigeration capacity. As a method for adjusting the amount of heat input to the regenerator, the single effect side uses a three-way valve 18 to increase or decrease the amount of heat source (hot water) flowing into the heat transfer tube of the regenerator 9 into the regenerator, and the double effect side uses a method to increase or decrease the amount of heat input to the regenerator. The engine exhaust gas 16 flowing into the high temperature regenerator 15 is passed through the two-way valve 19.
A method has been adopted in which the amount is increased or decreased by a combination of two or three of the following. In these adjustment methods, the regenerator 9 on the single-effect side cannot completely absorb the heat generated on the engine side at all times, so an auxiliary heat exchanger 20 for engine cooling water heat radiation is provided to exchange heat with the cooling water 5, It was necessary to provide a control device 21 that radiates only the amount of heat that could not be absorbed in the heat exchanger 9. The heat exchanger 20 generally has a large range of variation in cooling load, so it must have an electric heating area that can radiate the entire amount of heat generated by the engine. In other words, in order to dissipate heat from the engine cooling water, in addition to a single-effect absorption refrigerator, a heat exchanger that dissipates the entire amount of heat generated by the engine and its control equipment are required, making the equipment expensive.

〔発明の目的〕[Purpose of the invention]

本発明は前述の欠点を解決し、冷房負荷が変化
しても常にエンジン冷却水の必要放熱量を一重効
用吸収式冷凍機で吸収し、他の熱交換器を必要と
しない、安価なエンジン排熱回収吸収式冷温水機
を提供するものである。
The present invention solves the above-mentioned drawbacks, and even when the cooling load changes, the required heat dissipation amount of engine cooling water is always absorbed by a single-effect absorption chiller, and an inexpensive engine exhaust system that does not require any other heat exchanger. The present invention provides a heat recovery and absorption type water chiller/heater.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明は第1蒸発
器、第1吸収器、第1再生器、第1凝縮器、第1
熱交換器、第1ポンプ類ならびにこれらを連結す
る第1配管類を備える第1吸収式冷温水機と、第
2蒸発器、第2吸収器、第2低温再生器、第2高
温再生器、第2凝縮器、第2熱交換器、第2ポン
プ類ならびにこれらを連結する第2配管類から成
る第2吸収式冷温水機とを備えるエンジン排熱回
収吸収式冷温水機に於て、第1蒸発器、第1吸収
器、第2蒸発器、第2吸収器、第2低温再生器、
第2凝縮器を同一のシエル内に収納し、第1再生
器の加熱源としてエンジン冷却水を用い、第2高
温再生器の加熱源としてエンジン排ガスを用いる
と共に、前記第2蒸発器の冷媒をブローする第2
冷媒スプレーポンプの吐出部より冷媒ブロー調節
弁を介して第1吸収器へ連通する管と、前記冷媒
ブロー調節弁の開閉を冷水出口温度によつて調節
する温度調節器とを設けたものである。
In order to achieve the above object, the present invention provides a first evaporator, a first absorber, a first regenerator, a first condenser, a first
A first absorption chiller/heater including a heat exchanger, first pumps, and first piping connecting these, a second evaporator, a second absorber, a second low-temperature regenerator, a second high-temperature regenerator, In an engine exhaust heat recovery absorption type water chiller/heater comprising a second condenser, a second heat exchanger, a second pump, and a second piping that connects these, 1 evaporator, 1st absorber, 2nd evaporator, 2nd absorber, 2nd low temperature regenerator,
A second condenser is housed in the same shell, engine cooling water is used as a heating source for the first regenerator, engine exhaust gas is used as a heating source for the second high temperature regenerator, and the refrigerant of the second evaporator is used as a heating source for the second high temperature regenerator. 2nd to blow
A pipe is provided that communicates from the discharge part of the refrigerant spray pump to the first absorber via a refrigerant blow control valve, and a temperature controller that adjusts the opening and closing of the refrigerant blow control valve according to the chilled water outlet temperature. .

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第3図〜第5図により
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3 to 5.

1は第1蒸発器であり、この蒸発器1の内部で
冷媒である水は冷水2より熱を奪つて蒸発し、冷
水2を中間温度まで冷却する。蒸発した冷媒ガス
3は第1吸収器4に流入し、管内を流れる冷却水
5によつて冷却された吸収液によつて吸収され、
溶液を稀釈する。冷却水5は溶液を冷却すること
で反対に温度上昇し、第2吸収器4に入り、再び
溶液を冷却する。稀釈された溶液は、溶液ポンプ
7により、第1熱交換器8を経て再生器9に至
り、ここで管内を流れるエンジン冷却水10によ
り、加熱濃縮され、濃溶液11と発生蒸気12に
分離される。濃溶液は熱交換器8を経て第1吸収
器4に戻り、再び冷媒蒸気を吸収する。1′は第
2蒸発器で、第1蒸発器と同様にして、第1蒸発
器で中間温度まで冷却された冷水2を更に冷却し
て冷媒は蒸発し、冷媒ガス3′となつて第2吸収
器4′の溶液に吸収される。第2吸収器4′の溶液
は、第1吸収器で中間温度まで上昇した冷却水5
で冷却される。稀釈された溶液6′は、溶液ポン
プ7′により、第2熱交換器8′,18を経由し
て、第2高温再生器15、第2低温再生器9′に
送り込まれる。稀釈溶液は、第2高温再生器15
に於て、エンジン排ガス16により、加熱濃縮さ
れ、濃溶液11′と、発生冷媒蒸気17に分離さ
れる。発生冷媒蒸気17は、第2低温再生器9′
に入り、稀釈溶液を加熱濃縮し、濃溶液11′と
発生冷媒蒸気12′に分離させると共に、自らは
凝縮液化し、第2凝縮器13′に流入し、発生冷
媒蒸気12′が冷却水5により冷却液化した冷媒
液と混合し、第2蒸発器1′に流入する。濃溶液
19は、低温再生器9′で濃縮された濃溶液1
1′と混合し、第2吸収器4′に戻り再び冷媒蒸気
を吸収する。
Reference numeral 1 designates a first evaporator, and inside this evaporator 1, water, which is a refrigerant, takes heat from the cold water 2 and evaporates, thereby cooling the cold water 2 to an intermediate temperature. The evaporated refrigerant gas 3 flows into the first absorber 4 and is absorbed by the absorption liquid cooled by the cooling water 5 flowing inside the pipe.
Dilute the solution. The temperature of the cooling water 5 increases as it cools the solution, enters the second absorber 4, and cools the solution again. The diluted solution is delivered to the regenerator 9 via the first heat exchanger 8 by the solution pump 7, where it is heated and concentrated by the engine cooling water 10 flowing in the pipe and separated into a concentrated solution 11 and generated steam 12. Ru. The concentrated solution returns to the first absorber 4 via the heat exchanger 8 and absorbs refrigerant vapor again. 1' is a second evaporator, and in the same manner as the first evaporator, the cold water 2 that has been cooled to an intermediate temperature in the first evaporator is further cooled, the refrigerant is evaporated, and it becomes refrigerant gas 3', which is then transferred to the second evaporator. It is absorbed into the solution in the absorber 4'. The solution in the second absorber 4' is mixed with the cooling water 5 which has been raised to an intermediate temperature in the first absorber.
cooled down. The diluted solution 6' is sent to the second high temperature regenerator 15 and the second low temperature regenerator 9' via the second heat exchangers 8' and 18 by the solution pump 7'. The diluted solution is transferred to the second high temperature regenerator 15.
At this time, the refrigerant is heated and concentrated by engine exhaust gas 16 and separated into a concentrated solution 11' and generated refrigerant vapor 17. The generated refrigerant vapor 17 is transferred to the second low temperature regenerator 9'
The diluted solution is heated and concentrated to separate it into a concentrated solution 11' and the generated refrigerant vapor 12', which is condensed and liquefied and flows into the second condenser 13', where the generated refrigerant vapor 12' becomes the cooling water 5. It mixes with the cooled and liquefied refrigerant liquid and flows into the second evaporator 1'. The concentrated solution 19 is the concentrated solution 1 concentrated in the low temperature regenerator 9'.
1' and returns to the second absorber 4' to absorb refrigerant vapor again.

冷凍能力の調節は冷水2の出口温度が一定とな
るよう、出口温度を検出し温度調節器22より冷
媒液ブロー調節弁23に冷水出口温度が設定値よ
り高ければ閉方向に低ければ開方向に操作する信
号が送られて行われる。第1蒸発器1と第2蒸発
器1′の間には二つの蒸発圧力差をシールできる
連通管25が設けられており、冷水の入口側に配
置された第1蒸発器の圧力が冷水出口側に配置さ
れた第2蒸発器の圧力より高いため第1蒸発器の
冷媒液も連通管25を通つて、第2蒸発器冷媒ス
プレーポンプ14を介してブローされる。又、溶
液は第1吸収器4と第2吸収器4′間の連通管2
4を介して冷媒液ブローによつて薄くなつた溶液
が第1吸収器より第2吸収器へと流れバランスが
保たれる。
Refrigeration capacity is adjusted so that the outlet temperature of the chilled water 2 is constant.The outlet temperature is detected and the temperature controller 22 causes the refrigerant liquid blow control valve 23 to close if the chilled water outlet temperature is higher than the set value, and open if it is lower. The operation is performed by sending a signal. A communication pipe 25 is provided between the first evaporator 1 and the second evaporator 1' to seal the difference in the two evaporation pressures, and the pressure of the first evaporator disposed on the cold water inlet side is adjusted to the cold water outlet. Since the pressure is higher than that of the second evaporator disposed on the side, the refrigerant liquid of the first evaporator is also blown through the communication pipe 25 via the second evaporator refrigerant spray pump 14 . Also, the solution is passed through the communication pipe 2 between the first absorber 4 and the second absorber 4'.
4, the solution diluted by the refrigerant liquid blow flows from the first absorber to the second absorber to maintain balance.

以上のような構成により部分荷重時、先ず一重
効用側の第1吸収器1の溶液濃度が下り、優先的
にエンジン冷却水の熱を十分吸収する能力が保持
され、更に冷凍負荷が下がつた時に連通管24を
介して二重効用側も溶液濃度が下がり、全体の溶
液濃度が下がつて容量調節が行われ、所期の目的
が達せられる。
With the above configuration, when a partial load is applied, the concentration of the solution in the first absorber 1 on the single-effect side first decreases, and the ability to absorb sufficient heat from the engine cooling water is maintained preferentially, further reducing the refrigeration load. At the same time, the solution concentration also decreases on the dual-effect side via the communication pipe 24, and the total solution concentration decreases to perform volume adjustment and achieve the desired purpose.

本発明の他の実施例を第4図に示す。本実施例
に於ては、冷凍能力の調節の冷媒液ブローを再生
器9に行い、再生器9内の溶液を稀釈し、第1吸
収器4に戻る溶液濃度を下げることにより冷凍能
力の調節を行う。再生器9に流入するエンジン冷
却水10は、再生器9内の溶液が冷媒ブローによ
つて稀釈されるため、熱がよく吸収され、十分所
定の温度まで降下する。他の部分は、第3図と同
じ構成であり、説明は省略する。
Another embodiment of the invention is shown in FIG. In this embodiment, the refrigerant liquid is blown to the regenerator 9 to adjust the refrigerating capacity, diluting the solution in the regenerator 9, and lowering the concentration of the solution returned to the first absorber 4, thereby adjusting the refrigerating capacity. I do. Since the solution in the regenerator 9 is diluted by blowing the refrigerant, the engine cooling water 10 flowing into the regenerator 9 absorbs heat well and sufficiently lowers the temperature to a predetermined temperature. The other parts have the same configuration as in FIG. 3, and their explanation will be omitted.

本発明のもう一つの実施例を第5図に示す。エ
ンジン冷却水温が比較的高い場合、第5図に示す
ように、蒸発器及び吸収器がそれぞれ1ケで構成
される。この様な構成に於ても、再生器9に冷媒
液をブローすることにより、冷凍能力の調節と、
エンジン冷却水10の熱を優先的に吸収すること
ができる。
Another embodiment of the invention is shown in FIG. When the engine cooling water temperature is relatively high, the evaporator and absorber each consist of one piece, as shown in FIG. Even in such a configuration, by blowing refrigerant liquid to the regenerator 9, the refrigerating capacity can be adjusted,
The heat of the engine cooling water 10 can be absorbed preferentially.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、冷凍負荷条件に関係なく、エ
ンジン冷却水の熱の吸収が優先的に行われ、吸収
式冷凍機の他にエンジン冷却水放熱のための熱交
換器が不要となりエンジン廃熱回収冷温水システ
ムが安価に構成できる。
According to the present invention, heat absorption of engine cooling water is performed preferentially regardless of refrigeration load conditions, and a heat exchanger for dissipating engine cooling water heat is not required in addition to an absorption chiller, eliminating the need for engine waste heat. A recovered cold/hot water system can be constructed at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一重効用吸収式冷凍機のフロー図、第
2図は二重効用吸収式冷凍機のフロー図、第3図
は本発明を排熱回収吸収式冷温水機に適用した実
施例のフロー図、第4図は本発明の他の実施例の
フロー図、第5図は本発明のさらに他の実施例の
フロー図である。 1…蒸発器又は第1蒸発器、1′…第2蒸発器、
2…冷水、3,3′…蒸発冷媒蒸気、4…吸収器
又は第1吸収器、4′…第2吸収器、5…冷却水、
6,6′…稀釈溶液、7,7′…溶液ポンプ、8,
8′…熱交換器、9…再生器、9′…第2低温再生
器、10…エンジン冷却水、11,11′…濃溶
液、12,12′…発生冷媒蒸気、13…凝縮器
又は第1凝縮器、13′…第2凝縮器、14,1
4′…冷媒ポンプ、15…第2高温再生器、16
…エンジン排気ガス、17…高温再生器発生蒸
気、18…熱交換器、、19…濃溶液、22…温
度調節器、23…冷媒ブロー調節弁、24…吸収
器連通管、25…蒸発器連通管。
Fig. 1 is a flow diagram of a single-effect absorption refrigerating machine, Fig. 2 is a flow diagram of a double-effect absorption refrigerating machine, and Fig. 3 is a flow diagram of an embodiment in which the present invention is applied to an exhaust heat recovery absorption type water chiller/heater. FIG. 4 is a flow diagram of another embodiment of the present invention, and FIG. 5 is a flow diagram of still another embodiment of the present invention. 1... Evaporator or first evaporator, 1'... Second evaporator,
2...Cold water, 3,3'...Evaporative refrigerant vapor, 4...Absorber or first absorber, 4'...Second absorber, 5...Cooling water,
6, 6'... dilution solution, 7, 7'... solution pump, 8,
8'... Heat exchanger, 9... Regenerator, 9'... Second low temperature regenerator, 10... Engine cooling water, 11, 11'... Concentrated solution, 12, 12'... Generated refrigerant vapor, 13... Condenser or 1 condenser, 13'...2nd condenser, 14,1
4'... Refrigerant pump, 15... Second high temperature regenerator, 16
...Engine exhaust gas, 17...High temperature regenerator generated steam, 18...Heat exchanger, 19...Concentrated solution, 22...Temperature regulator, 23...Refrigerant blow control valve, 24...Absorber communication pipe, 25...Evaporator communication tube.

Claims (1)

【特許請求の範囲】[Claims] 1 第1蒸発器、第1吸収器、第1再生器、第1
凝縮器、第1熱交換器、第1ポンプ類ならびにこ
れらを連結する第1配管類を備える第1吸収式冷
温水機と、第2蒸発器、第2吸収器、第2低温再
生器、第2高温再生器、第2凝縮器、第2熱交換
器、第2ポンプ類ならびにこれらを連結する第2
配管類から成る第2吸収式冷温水機とを備えるエ
ンジン排熱回収吸収式冷温水機に於て、第1蒸発
器、第1吸収器、第2蒸発器、第2吸収器、第2
低温再生器、第2凝縮器を同一のシエル内に収納
し、第1再生器の加熱源としてエンジン冷却水を
用い、第2高温再生器の加熱源としてエンジン排
ガスを用いると共に、前記第2蒸発器の冷媒をブ
ローする第2冷媒スプレーポンプの吐出部より冷
媒ブロー調節弁を介して第1吸収器へ連通する管
と、前記冷媒ブロー調節弁の開閉を冷水出口温度
によつて調節する温度調節器とを設けたことを特
徴とするエンジン排熱回収吸収式冷温水機。
1 First evaporator, first absorber, first regenerator, first
A first absorption chiller/heater including a condenser, a first heat exchanger, a first pump, and first piping connecting these; a second evaporator; a second absorber; a second low-temperature regenerator; 2 high temperature regenerator, 2nd condenser, 2nd heat exchanger, 2nd pumps, and 2nd
In an engine exhaust heat recovery absorption type chilled/hot water machine equipped with a second absorption type chilled/heated water machine consisting of piping, a first evaporator, a first absorber, a second evaporator, a second absorber, a second
A low temperature regenerator and a second condenser are housed in the same shell, engine cooling water is used as a heating source for the first regenerator, engine exhaust gas is used as a heating source for the second high temperature regenerator, and the second evaporator is used as a heating source for the second evaporator. a pipe that communicates from the discharge part of a second refrigerant spray pump that blows refrigerant from the refrigerant to the first absorber via a refrigerant blow control valve, and a temperature controller that adjusts the opening and closing of the refrigerant blow control valve depending on the chilled water outlet temperature. An engine exhaust heat recovery and absorption type cold/hot water machine characterized by being equipped with a container.
JP59063311A 1984-04-02 1984-04-02 Engine waste-heat recovery absorption type cold and hot water machine Granted JPS60207867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59063311A JPS60207867A (en) 1984-04-02 1984-04-02 Engine waste-heat recovery absorption type cold and hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063311A JPS60207867A (en) 1984-04-02 1984-04-02 Engine waste-heat recovery absorption type cold and hot water machine

Publications (2)

Publication Number Publication Date
JPS60207867A JPS60207867A (en) 1985-10-19
JPH0480312B2 true JPH0480312B2 (en) 1992-12-18

Family

ID=13225606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063311A Granted JPS60207867A (en) 1984-04-02 1984-04-02 Engine waste-heat recovery absorption type cold and hot water machine

Country Status (1)

Country Link
JP (1) JPS60207867A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130247A (en) * 1988-11-07 1990-05-18 Nichii:Kk Cogeneration system
JPH03199861A (en) * 1989-12-27 1991-08-30 Ebara Corp Absorption refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899662A (en) * 1981-12-09 1983-06-14 トヨタ自動車株式会社 Engine waste-heat recovery absorption type cold and hot water machine
JPS59157456A (en) * 1983-02-25 1984-09-06 トヨタ自動車株式会社 Method of operating absorption type refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899662A (en) * 1981-12-09 1983-06-14 トヨタ自動車株式会社 Engine waste-heat recovery absorption type cold and hot water machine
JPS59157456A (en) * 1983-02-25 1984-09-06 トヨタ自動車株式会社 Method of operating absorption type refrigerator

Also Published As

Publication number Publication date
JPS60207867A (en) 1985-10-19

Similar Documents

Publication Publication Date Title
JP3966770B2 (en) Absorption cooling system
JPH05172437A (en) Method and device for cooling fluid, particularly air by two separated absorption cooling system
JP2000018762A (en) Absorption refrigerating machine
JPH08159594A (en) Multiple effect absorption refrigerator
JP5261111B2 (en) Absorption refrigerator
JPH09159300A (en) Air cooling absorption heat pump chiller using ammonia-water absorption cycle
JPH03152362A (en) Absorption refrigerator
JPH0480312B2 (en)
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP3444203B2 (en) Absorption refrigerator
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP3429906B2 (en) Absorption refrigerator
JP3086594B2 (en) Single double effect absorption refrigerator
JPH11211262A (en) Absorption type refrigerating machine system
JP3874263B2 (en) Refrigeration system combining absorption and compression
JP3111205B2 (en) Exhaust heat recovery type absorption chiller / heater and its control method
JP2001208443A (en) Absorption freezer
JPS6122224B2 (en)
JP3986633B2 (en) Heat utilization system
JPH07324839A (en) Single and double effect absorption hot and chilled water generator
JPH04313652A (en) Absorption refrigerating machine
JP2000055505A (en) Combined heat transfer device
CN112413925A (en) Low-temperature heat source refrigerating device
JP3133538B2 (en) Absorption refrigerator
JPS6025710B2 (en) Dual-effect absorption chiller that uses green energy as a heat source

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term