JP3874263B2 - Refrigeration system combining absorption and compression - Google Patents

Refrigeration system combining absorption and compression Download PDF

Info

Publication number
JP3874263B2
JP3874263B2 JP2002111629A JP2002111629A JP3874263B2 JP 3874263 B2 JP3874263 B2 JP 3874263B2 JP 2002111629 A JP2002111629 A JP 2002111629A JP 2002111629 A JP2002111629 A JP 2002111629A JP 3874263 B2 JP3874263 B2 JP 3874263B2
Authority
JP
Japan
Prior art keywords
absorption
evaporator
condenser
refrigerator
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002111629A
Other languages
Japanese (ja)
Other versions
JP2003307364A (en
Inventor
修行 井上
泉 橋本
毅一 入江
哲也 遠藤
淳 青山
知行 内村
幸大 福住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002111629A priority Critical patent/JP3874263B2/en
Publication of JP2003307364A publication Critical patent/JP2003307364A/en
Application granted granted Critical
Publication of JP3874263B2 publication Critical patent/JP3874263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和装置に用いることができる冷凍装置に係り、特に、エンジン、タービン、各種プラント等からの排熱を熱源とする吸収冷凍機又は吸収冷温水機からの冷凍効果を、圧縮冷凍機と組合せて有効利用する冷凍装置に関する。
【0002】
【従来の技術】
コージェネレーションシステムでは、電気と共に、比較的温度の低い温水が供給される。この温水は、温度があまり高くなく、低ポテンシャルエネルギに分類され、給湯又は暖房に利用されることが多く、また最近は、吸収冷凍機の熱源として冷房に利用されることも多くなってきている。
コージェネレーションシステムの中で、この温水は、エンジンの冷却(ジャケット温水)あるいはエンジン排ガスからの熱回収、あるいはガスタービンの排ガスからの熱回収で得られる。なお、排ガスを温水に変換せず、直接吸収冷凍機の熱源とすることもある。低ポテンシャルエネルギ単独で、吸収冷凍機を運転する場合もあるが、複合冷房装置として、高ポテンシャルエネルギと共に用い、必要とする高ポテンシャルエネルギの量を減らそうという使い方も提案され採用され出している。
【0003】
低ポテンシャルエネルギ単独で吸収冷温水機を運転する場合、冷暖負荷に対応した負荷能力を取出すことは、排熱の供給量が少なかったり、不安定であったりして困難であり、また、これを解決するために、吸収冷凍機の冷熱を圧縮冷凍機の放熱源として用いて循環冷媒を冷却する冷凍装置が知られている。(特開平11−223412号公報)。
しかし、この冷凍装置においては、圧縮冷凍機の熱源側熱交換器が空気による冷却と吸収冷凍機による冷却を直列に設けており、圧縮冷凍機の圧縮機を運転しない限り、吸収冷凍機の冷凍効果を利用することができなかった。また、冷媒液を冷却しているだけであるので、吸収冷凍機の熱源熱量(温水熱量など)が多くなっても、利用できる吸収冷凍効果の量を多くすることができず、排熱供給や冷房負荷の増減に対しての対応が不充分であった。
【0004】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解消し、冷房負荷及び吸収冷凍効果の状態に応じて圧縮冷凍機の運転状態を調節でき、経済的で効率のよい運転ができる空気調和装置に用いることができる冷凍装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明では、排熱を再生器の熱源として冷凍効果を発揮する蒸発器Eを有する吸収冷凍機と、1台以上の圧縮機、冷凍効果を発揮する蒸発器Ec、外気又は冷却水で冷却する第一凝縮器、前記吸収冷凍機の蒸発器Eと熱交換関係に接続した第二凝縮器及び過冷却器を有する圧縮冷凍機とを組合せた冷凍装置であって、前記蒸発器Eへの負荷量を調節する手段と、該蒸発器Eの温度を検出する温度センサーとを具備し、前記負荷量を調節する手段は、第二凝縮器側からの負荷量と、過冷却器側からの負荷量とを別々に調節する手段を有すると共に、吸収冷凍機の蒸発器Eの温度が所定値以下の時に、第二凝縮器側からの負荷量を、過冷却器側からの負荷量よりも優先して、吸収冷凍機の蒸発器Eに与えるように調節する手段を有することを特徴とする吸収式と圧縮式とを組合せた冷凍装置としたものである。
前記冷凍装置において、圧縮冷凍機は、吸収冷凍機1台に対し、複数台接続することができる。
【0006】
【発明の実施の形態】
本発明は、吸収冷凍機の出力(冷凍効果)で、冷媒蒸気を直接冷却凝縮させて利用あるいは過冷却(圧縮機で圧縮した冷媒を外気等で冷却凝縮させ、その冷媒液を過冷却)に利用するなどのシステムの制御に関するものであり、特に、複数台の圧縮冷凍機と1台の吸収冷凍機とを組合せたシステムの制御に関するものである。
圧縮式側と吸収式側とを関連付けて制御することも考えられるが、制御系(特にマイコンを利用した場合のプログラム)が複雑になり過ぎる問題点があり、それぞれ独立が簡易である。
吸収冷凍機側が、吸収冷凍機の蒸発器Eに加える各圧縮冷凍機からの負荷量
を制御、各圧縮冷凍機への熱搬送媒体量などを調節する。
圧縮冷凍機側は、熱搬送媒体の保有熱を利用できるだけ利用する制御をするものとし、吸収冷凍機側と圧縮冷凍機側の制御はそれぞれ独立したものとすることに特徴がある。
【0007】
吸収冷凍機に負荷をかけ過ぎると、吸収冷凍機の蒸発温度が上昇し、圧縮機の冷媒蒸気を直接凝縮させることができなくなり、場合によっては、圧縮機一台当りの過冷却効果も減少することになる。
本発明は、圧縮冷凍機からの負荷を、吸収冷凍機側から一方的に制御しようとするものである。圧縮冷凍機は、搬送された吸収冷凍効果(熱搬送媒体)を有効に利用するように、吸収冷凍機からは独立して制御する。
通常、吸収冷凍機の容量制御は、蒸発器温度(冷水あるいは冷媒温度)を目標値になるように、吸収冷凍機の再生器への熱量を調節するのが一般的である。本発明は排熱を熱源として利用した吸収冷凍機であり、排熱はできるだけ利用し、冷熱として圧縮冷凍機側になるべく多量に利用しようとするシステムである。しかし、圧縮冷凍機側から一方的に大きな負荷(冷凍機の能力以上あるいは、排熱熱量から製造できる冷熱以上に)が掛かると、上記のような蒸発温度の上昇という問題が出る。
【0008】
次に、本発明を図面を用いて詳細に説明する。
図1〜図4は、本発明の冷凍装置の構成機器の接続例を示すフロー構成図である。
図において、圧縮冷凍機側の構成機器は、Mcは圧縮機、Ecは蒸発器、Cc1は第一凝縮器、Cc2は第二凝縮器、Ta、TR、Tsは温度センサー、Scは過冷却器を示す。
また、吸収冷凍機側の構成機器は、Aは吸収器、Eは蒸発器、Gは再生器、Cは凝縮器、SPは吸収溶液ポンプ、RPは冷媒ポンプ、1は吸収冷凍機、10は熱交換器、11〜14、16は溶液管路、15、17、18は冷媒管路、19は冷水循環路、20は冷却水循環路、21は排熱源流路を示す。
【0009】
図1において、吸収冷凍機1では、冷媒を吸収した溶液は、吸収器Aから吸収溶液ポンプSPにより熱交換器10の被加熱側を通り、管路12から再生器Gへと導かれる。再生器Gでは、溶液は、外部ガスタービン等からの排ガスを熱源21として加熱されて冷媒を蒸発して濃縮され、管路13から熱交換器10の加熱側を通り、吸収器Aへ導入される。
一方、再生器Gで発生した冷媒蒸気は、凝縮器Cにおいて冷却水により凝縮した後蒸発器Eへと導かれ、蒸発器Eでは、冷水循環路19から潜熱を奪うことで冷水の取り出しが可能となる。
このように、吸収冷凍機1からの冷熱は、蒸発機Eで冷却される冷水で搬送している。冷水にかかる負荷は、第二凝縮器Cc2に送る冷水量で調節する。例えば、冷水出口温度が目標温度になるように送水量を調節する。
【0010】
また、過冷却器Scがある場合、過冷却器Scに送る冷水量で調節する。過冷却器Scへの送水は、第二凝縮機Cc2を出た後にしている。例えば、冷水出口温度が目標温度になるように、第二凝縮器系統への送水量を調節し、全開としても余裕があれば、過冷却器Scへも送水する。
第二凝縮器Cc2は、低温であれば、Ecからの冷媒蒸気を直接凝縮させることができるので、低温水(吸収冷凍機出口の冷水)を送水する。過冷却器Scは、外気より温度が低ければ充分効果が出るので、ある程度温度上昇した冷水を送水して差支えない。
【0011】
図1では、温度の低い冷水を、No.1圧縮冷凍機の第二凝縮器→No.2圧縮冷凍機の第二凝縮器→・・・→No.n圧縮冷凍機の第二凝縮器と直列に送水し、その後、逆にNo.n圧縮冷凍機の過冷却器→・・・→No.2圧縮冷凍機の過冷却器→No.1圧縮冷凍機の過冷却器に送水している。
第二凝縮器Cc2でEcの冷媒蒸気が直接凝縮できる場合、圧縮機Mcを運転しなくてよい場合が多く、一方、冷水温度が上昇し、直接凝縮できない場合は、圧縮機が運転し、第一凝縮器Cc1で冷媒が凝縮するので、過冷却器Scへの送水順を、圧縮機運転の可能性の高い順に流している。
流し方は、これにとらわれることはなく、各圧縮機に並列に送水しても差支えない。
各圧縮冷凍機への冷水流量を個別に調節し、冷水負荷を制御してもよい。
【0012】
次に、図2を用いて、圧縮冷凍機での挙動を説明する。図2において、(a)は本発明に用いる圧縮冷凍機の全体構成図で、(b)はEc部詳細図である。図2(a)において、蒸発器Ecからの冷媒蒸気は、圧縮機Mc停止中は、第二凝縮器Cc2に吸引され、圧縮機Mc運転中は、圧縮機Mc又は圧縮機Mcと第二凝縮器Cc2に吸引される。
吸収式からの熱搬送媒体の温度が低く、第二凝縮器Cc2で冷媒蒸気が凝縮可能であれば、第二凝縮器Cc2に吸引される。
吸収式からの熱搬送媒体の温度が高く、第二凝縮器Cc2で冷媒蒸気が凝縮不可能であれば、冷媒蒸気の形で第二凝縮器Cc2に存在し、伝熱はほとんど生じない。
吸収冷凍機から第二凝縮器に送る冷水温度が高いと、冷水を送っても負荷はかからない。冷水温度が高い状態で付加をかけたい場合は、過冷却器で負荷をかけてもよい。
図中、過冷却器Scを示しているが、なくても差支えない。
【0013】
図2(b)では、蒸発器Ecの1例として、室内機(空気冷却器)を示す。
各室内機毎に制御器を設け、温度計測、膨張弁調節などを行う。
圧縮機容量制御では、目標室温Toをリモコンで設定あるいは制御器で直接設定し、室温センサーTaと比較し、差温△T=Ta−Toで要求能力として、圧縮機Mcの制御器に送る。
要求能力は、各蒸発器の容量を加味した合算値あるいは荷重平均値を用いる。要求能力にて、例えば、表1のような周波数で圧縮機Mcを運転する。温度差が低下しているときは下り勾配(X側)、増加しているときは上り勾配(Y側)の周波数とする。室温が、下り勾配のときと上り勾配のときで、同じ領域で0.4℃の差を持たせているので、これがヒステリシスの役目をし周波数の頻繁な変化を抑えることができる。
【0014】
【表1】

Figure 0003874263
【0015】
圧縮機Mc停止後は、第二凝縮器Cc2の凝縮能力を制限する。たとえば、蒸発器Ec出口の過熱度目標値を増大させて凝縮能力を制限する。その例を示すと、表2のように、目標過熱度を設定する。
△T=−0.8℃で、過熱度SH=4.0℃、
△T=−1.6℃で、過熱度SH=8.0℃とし、
△T=−0.8℃以下で、過熱度をSH=−5×△Tとしている。
過熱度増大により、第二凝縮器の凝縮能力が制限される理由は、過熱度を大きくするため、蒸発器を流れる冷媒流量が絞られ、その結果出口圧力が低下し、第二凝縮器の凝縮能力が低下するためである。
過熱度目標値は、圧縮機Mcを運転している時は、過熱度は変動に対して追従して制御できる範囲でなるべく小さくすることが、必要動力の低下、効率の上昇の点から望ましい(通常4℃程度)。しかし、圧縮機停止後は、動力が関係しないので、蒸発器Ec出口圧力を低下させて差支えなく、過熱度を大きく設定する。
【0016】
【表2】
Figure 0003874263
蒸発器Ecでは、蒸発器出口の温度センサーTRで、冷媒過熱蒸気温度を測定し、一方、冷媒液をキャピラリで流量制限をして供給し、飽和温度を温度センサーTsで測定する。
過熱度△Tsh=TR−Tsを求め、目標過熱度になるように、膨張弁(冷媒供給弁)を調節する。
圧縮機Mcは複数台で構成してもよし、また複数台の場合、1台をインバータによる制御、他を台数制御(発停)による制御としてもよい。
【0017】
図3では、圧縮機Mc1と第一凝縮器Cc1の系統と、圧縮機Mc2(低ヘッド圧縮機)と第二凝縮器Cc2の系統とを持った構成を示す。第二凝縮器の温度が所定温度以下(あるいは、吸収冷凍機の蒸発温度又は搬送媒体の温度が所定値以下)であれば、第二凝縮器系統の圧縮機Mc2を停止した状態で、冷媒蒸気を直接凝縮させることができる。Ecの要求能力を、前記の直接凝縮だけで満足できない場合、第一凝縮器系統の圧縮機Mc1を運転し、能力をバックアップする。このとき、過冷却器Scが役立つ。
吸収冷凍機の蒸発温度あるいは搬送媒体の温度が、所定値以上の場合、第二凝縮器系統の圧縮機Mc2を運転し、第二凝縮器Cc2で凝縮させることもできる。
図3では、吸収冷凍効果の搬送を冷媒で行う例(潜熱搬送の例)で示している。各圧縮冷凍機への冷熱量を冷媒液の絞り弁で個別に調節可能としている。
【0018】
図4では、圧縮機Mcの後に第一凝縮器Cc1を接続し、さらにその後に、第二凝縮器Cc2又は過冷却器Scを設けた例を示す。第二凝縮器Cc2と過冷却器Scとは兼用としてもよい。圧縮機Mcを運転し第一凝縮器Cc1で凝縮させ、凝縮液を絞り弁を通して過冷却器Scに供給する。該絞り弁を全開にすると、圧縮蒸気がより低温の過冷却器(第二凝縮器)に吸引されて凝縮する。
冷水温度が低い場合、圧縮機Mcを停止し、第二凝縮器Cc2でEcからの冷媒蒸気を直接凝縮させる。
冷水温度が所定値以上の場合、圧縮機Mcを運転し、過冷却器Scとして動作させる。場合によっては、圧縮蒸気の凝縮器としてもよい。
図4では、吸収冷凍効果を冷水で各圧縮冷凍機に並列に搬送し、個別に流量調節をしている。
【0019】
吸収冷凍機の冷凍効果を搬送する方式は、冷水で冷熱を運ぶ(顕熱輸送)、又は、潜熱を利用する媒体で熱移送あるいは吸収冷凍機の蒸発器Eaの冷媒液を、熱交換関係にある圧縮冷凍機の機器(第二凝縮器Cc2、過冷却器Sc)に導き、吸収冷凍機に戻った冷媒液を蒸発器で直接膨張させるなど各種方式がある。
本発明において、吸収冷凍機は、単効用、二重効用、一二重効用等、特に限定はなく、また吸収冷凍機の作動媒体による限定もない。熱源の形態も、温水、水蒸気、燃料あるいは排ガスなど、特に限定はない。また、排熱に限定せず、安価な燃料などを熱源とする吸収冷凍機であってもよい。
また、本発明では、1台の圧縮冷凍機を構成する各機器は複数器であっても差支えない。
圧縮冷凍機として、説明しているが、配管切換でヒートポンプによる暖房運転とする形態をとってもよい。そのとき、吸収冷凍機を冷温水機として温熱をヒートポンプに与え、あるいは、排熱源を直接ヒートポンプに与えても良い。
【0020】
【発明の効果】
本発明は、圧縮冷凍機の圧縮機を運転せず、吸収冷凍効果単独でも冷媒回路の冷凍能力(圧縮冷凍機の冷凍能力)を出すことができ、また、圧縮機を運転している時でも、吸収冷凍効果を充分発揮できるようにしている。
また、吸収冷凍効果を優先的に用い、吸収冷凍効果単独での運転を可能とし、冷房負荷及び吸収冷凍効果の状態に応じて圧縮冷凍機の運転状態を調節でき、経済的で効率のよい運転ができる空気調和装置として用いることができる冷凍装置である。
【図面の簡単な説明】
【図1】本発明の冷凍装置の構成機器の一例を示すフロー構成図。
【図2】本発明の冷凍装置の圧縮冷凍機の構成機器の一例を示すフロ構成図で、(a)は全体図、(b)はEc部詳細図。
【図3】本発明の冷凍装置の構成機器の他の例を示すフロー構成図。
【図4】本発明の冷凍装置の構成機器の他の例を示すフロー構成図。
【符号の説明】
Mc、Mc1、Mc2:圧縮機、Ec:蒸発器、Cc1:第一凝縮器、Cc2:第二凝縮器、Sc:過冷却器、Ta、TR、Ts:温度センサー、A:吸収器、G:再生器、C:凝縮器、E:蒸発器、SP:吸収溶液ポンプ、RP:冷媒ポンプ、2:冷水ポンプ、3:温度センサー、4:制御器、5、6:調節弁、7:膨張弁、8:調節弁、10:熱交換器、11〜14、16:溶液管路、15、17、18:冷媒管路、19:冷水循環路、20:冷却水循環路、21:排熱源流路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus that can be used in an air conditioner, and in particular, a refrigeration effect from an absorption chiller or an absorption chiller / heater that uses exhaust heat from an engine, turbine, various plants, etc. as a heat source. The present invention relates to a refrigeration apparatus that is effectively used in combination with a machine.
[0002]
[Prior art]
In the cogeneration system, hot water having a relatively low temperature is supplied together with electricity. This hot water is not so high in temperature, is classified as low potential energy, and is often used for hot water supply or heating, and recently, it is also frequently used for cooling as a heat source of an absorption refrigerator. .
In the cogeneration system, this hot water is obtained by cooling the engine (jacket hot water), recovering heat from the exhaust gas of the engine, or recovering heat from the exhaust gas of the gas turbine. In some cases, the exhaust gas is not converted into warm water but directly used as a heat source for an absorption refrigerator. In some cases, the absorption chiller is operated by low potential energy alone, but as a combined cooling device, a method of using it together with high potential energy to reduce the amount of required high potential energy has been proposed and adopted.
[0003]
When operating an absorption chiller / heater with low potential energy alone, it is difficult to extract the load capacity corresponding to the cooling / heating load because the supply amount of exhaust heat is small or unstable. In order to solve the problem, a refrigeration apparatus that cools a circulating refrigerant by using the cold heat of an absorption refrigerator as a heat radiation source of the compression refrigerator is known. (Japanese Patent Laid-Open No. 11-223412).
However, in this refrigeration system, the heat source side heat exchanger of the compression chiller is provided with air cooling and cooling by the absorption chiller in series, and the refrigeration of the absorption chiller is performed unless the compressor of the compression chiller is operated. The effect could not be used. In addition, since the refrigerant liquid is only cooled, even if the heat source heat amount (hot water heat amount, etc.) of the absorption chiller increases, the amount of the absorption refrigeration effect that can be used cannot be increased. Insufficient response to changes in cooling load.
[0004]
[Problems to be solved by the invention]
The present invention eliminates the above-described problems of the prior art, and can be used for an air conditioner that can adjust the operation state of the compression refrigerator according to the cooling load and the state of the absorption refrigeration effect, and can operate economically and efficiently. It is an object of the present invention to provide a refrigeration apparatus that can be used.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, an absorption refrigerator having an evaporator E that exhibits a refrigeration effect using exhaust heat as a heat source of a regenerator, one or more compressors, and an evaporator Ec that exhibits a refrigeration effect , a refrigeration apparatus which combines with the outside air or the first condenser cooled with cooling water, compression refrigeration machine having a second condenser及beauty subcooler connected to the evaporator E and the heat exchange relationship with the absorption refrigerating machine And means for adjusting the load amount to the evaporator E and a temperature sensor for detecting the temperature of the evaporator E, and the means for adjusting the load amount is a load amount from the second condenser side. And a means for separately adjusting the amount of load from the subcooler side, and when the temperature of the evaporator E of the absorption refrigerator is below a predetermined value, the amount of load from the second condenser side is supercooled. Priority is given to the amount of load from the refrigerator side, and it adjusts so that it may give to the evaporator E of an absorption refrigerator Is obtained by a refrigeration system in combination with the absorption and compression, characterized in that it has means that.
In the refrigeration system, compression refrigeration machine, to one absorption refrigerating machine, Ru can be connected plurality.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention uses the output (refrigeration effect) of the absorption refrigerator to directly cool and condense the refrigerant vapor for use or supercooling (cooling and condensing the refrigerant compressed by the compressor with the outside air, etc., and supercooling the refrigerant liquid). More specifically, the present invention relates to control of a system in which a plurality of compression refrigerators and one absorption refrigerator are combined.
Although it is conceivable to control the compression-type side and the absorption-type side in association with each other, there is a problem that the control system (especially a program when a microcomputer is used) becomes too complicated, and the independence is simple.
The absorption refrigerator side controls the load amount from each compression refrigerator that is added to the evaporator E of the absorption refrigerator, and adjusts the amount of heat transfer medium to each compression refrigerator.
The compression refrigerator side is controlled to use as much as possible the heat retained in the heat transfer medium, and the control on the absorption refrigerator side and the compression refrigerator side is independent.
[0007]
If too much load is applied to the absorption refrigerator, the evaporation temperature of the absorption refrigerator rises and the refrigerant vapor of the compressor cannot be directly condensed, and in some cases, the subcooling effect per compressor is also reduced. It will be.
The present invention intends to unilaterally control the load from the compression refrigerator from the absorption refrigerator side. The compression refrigerator is controlled independently from the absorption refrigerator so as to effectively utilize the absorbed absorption refrigeration effect (heat transfer medium).
In general, the capacity control of the absorption chiller generally adjusts the amount of heat to the regenerator of the absorption chiller so that the evaporator temperature (cold water or refrigerant temperature) becomes a target value. The present invention is an absorption refrigerator that uses exhaust heat as a heat source, and is a system that uses exhaust heat as much as possible, and uses as much cold heat as possible on the compression refrigerator side. However, if a large load (over the capacity of the refrigerator or more than the cold heat that can be produced from the amount of exhaust heat) is applied from the compression refrigerator side, the problem of an increase in the evaporation temperature as described above occurs.
[0008]
Next, the present invention will be described in detail with reference to the drawings.
1-4 is a flow block diagram which shows the example of a connection of the component apparatus of the freezing apparatus of this invention.
In the figure, the components on the compression refrigerator side are as follows: Mc is a compressor, Ec is an evaporator, Cc1 is a first condenser, Cc2 is a second condenser, Ta, TR, and Ts are temperature sensors, and Sc is a subcooler. Indicates.
The component equipment on the absorption refrigerator side is as follows: A is an absorber, E is an evaporator, G is a regenerator, C is a condenser, SP is an absorption solution pump, RP is a refrigerant pump, 1 is an absorption refrigerator, Heat exchangers 11 to 14 and 16 are solution lines, 15, 17 and 18 are refrigerant lines, 19 is a cold water circulation path, 20 is a cooling water circulation path, and 21 is an exhaust heat source flow path.
[0009]
In FIG. 1, in the absorption refrigerator 1, the solution that has absorbed the refrigerant is guided from the absorber A to the regenerator G through the pipe 12 through the heated side of the heat exchanger 10 by the absorption solution pump SP. In the regenerator G, the solution is heated using the exhaust gas from an external gas turbine or the like as the heat source 21 to evaporate the refrigerant and concentrated, and is introduced into the absorber A from the pipe 13 through the heating side of the heat exchanger 10. The
On the other hand, the refrigerant vapor generated in the regenerator G is condensed by the cooling water in the condenser C and then led to the evaporator E. The evaporator E can take out the cold water by taking the latent heat from the cold water circulation path 19. It becomes.
Thus, the cold heat from the absorption refrigerator 1 is conveyed by cold water cooled by the evaporator E. The load concerning cold water is adjusted with the amount of cold water sent to the second condenser Cc2. For example, the amount of water supply is adjusted so that the cold water outlet temperature becomes the target temperature.
[0010]
Moreover, when there exists supercooler Sc, it adjusts with the amount of cold water sent to supercooler Sc. Water supply to the supercooler Sc is performed after leaving the second condenser Cc2. For example, the amount of water supplied to the second condenser system is adjusted so that the chilled water outlet temperature becomes the target temperature, and if there is a margin even when fully open, the water is also supplied to the supercooler Sc.
Since the second condenser Cc2 can directly condense the refrigerant vapor from Ec at a low temperature, it feeds low-temperature water (cold water at the absorption refrigerator outlet). The subcooler Sc is sufficiently effective if the temperature is lower than the outside air, so that it is possible to supply cold water whose temperature has increased to some extent.
[0011]
In FIG. The second condenser of the 1 compression refrigerator → No. The second condenser of the 2-compression refrigerator → ・ ・ ・ → No. n Water is sent in series with the second condenser of the compression refrigerator. nCompression refrigerator subcooler → ・ ・ ・ → No. 2 compressor freezer supercooler → No. Water is sent to the supercooler of the 1-compression refrigerator.
When the refrigerant vapor of Ec can be directly condensed in the second condenser Cc2, it is often unnecessary to operate the compressor Mc. On the other hand, when the cold water temperature rises and cannot be condensed directly, the compressor operates, Since the refrigerant condenses in one condenser Cc1, the order of water supply to the supercooler Sc is flowed in the order of the high possibility of compressor operation.
The flow method is not limited to this, and it is possible to supply water in parallel to each compressor.
The cold water flow rate to each compression refrigerator may be adjusted individually to control the cold water load.
[0012]
Next, the behavior in the compression refrigerator will be described with reference to FIG. In FIG. 2, (a) is a whole block diagram of the compression refrigerator used for this invention, (b) is Ec part detailed drawing. In FIG. 2 (a), the refrigerant vapor from the evaporator Ec is sucked into the second condenser Cc2 while the compressor Mc is stopped, and the compressor Mc or the compressor Mc and the second condensate during the operation of the compressor Mc. Sucked into the container Cc2.
If the temperature of the heat transfer medium from the absorption type is low and the refrigerant vapor can be condensed in the second condenser Cc2, it is sucked into the second condenser Cc2.
If the temperature of the heat transfer medium from the absorption type is high and the refrigerant vapor cannot be condensed in the second condenser Cc2, it is present in the second condenser Cc2 in the form of refrigerant vapor, and almost no heat transfer occurs.
If the cold water temperature sent from the absorption refrigerator to the second condenser is high, no load is applied even if cold water is sent. When it is desired to apply the addition in a state where the chilled water temperature is high, a load may be applied with a supercooler.
Although the supercooler Sc is shown in the figure, it does not matter if it is not present.
[0013]
FIG. 2B shows an indoor unit (air cooler) as an example of the evaporator Ec.
A controller is provided for each indoor unit to perform temperature measurement and expansion valve adjustment.
In the compressor capacity control, the target room temperature To is set by a remote controller or directly set by a controller, compared with the room temperature sensor Ta, and sent to the controller of the compressor Mc as a required capacity with a difference temperature ΔT = Ta−To.
For the required capacity, a total value or a weighted average value taking into account the capacity of each evaporator is used. For example, the compressor Mc is operated at the required capacity at the frequency shown in Table 1. When the temperature difference is decreasing, the frequency is a downward gradient (X side), and when the temperature difference is increasing, the frequency is an upward gradient (Y side). Since the room temperature has a difference of 0.4 ° C. in the same region between the downward gradient and the upward gradient, this serves as a hysteresis and can suppress frequent changes in frequency.
[0014]
[Table 1]
Figure 0003874263
[0015]
After the compressor Mc is stopped, the condensing capacity of the second condenser Cc2 is limited. For example, the condensation capacity is limited by increasing the superheat target value at the outlet of the evaporator Ec. For example, the target superheat degree is set as shown in Table 2.
ΔT = −0.8 ° C., superheat SH = 4.0 ° C.,
ΔT = −1.6 ° C., superheat SH = 8.0 ° C.
ΔT = −0.8 ° C. or less, and superheat degree is SH = −5 × ΔT.
The reason why the condensing capacity of the second condenser is limited due to the increase in superheat is to increase the degree of superheat, so that the flow rate of refrigerant flowing through the evaporator is reduced, resulting in a decrease in outlet pressure and condensation of the second condenser. This is because the ability decreases.
When the compressor Mc is in operation, it is desirable that the superheat degree target value be as small as possible within a range in which the superheat degree can be controlled following fluctuations in terms of reduction in required power and increase in efficiency ( Usually around 4 ° C). However, after the compressor is stopped, power does not matter, so the evaporator Ec outlet pressure can be reduced and the degree of superheat is set large.
[0016]
[Table 2]
Figure 0003874263
In the evaporator Ec, the refrigerant superheated steam temperature is measured by the temperature sensor TR at the outlet of the evaporator, while the refrigerant liquid is supplied with its flow rate limited by the capillary, and the saturation temperature is measured by the temperature sensor Ts.
The degree of superheat ΔTsh = TR−Ts is obtained, and the expansion valve (refrigerant supply valve) is adjusted so as to achieve the target degree of superheat.
The compressor Mc may be composed of a plurality of units, and in the case of a plurality of units, one unit may be controlled by an inverter, and the other unit may be controlled by unit control (start / stop).
[0017]
FIG. 3 shows a configuration having a system of the compressor Mc1 and the first condenser Cc1, and a system of the compressor Mc2 (low head compressor) and the second condenser Cc2. If the temperature of the second condenser is equal to or lower than the predetermined temperature (or the evaporation temperature of the absorption refrigerator or the temperature of the carrier medium is equal to or lower than the predetermined value), the refrigerant vapor is stopped with the compressor Mc2 of the second condenser system stopped. Can be condensed directly. If the required capacity of Ec cannot be satisfied only by the direct condensation, the compressor Mc1 of the first condenser system is operated to back up the capacity. At this time, the supercooler Sc is useful.
When the evaporation temperature of the absorption refrigerator or the temperature of the carrier medium is equal to or higher than a predetermined value, the compressor Mc2 of the second condenser system can be operated and condensed by the second condenser Cc2.
FIG. 3 shows an example of carrying the absorption refrigeration effect with a refrigerant (an example of latent heat transfer). The amount of heat supplied to each compression refrigerator can be individually adjusted with a refrigerant liquid throttle valve.
[0018]
FIG. 4 shows an example in which the first condenser Cc1 is connected after the compressor Mc, and then the second condenser Cc2 or the subcooler Sc is provided. The second condenser Cc2 and the supercooler Sc may be combined. The compressor Mc is operated and condensed in the first condenser Cc1, and the condensate is supplied to the supercooler Sc through the throttle valve. When the throttle valve is fully opened, the compressed steam is sucked into the cooler subcooler (second condenser) and condensed.
When the cold water temperature is low, the compressor Mc is stopped, and the refrigerant vapor from Ec is directly condensed by the second condenser Cc2.
When the chilled water temperature is equal to or higher than a predetermined value, the compressor Mc is operated to operate as the supercooler Sc. In some cases, it may be a compressed steam condenser.
In FIG. 4, the absorption refrigeration effect is conveyed to each compression refrigerator in parallel with cold water, and the flow rate is individually adjusted.
[0019]
The method of conveying the refrigeration effect of the absorption chiller is to carry cold heat with chilled water (sensible heat transport), or to transfer heat with a medium that uses latent heat or the refrigerant liquid in the evaporator Ea of the absorption chiller in a heat exchange relationship. There are various methods such as directing the refrigerant liquid returned to the absorption refrigerator to the compressor (second condenser Cc2, supercooler Sc) and directly returning to the absorption refrigerator by an evaporator.
In the present invention, the absorption refrigerator is not particularly limited such as single effect, double effect, single double effect, etc., and is not limited by the working medium of the absorption refrigerator. The form of the heat source is not particularly limited, such as warm water, water vapor, fuel or exhaust gas. Moreover, it is not limited to exhaust heat, but may be an absorption refrigerator that uses inexpensive fuel as a heat source.
Moreover, in this invention, even if each apparatus which comprises one compression refrigerator is multiple units | sets, it does not interfere.
Although described as a compression refrigerator, it may take the form of heating operation by a heat pump by pipe switching. At that time, an absorption refrigerator may be used as a cold / hot water machine to supply heat to the heat pump, or an exhaust heat source may be directly applied to the heat pump.
[0020]
【The invention's effect】
According to the present invention, the refrigerant circuit refrigerating capacity (the refrigerating capacity of the compression refrigerating machine) can be obtained by the absorption refrigerating effect alone without operating the compressor of the compression refrigerating machine, and even when the compressor is operating. The absorption refrigeration effect can be fully demonstrated.
In addition, the absorption refrigeration effect is preferentially used, the operation of the absorption refrigeration effect alone is possible, the operation state of the compression refrigeration machine can be adjusted according to the cooling load and the state of the absorption refrigeration effect, and economical and efficient operation It is a refrigeration apparatus that can be used as an air conditioner capable of
[Brief description of the drawings]
FIG. 1 is a flow configuration diagram showing an example of components of a refrigeration apparatus according to the present invention.
FIG. 2 is a flow diagram showing an example of components of a compression refrigerator of the refrigeration apparatus of the present invention, where (a) is an overall view, and (b) is a detailed view of an Ec part.
FIG. 3 is a flow configuration diagram showing another example of components constituting the refrigeration apparatus of the present invention.
FIG. 4 is a flow configuration diagram showing another example of components constituting the refrigeration apparatus of the present invention.
[Explanation of symbols]
Mc, Mc1, Mc2: compressor, Ec: evaporator, Cc1: first condenser, Cc2: second condenser, Sc: subcooler, Ta, TR, Ts: temperature sensor, A: absorber, G: Regenerator, C: Condenser, E: Evaporator, SP: Absorption solution pump, RP: Refrigerant pump, 2: Cold water pump, 3: Temperature sensor, 4: Controller, 5, 6: Control valve, 7: Expansion valve 8: Regulating valve, 10: Heat exchanger, 11-14, 16: Solution pipe, 15, 17, 18: Refrigerant pipe, 19: Chilled water circuit, 20: Cooling water circuit, 21: Waste heat source channel

Claims (2)

排熱を再生器の熱源として冷凍効果を発揮する蒸発器Eを有する吸収冷凍機と、1台以上の圧縮機、冷凍効果を発揮する蒸発器Ec、外気又は冷却水で冷却する第一凝縮器、前記吸収冷凍機の蒸発器Eと熱交換関係に接続した第二凝縮器及び過冷却器を有する圧縮冷凍機とを組合せた冷凍装置であって、前記蒸発器Eへの負荷量を調節する手段と、該蒸発器Eの温度を検出する温度センサーとを具備し、前記負荷量を調節する手段は、第二凝縮器側からの負荷量と、過冷却器側からの負荷量とを別々に調節する手段を有すると共に、吸収冷凍機の蒸発器Eの温度が所定値以下の時に、第二凝縮器側からの負荷量を、過冷却器側からの負荷量よりも優先して、吸収冷凍機の蒸発器Eに与えるように調節する手段を有することを特徴とする吸収式と圧縮式とを組合せた冷凍装置。Absorption refrigerator having an evaporator E that exhibits a refrigeration effect using exhaust heat as a heat source for the regenerator, one or more compressors, an evaporator Ec that exhibits a refrigeration effect, and a first condenser that is cooled by outside air or cooling water the an absorbent refrigerator evaporator E and a refrigeration device combining a compression refrigerator having a second condenser及beauty subcooler connected to the heat exchange relationship, adjusting the load to the evaporator E And a temperature sensor that detects the temperature of the evaporator E, and the means for adjusting the load amount includes a load amount from the second condenser side and a load amount from the subcooler side. In addition to having a means for adjusting separately, when the temperature of the evaporator E of the absorption refrigerator is below a predetermined value, the load amount from the second condenser side is given priority over the load amount from the subcooler side, absorption characterized in that it comprises means for adjusting to provide the evaporator E of the absorption chiller Refrigerating device combining a compression-type. 前記圧縮冷凍機は、吸収冷凍機1台に対し、複数台接続することを特徴とする請求項1記載の冷凍装置。  The refrigerating apparatus according to claim 1, wherein a plurality of the compression refrigerators are connected to one absorption refrigerator.
JP2002111629A 2002-04-15 2002-04-15 Refrigeration system combining absorption and compression Expired - Fee Related JP3874263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111629A JP3874263B2 (en) 2002-04-15 2002-04-15 Refrigeration system combining absorption and compression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111629A JP3874263B2 (en) 2002-04-15 2002-04-15 Refrigeration system combining absorption and compression

Publications (2)

Publication Number Publication Date
JP2003307364A JP2003307364A (en) 2003-10-31
JP3874263B2 true JP3874263B2 (en) 2007-01-31

Family

ID=29394368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111629A Expired - Fee Related JP3874263B2 (en) 2002-04-15 2002-04-15 Refrigeration system combining absorption and compression

Country Status (1)

Country Link
JP (1) JP3874263B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108180690A (en) * 2017-12-27 2018-06-19 中国电力工程顾问集团西南电力设计院有限公司 The combination configuration structure and operating method of district cooling station cold source equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016283A (en) * 1983-07-07 1985-01-28 株式会社荏原製作所 Controller for quantity of transformation in refrigerator
JPH0261471A (en) * 1988-08-25 1990-03-01 Mitsui Constr Co Ltd Cooling air generating device
JPH0886533A (en) * 1994-09-16 1996-04-02 Toshiba Corp Air conditioner
JPH09126524A (en) * 1995-08-29 1997-05-16 Rinnai Corp Air conditioner
JPH11257782A (en) * 1998-03-10 1999-09-24 Yazaki Corp Absorption cold heat generator
JP3719581B2 (en) * 1998-06-08 2005-11-24 東京瓦斯株式会社 Combined air conditioner
JP3717050B2 (en) * 2000-07-19 2005-11-16 東京瓦斯株式会社 Combined air conditioning unit

Also Published As

Publication number Publication date
JP2003307364A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
JP2004037065A (en) Operation control method of refrigeration system provided with two evaporators
JP2006017427A (en) Cooling system
CN104214854A (en) Integrated machine room air conditioning system
CN213089944U (en) Constant temperature refrigerating plant
JP3874263B2 (en) Refrigeration system combining absorption and compression
CN203605376U (en) Integrated machine room air-conditioning system
JP4152140B2 (en) Waste heat absorption refrigerator
JP2004205193A (en) Heat pump
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP4100462B2 (en) Heat utilization system
JP2003207223A (en) Exhaust heat recovery-type refrigerating device
JP2003004330A (en) Exhaust heat recovery air conditioner
JP3874262B2 (en) Refrigeration system combining absorption and compression
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JP3871206B2 (en) Refrigeration system combining absorption and compression
JP3986633B2 (en) Heat utilization system
JP2003307363A (en) Refrigerating equipment combined with absorption type and compression type and its driving method
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JP2002349996A (en) Exhaust heat recovery air conditioner
KR100419479B1 (en) Auxiliary refrigerator mounted heat pump system
JPH08121900A (en) Absorption type refrigerating machine using engine exhaust heat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees