JP3397164B2 - Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method - Google Patents

Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method

Info

Publication number
JP3397164B2
JP3397164B2 JP08194999A JP8194999A JP3397164B2 JP 3397164 B2 JP3397164 B2 JP 3397164B2 JP 08194999 A JP08194999 A JP 08194999A JP 8194999 A JP8194999 A JP 8194999A JP 3397164 B2 JP3397164 B2 JP 3397164B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat transfer
medium
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08194999A
Other languages
Japanese (ja)
Other versions
JP2000274860A (en
Inventor
俊孝 武居
忠彦 山本
貴也 石黒
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP08194999A priority Critical patent/JP3397164B2/en
Publication of JP2000274860A publication Critical patent/JP2000274860A/en
Application granted granted Critical
Publication of JP3397164B2 publication Critical patent/JP3397164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、吸収式冷凍サイク
ルを用いて、冷凍装置としての運転を続けながら温水の
給湯や暖房負荷に対する暖房用の温熱の供給が可能なヒ
ートポンプサイクル型吸収式冷凍および暖房同時取出し
機ならびに方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump cycle type absorption refrigeration system capable of supplying hot water for heating hot water to a heating load while continuously operating as a refrigeration system using an absorption refrigeration cycle. The present invention relates to a heating simultaneous extraction machine and method.
【0002】[0002]
【従来の技術】従来から、蒸気圧縮式冷凍装置とともに
吸収式冷凍装置が各種冷凍機や空気調和装置に用いられ
ている。蒸気圧縮式の空気調和装置では、冷媒を蒸発さ
せて冷却を行う蒸発器と、冷媒を凝縮させる凝縮器との
役割を入換える逆サイクル方式で冷凍運転と暖房運転と
を切換えることができる。このような可逆サイクル方式
の空気調和装置では、ヒートポンプとして周囲を冷却し
た熱を熱源として暖房を行うことができるので、装置の
効率の指標の1つである成績係数(COP)を比較的高
い状態にすることができる。
2. Description of the Related Art Conventionally, an absorption type refrigeration system has been used in various refrigerators and air conditioners together with a vapor compression refrigeration system. In the vapor compression type air conditioner, the refrigerating operation and the heating operation can be switched by a reverse cycle method in which the roles of the evaporator that evaporates the refrigerant to cool it and the condenser that condenses the refrigerant are switched. In such a reversible cycle type air conditioner, heating can be performed by using the heat that has cooled the surroundings as a heat source as a heat pump, so that the coefficient of performance (COP), which is one of the indexes of the efficiency of the apparatus, is relatively high. Can be
【0003】しかしながら、蒸気圧縮式冷凍機では、フ
ロンなどの使用が規制される冷媒を使用することになる
ので、将来的に広く利用することは困難である。現在
は、フロンなどを用いない吸収式冷凍機の利用が注目を
集めている。また、吸収式冷凍機は、たとえばコージェ
ネレーションシステムを構成する場合に、比較的低温の
熱源を発生器の熱源として有効に利用することができる
ので好ましい。吸収式冷凍機は、アンモニアを冷媒とし
て水を吸収液とするアンモニア吸収式冷凍機と、臭化リ
チウム(LiBr)などの溶液を吸収液として水を冷媒
とする吸収式冷凍機との大別して2種類の方式が用いら
れている。このうち、水を冷媒として用いる方式では、
水の凝固点である0℃以下の低温まで用いることはでき
ない。低温まで冷却することが必要な場合は、アンモニ
ア吸収方式を用いる必要がある。
However, a vapor compression refrigerator uses a refrigerant whose use is restricted, such as CFC, so that it cannot be widely used in the future. At present, the use of absorption refrigerators that do not use CFCs is drawing attention. Further, the absorption refrigerating machine is preferable because a relatively low temperature heat source can be effectively used as a heat source of the generator when the cogeneration system is configured, for example. The absorption chiller is roughly classified into an ammonia absorption chiller that uses ammonia as a refrigerant and water as an absorbing liquid, and an absorption chiller that uses a solution such as lithium bromide (LiBr) as an absorbing liquid and water as a refrigerant. A variety of schemes are used. Among them, in the method using water as the refrigerant,
It cannot be used at a low temperature below 0 ° C., which is the freezing point of water. When it is necessary to cool to a low temperature, it is necessary to use the ammonia absorption method.
【0004】[0004]
【発明が解決しようとする課題】アンモニア吸収液冷凍
機は、特に大形の装置として世界的に広く用いられてい
る。アンモニア吸収式冷凍機を備える工場などでは、冷
凍を必要とするような夏季などでは冷凍能力を最大限に
発揮させ、暖房を必要とするような冬季では冷凍だけで
はなく暖房に使用可能であることが要望されている。し
かしながら、蒸気圧縮式冷凍機の逆サイクルのように、
冷凍運転と暖房運転とを完全に切換える場合は蒸発温度
(または外気温度)の低下に伴い、極端に暖房能力が低
下する不具合が生ずる。
The ammonia absorption liquid refrigerator is widely used in the world as a particularly large device. A factory equipped with an ammonia absorption chiller should be able to maximize its refrigerating capacity in the summer, when it requires refrigeration, and be used not only for refrigeration but also for heating in the winter when it requires heating. Is required. However, like the reverse cycle of a vapor compression refrigerator,
When the refrigerating operation and the heating operation are completely switched, there is a problem that the heating capacity is extremely lowered due to the decrease of the evaporation temperature (or the outside air temperature).
【0005】本発明の目的は、効率的に冷凍運転を続け
ながら、給湯や暖房負荷への暖房用の熱を供給すること
ができるヒートポンプサイクル型吸収式冷凍および暖房
同時取出し機ならびに方法を提供することである。
An object of the present invention is to provide a heat pump cycle type absorption refrigeration / heating simultaneous take-out machine and method capable of supplying heat for hot water supply or heating to a heating load while efficiently continuing refrigeration operation. That is.
【0006】[0006]
【課題を解決するための手段】本発明は、蒸発器(1)
で冷媒を蒸発させる際の蒸発熱で冷熱媒体を冷却し、蒸
発した冷媒を吸収器(2)で吸収液に吸収し、冷媒を吸
収した吸収液を発生器(3)で加熱して冷媒を蒸発さ
せ、蒸発した冷媒を凝縮器(4)で凝縮させてから蒸発
器(1)で蒸発させるとともに、発生器(3)から冷媒
を蒸発させた吸収液を吸収器(2)に導いて吸収式冷凍
サイクルを形成するヒートポンプサイクル型吸収式冷凍
および暖房同時取出し機であって、吸収器(2)は、冷
媒の吸収液への吸収熱を吸収するための温熱媒体が流通
する伝熱路(11)を備え、冷熱媒体は、冷凍用または
冷房用の負荷に供給され、温熱媒体は暖房用の負荷(2
8)に供給され、吸収器(2)は、胴体(21)内の上
側に配置され、前記温熱媒体が流通する伝熱路としての
温伝熱管(11)と、胴体(21)内で温伝熱管(1
1)の下側に配置され、該温熱媒体よりも低温の冷却媒
体が流通する冷伝熱管(12)と、胴体(21)内の上
部に配置され、該温伝熱管(11)および該冷伝熱管
(12)に吸収液を散布するノズル(13)とを備える
ことを特徴とするヒートポンプサイクル型吸収式冷凍お
よび暖房同時取出し機である。
The present invention is directed to an evaporator (1).
The cold heat medium is cooled by the heat of vaporization when the refrigerant is evaporated in, the absorbed refrigerant is absorbed in the absorbing liquid in the absorber (2), and the absorbing liquid absorbing the refrigerant is heated in the generator (3) to cool the refrigerant. The refrigerant is evaporated, the evaporated refrigerant is condensed in the condenser (4) and then evaporated in the evaporator (1), and the absorption liquid in which the refrigerant is evaporated from the generator (3) is guided to the absorber (2) and absorbed. A heat pump cycle type absorption refrigeration / heating simultaneous take-out machine forming a refrigeration cycle, wherein an absorber (2) is a heat transfer path through which a heating medium for absorbing heat absorbed by a refrigerant is absorbed. 11), the cooling medium is supplied to the load for freezing or cooling, and the heating medium is the load for heating (2
8), the absorber (2) is arranged on the upper side in the body (21), and the heat transfer tube (11) as a heat transfer path through which the heating medium flows and the temperature inside the body (21) Heat transfer tube (1
1) a cold heat transfer tube (12) which is arranged on the lower side and through which a cooling medium having a temperature lower than the heat transfer medium flows, and a heat transfer tube (11) and the cold heat transfer tube (11) which are arranged in an upper part of the body (21). A heat pump cycle type absorption refrigeration / heating simultaneous take-out machine comprising a heat transfer tube (12) and a nozzle (13) for spraying an absorbing liquid.
【0007】本発明に従えば、吸収式冷凍サイクルの蒸
発器(1)では、冷熱媒体を冷媒を蒸発させる蒸発熱を
吸収することによって冷却し、冷却した冷熱媒体を冷凍
用または冷房用の負荷に供給する。吸収器(2,29,
40)は、蒸発器(1)で蒸発した冷媒を吸収液に吸収
させる際に発生する吸収液を温熱媒体に吸収させ、暖房
用の負荷(28)に供給する。温熱媒体には、蒸発器
(1)で冷熱媒体から吸収した蒸発熱も吸収熱として与
えられるので、ヒートポンプの作用として効率的に暖房
や温水の加温を行うことができる。蒸発器では、冷熱媒
体を冷却する冷凍運転または冷房運転が可能であるの
で、冷凍または冷房と暖房とを並行して効率よく行うこ
とができる。
According to the present invention, in the evaporator (1) of the absorption refrigeration cycle, the cold heat medium is cooled by absorbing the evaporation heat for evaporating the refrigerant, and the cooled cold heat medium is loaded for freezing or cooling. Supply to. Absorber (2,29,
40) causes the heating medium to absorb the absorbing liquid generated when the refrigerant evaporated in the evaporator (1) is absorbed by the absorbing liquid, and supplies the heating medium (28) with the heating load. Since the heat of vaporization, which is absorbed by the evaporator (1) from the cold heat medium, is also given to the warm heat medium as absorption heat, it is possible to efficiently perform heating and warm water warming by the action of the heat pump. Since the evaporator can perform a freezing operation or a cooling operation for cooling the cold heat medium, it is possible to efficiently perform freezing or cooling and heating in parallel.
【0008】[0008]
【0009】また、吸収器(2)の胴体(21)内に
は、温熱媒体が流通する温伝熱管(11)と、温熱媒体
よりも低温の冷却媒体が流通する冷伝熱管(12)とが
上下に配置され、ノズル(13)から散布される吸収液
に冷媒蒸気が吸収される際に発生する吸収熱によって加
温される。暖房を必要とするような寒冷な時季には、凝
縮器(4)の冷却水温度も低下して、凝縮器(4)の圧
力が低下し、稀溶液濃度が減少するので、吸収温度を高
くすることができる。冷伝熱管(12)に温熱媒体より
も低温の冷却媒体を、たとえば冷却水などとして流通さ
せれば、冷伝熱管(12)によって吸収熱を吸収し暖房
負荷が小さく、温熱媒体の需要が少ないときの調整を行
うことができる。
Further, in the body (21) of the absorber (2), there are a hot heat transfer tube (11) through which a heating medium flows, and a cold heat transfer tube (12) through which a cooling medium having a temperature lower than that of the heating medium flows. Are arranged above and below and are heated by the absorption heat generated when the refrigerant vapor is absorbed by the absorbing liquid sprayed from the nozzle (13). In the cold season when heating is required, the temperature of the cooling water in the condenser (4) also decreases, the pressure in the condenser (4) decreases, and the dilute solution concentration decreases, so the absorption temperature is increased. can do. If a cooling medium having a temperature lower than that of the heat transfer medium is circulated in the cold heat transfer tube (12) as, for example, cooling water, the heat absorption is absorbed by the cold heat transfer tube (12), the heating load is small, and the demand for the heat transfer medium is small. You can make adjustments when.
【0010】また本発明は、蒸発器(1)で冷媒を蒸発
させる際の蒸発熱で冷熱媒体を冷却し、蒸発した冷媒を
吸収器(29)で吸収液に吸収し、冷媒を吸収した吸収
液を発生器(3)で加熱して冷媒を蒸発させ、蒸発した
冷媒を凝縮器(4)で凝縮させてから蒸発器(1)で蒸
発させるとともに、発生器(3)から冷媒を蒸発させた
吸収液を吸収器(29)に導いて吸収式冷凍サイクルを
形成するヒートポンプサイクル型吸収式冷凍および暖房
同時取出し機であって、吸収器(29)は、冷媒の吸収
液への吸収熱を吸収するための温熱媒体が流通する伝熱
路(31)を備え、冷熱媒体は、冷凍用または冷房用の
負荷に供給され、温熱媒体は暖房用の負荷(28)に供
給され、吸収器(29)は、胴体(30)内の上部から
中間部までを仕切る仕切板(35)と、仕切板(35)
によって仕切られる胴体(30)内の一方の空間に配置
され、前記温熱媒体が流通する伝熱路としての温伝熱管
(31)と、該温伝熱管(31)に吸収液を散布する温
ノズル(33)と、該仕切板(35)によって仕切られ
る胴体(30)内の他方の空間に配置され、該温熱媒体
よりも低温の冷却媒体が流通する冷伝熱管(32)と、
該冷伝熱管(32)に吸収液を散布する冷ノズル(3
4)と、該冷ノズル(34)に供給する吸収液の流量を
調整する弁(37)とを備えることを特徴とするヒート
ポンプサイクル型吸収式冷凍および暖房同時取出し機で
ある。
Further, according to the present invention, the cold heat medium is cooled by the heat of vaporization when the refrigerant is evaporated by the evaporator (1), the evaporated refrigerant is absorbed by the absorbing liquid by the absorber (29), and the absorption by absorbing the refrigerant is carried out. The liquid is heated in the generator (3) to evaporate the refrigerant, the evaporated refrigerant is condensed in the condenser (4) and then evaporated in the evaporator (1), and the refrigerant is evaporated from the generator (3). A heat pump cycle type absorption refrigeration and heating simultaneous take-out machine for guiding the absorbed liquid to an absorber (29) to form an absorption refrigeration cycle, wherein the absorber (29) absorbs heat of absorption of the refrigerant into the absorption liquid. A heat transfer path (31) through which a heat transfer medium for absorption flows is provided. The cool heat transfer medium is supplied to a load for freezing or cooling, the heat transfer medium is supplied to a load (28) for heating, and the absorber ( 29) is a partition between the upper part and the middle part of the body (30) Partition plate (35), the partition plate (35)
A heat transfer tube (31), which is disposed in one of the spaces in the body (30) partitioned by the heat transfer medium and serves as a heat transfer path through which the heat transfer medium flows, and a heat nozzle for spraying an absorbing liquid to the heat transfer tube (31). (33), a cold heat transfer tube (32) arranged in the other space in the body (30) partitioned by the partition plate (35), and through which a cooling medium having a temperature lower than the heating medium flows.
A cold nozzle (3) for spraying an absorbing liquid onto the cold heat transfer tube (32).
4) and a valve (37) for adjusting the flow rate of the absorption liquid supplied to the cold nozzle (34), which is a heat pump cycle type absorption refrigeration / heating simultaneous take-out machine.
【0011】本発明に従えば、吸収式冷凍サイクルの蒸
発器(1)では、冷熱媒体を冷媒を蒸発させる蒸発熱を
吸収することによって冷却し、冷却した冷熱媒体を冷凍
用または冷房用の負荷に供給する。吸収器(29)は、
蒸発器(1)で蒸発した冷媒を吸収液に吸収させる際に
発生する吸収液を温熱媒体に吸収させ、暖房用の負荷
(28)に供給する。温熱媒体には、蒸発器(1)で冷
熱媒体から吸収した蒸発熱も吸収熱として与えられるの
で、ヒートポンプの作用として効率的に暖房や温水の加
温を行うことができる。蒸発器では、冷熱媒体を冷却す
る冷凍運転または冷房運転が可能であるので、冷凍また
は冷房と暖房とを並行して効率よく行うことができる。
また、吸収器(29)の胴体(30)内の空間を上部か
ら中間部まで仕切板(35)によって仕切り、一方の空
間に温伝熱管(31)を配置し、他方の空間に冷伝熱管
(32)を配置する。温伝熱管(31)には温熱媒体を
流通させ、冷伝熱管(32)には温熱媒体よりも低温の
冷却媒体を流通させ、温ノズル(33)と冷ノズル(3
4)とから吸収液をそれぞれ散布する。弁(37)によ
って、温ノズル(33)および冷ノズル(34)に供給
する吸収液の流量を調整するので、吸収器(29)全体
としては吸収式冷凍サイクルで必要な吸収熱の吸収を行
いながら、温伝熱管(31)内の温熱媒体を暖房に好適
な高温に加温し、暖房負荷が小さく、温熱媒体の需要が
小さいときには、冷熱媒体に吸収熱を吸収させることが
できる。
According to the present invention, in the evaporator (1) of the absorption refrigeration cycle, the cold heat medium is cooled by absorbing the evaporation heat for evaporating the refrigerant, and the cooled cold heat medium is loaded for freezing or cooling. Supply to. The absorber (29)
The absorbing liquid generated when the refrigerant evaporated in the evaporator (1) is absorbed by the absorbing liquid is absorbed by the heating medium and supplied to the heating load (28). Since the heat of vaporization, which is absorbed by the evaporator (1) from the cold heat medium, is also given to the warm heat medium as absorption heat, it is possible to efficiently perform heating and warm water warming by the action of the heat pump. Since the evaporator can perform a freezing operation or a cooling operation for cooling the cold heat medium, it is possible to efficiently perform freezing or cooling and heating in parallel.
Further, the space inside the body (30) of the absorber (29) is partitioned by a partition plate (35) from the upper part to the middle part, the heat transfer tubes (31) are arranged in one space, and the cold heat transfer tubes are installed in the other space. Place (32). A warm heat transfer medium is circulated in the hot heat transfer pipe (31), a cooling medium lower in temperature than the heat transfer medium is circulated in the cold heat transfer pipe (32), and the warm nozzle (33) and the cold nozzle (3) are passed.
4) Spray the absorbing liquid from and respectively. Since the flow rate of the absorption liquid supplied to the hot nozzle (33) and the cold nozzle (34) is adjusted by the valve (37), the absorber (29) as a whole absorbs the absorption heat required in the absorption refrigeration cycle. However, the heat transfer medium in the heat transfer tube (31) is heated to a high temperature suitable for heating, and when the heating load is small and the demand for the heat transfer medium is small, the heat transfer medium can absorb the absorbed heat.
【0012】また本発明は、前記冷ノズル(34)に供
給する吸収液を、前記冷却媒体を用いて冷却する冷却器
(38)をさらに含むことを特徴とする。
Further, the present invention is characterized by further comprising a cooler (38) for cooling the absorbing liquid to be supplied to the cold nozzle (34) by using the cooling medium.
【0013】本発明に従えば、吸収器(29)内で冷伝
熱管(32)を冷却する冷ノズル(34)に供給する吸
収液を、冷却器(38)で冷却するので、吸収器(2
9)内には低温の吸収液を散布することができ、暖房負
荷が減少するときなどに、冷伝熱管(32)側での冷媒
の吸収能力を高めて多くの吸収熱を吸収させ、温伝熱管
(31)内の温熱流体への加熱量を減少させることがで
きる。
According to the present invention, the absorbing liquid supplied to the cold nozzle (34) for cooling the cold heat transfer tube (32) in the absorber (29) is cooled by the cooler (38). Two
9) A low-temperature absorption liquid can be sprayed inside, and when the heating load is reduced, the absorption capacity of the refrigerant on the cold heat transfer tube (32) side is increased to absorb a large amount of absorbed heat, It is possible to reduce the amount of heat applied to the hot fluid in the heat transfer tube (31).
【0014】また本発明は、蒸発器(1)で冷媒を蒸発
させる際の蒸発熱で冷熱媒体を冷却し、蒸発した冷媒を
吸収器(40)で吸収液に吸収し、冷媒を吸収した吸収
液を発生器(3)で加熱して冷媒を蒸発させ、蒸発した
冷媒を凝縮器(4)で凝縮させてから蒸発器(1)で蒸
発させるとともに、発生器(3)から冷媒を蒸発させた
吸収液を吸収器(40)に導いて吸収式冷凍サイクルを
形成するヒートポンプサイクル型吸収式冷凍および暖房
同時取出し機であって、吸収器(40)は、冷媒の吸収
液への吸収熱を吸収するための温熱媒体が流通する伝熱
路(41)を備え、冷熱媒体は、冷凍用または冷房用の
負荷に供給され、温熱媒体は暖房用の負荷(28)に供
給される、吸収器(40)は、温熱媒体の伝熱路として
の伝熱管(41)を備え、該伝熱管(41)には、該温
熱媒体、または外部の放熱器(23)で放熱するための
冷却媒体のいずれかが流通するように、切換可能であ
り、吸収器(40)から冷媒を吸収した吸収液を発生器
(3)に導く経路に、発生器(3)からの冷媒を蒸発さ
せた吸収液と熱交換させる熱交換器(6)と、該熱交換
器(6)に対し、冷媒を吸収した吸収液または冷媒を蒸
発させた吸収液をバイパスさせるバイパス弁(44,4
5)とを備えることを特徴とするヒートポンプサイクル
型吸収式冷凍冷および暖房同時取出し機である。
Further, according to the present invention, the cold heat medium is cooled by the heat of vaporization when the refrigerant is evaporated in the evaporator (1), the evaporated refrigerant is absorbed in the absorbing liquid in the absorber (40), and the absorption is made by absorbing the refrigerant. The liquid is heated in the generator (3) to evaporate the refrigerant, the evaporated refrigerant is condensed in the condenser (4) and then evaporated in the evaporator (1), and the refrigerant is evaporated from the generator (3). A heat pump cycle type absorption refrigeration and heating simultaneous take-out machine for guiding the absorbed liquid to an absorber (40) to form an absorption refrigeration cycle, wherein the absorber (40) absorbs heat of absorption of the refrigerant into the absorption liquid. An absorber comprising a heat transfer path (41) through which a heating medium for absorption flows, the cooling medium is supplied to a load for freezing or cooling, and the heating medium is supplied to a load (28) for heating. (40) is a heat transfer tube (41) as a heat transfer path for the heating medium. The heat transfer tube (41) is switchable so that either the heating medium or a cooling medium for radiating heat from an external radiator (23) flows through the heat transfer tube (41). A heat exchanger (6) for exchanging heat with the absorbing liquid in which the refrigerant from the generator (3) is evaporated, and the heat exchanger (6) in a path for guiding the absorbing liquid that has absorbed the refrigerant to the generator (3). On the other hand, bypass valves (44, 4) for bypassing the absorbing liquid that has absorbed the refrigerant or the absorbing liquid that has evaporated the refrigerant
And a heat pump cycle type absorption refrigeration / heating simultaneous take-out machine.
【0015】本発明に従えば、吸収式冷凍サイクルの蒸
発器(1)では、冷熱媒体を冷媒を蒸発させる蒸発熱を
吸収することによって冷却し、冷却した冷熱媒体を冷凍
用または冷房用の負荷に供給する。吸収器(40)は、
蒸発器(1)で蒸発した冷媒を吸収液に吸収させる際に
発生する吸収液を温熱媒体に吸収させ、暖房用の負荷
(28)に供給する。温熱媒体には、蒸発器(1)で冷
熱媒体から吸収した蒸発熱も吸収熱として与えられるの
で、ヒートポンプの作用として効率的に暖房や温水の加
温を行うことができる。蒸発器では、冷熱媒体を冷却す
る冷凍運転または冷房運転が可能であるので、冷凍また
は冷房と暖房とを並行して効率よく行うことができる。
また、吸収器(40)内の伝熱管(41)内には、温熱
媒体、または外部の放熱器(23)で放熱するための冷
却媒体のいずれかが流通するように切換可能であるの
で、暖房が不要で、冷凍負荷が大きな時季には放熱器
(23)で放熱した冷却媒体を吸収器(40)と凝縮器
(4)に流通させ、暖房負荷が大きくなると、主とし
て、冷却媒体は凝縮器(4)に流通させ、吸収器(4
0)に温熱媒体を流通させ、吸収熱を暖房用に利用する
ことができる。
According to the present invention, in the evaporator (1) of the absorption refrigeration cycle, the cold heat medium is cooled by absorbing the evaporation heat for evaporating the refrigerant, and the cooled cold heat medium is loaded for freezing or cooling. Supply to. The absorber (40)
The absorbing liquid generated when the refrigerant evaporated in the evaporator (1) is absorbed by the absorbing liquid is absorbed by the heating medium and supplied to the heating load (28). Since the heat of vaporization, which is absorbed by the evaporator (1) from the cold heat medium, is also given to the warm heat medium as absorption heat, it is possible to efficiently perform heating and warm water warming by the action of the heat pump. Since the evaporator can perform a freezing operation or a cooling operation for cooling the cold heat medium, it is possible to efficiently perform freezing or cooling and heating in parallel.
Further, since it is possible to switch so that either the heating medium or the cooling medium for radiating heat by the external radiator (23) circulates in the heat transfer tube (41) in the absorber (40), When heating is unnecessary and the refrigeration load is large, the cooling medium that radiates heat in the radiator (23) is circulated to the absorber (40) and the condenser (4). When the heating load increases, the cooling medium mainly condenses. Flow through the vessel (4) and the absorber (4
It is possible to circulate a heating medium in 0) and use the absorbed heat for heating.
【0016】[0016]
【0017】また、吸収器(40)から発生器(3)
に、冷媒を吸収した吸収液を導く経路に設ける熱交換器
(6)で、発生器(3)で冷媒を蒸発させた吸収液を導
いて熱交換を行う際に、バイパス弁(44,45)を設
けて、吸収液をバイパスすることができる。バイパス弁
(44,45)を開けることにより、熱交換器(6)の
温度効率が低下し、より高温の吸収液を吸収器(40)
内の伝熱管(41)に散布することができ、より高温の
温熱媒体を得ることができる。
Also, from the absorber (40) to the generator (3)
In the heat exchanger (6) provided in the path for guiding the absorbing liquid that has absorbed the refrigerant, the bypass valves (44, 45) are used when the absorbing liquid that has evaporated the refrigerant in the generator (3) is guided to perform heat exchange. ) Can be provided to bypass the absorption liquid. By opening the bypass valves (44, 45), the temperature efficiency of the heat exchanger (6) is lowered, and the higher temperature absorption liquid is absorbed by the absorber (40).
It can be sprayed to the heat transfer tubes (41) inside, and a higher temperature heating medium can be obtained.
【0018】さらに本発明は、蒸発器(1)で冷媒を蒸
発させる際の蒸発熱で冷熱媒体を冷却し、蒸発した冷媒
を吸収器(2,29,40)で吸収液に吸収し、冷媒を
吸収した吸収液を発生器(3)で加熱して冷媒を蒸発さ
せ、蒸発した冷媒を凝縮器(4)で凝縮させるととも
に、発生器(3)から冷媒を蒸発させた吸収液を吸収器
(2,29,40)に導いて形成される吸収式冷凍サイ
クルで、暖房を必要とする時季に、暖房が不要な時季の
冷却媒体よりも低温の冷却媒体を用いて凝縮器(4)を
冷却し、一部は吸収器(2,29,40)も冷却し、蒸
発器(1)で吸収する冷熱媒体からの熱を、暖房を必要
とする時季に暖房が不要な時季の冷却媒体よりも高温の
温熱媒体を用いて、吸収器(2,29,40)で回収
し、該温熱媒体で暖房負荷への熱の供給を行うことを特
徴とする吸収式冷凍サイクルを用いる暖房方法である。
Further, according to the present invention, the cold heat medium is cooled by the heat of evaporation when the refrigerant is evaporated in the evaporator (1), and the evaporated refrigerant is absorbed in the absorbing liquid in the absorber (2, 29, 40), The absorbing liquid that has absorbed the refrigerant is heated in the generator (3) to evaporate the refrigerant, the evaporated refrigerant is condensed in the condenser (4), and the absorbing liquid in which the refrigerant is evaporated from the generator (3) is absorbed in the absorber. In the absorption refrigeration cycle formed by introducing (2, 29, 40), the condenser (4) is used in a season when heating is required, using a cooling medium having a temperature lower than that of the season when heating is unnecessary. Cooling, partly cooling the absorber (2, 29, 40) and absorbing the heat from the cooling medium absorbed by the evaporator (1) from the cooling medium of the season when heating is not required Also, using a high temperature heating medium, it is recovered by the absorber (2, 29, 40) and heated by the heating medium. A heating method using an absorption refrigeration cycle and performs supply of heat to the load.
【0019】本発明に従えば、暖房を必要とする時季
は、暖房が不要な時季よりも、冷却媒体として用いる冷
却水などが低温になっているので、凝縮器(4)での凝
縮圧力が下がり、稀溶液濃度が減少し、吸収器(2,2
9,40)内の溶液温度が高くなり、より高温の温熱媒
体を流通させることができるようになる。蒸発器(1)
で冷熱媒体を冷却して回収する熱を、吸収器(2,2
9,40)で温熱媒体に回収するヒートポンプサイクル
を形成するので、蒸発器(1)で冷凍または冷房用に冷
熱を利用しながら、吸収器(2,29,40)で暖房用
の温熱を利用することができる。
According to the present invention, the cooling water used as the cooling medium has a lower temperature in the season when heating is required than in the season when heating is not required, so that the condensing pressure in the condenser (4) is Decrease, dilute solution concentration decreases, absorber (2, 2
The temperature of the solution in (9, 40) becomes high, and the hotter heating medium can be circulated. Evaporator (1)
The heat recovered by cooling the cold heat medium with the absorber (2, 2
Since a heat pump cycle for collecting in a heating medium is formed in (9, 40), while the cooling heat is used for freezing or cooling in the evaporator (1), the heating heat for heating is used in the absorber (2, 29, 40). can do.
【0020】[0020]
【発明の実施の形態】図1は、本発明の実施の第1形態
としての吸収式冷凍暖房装置の概略的な構成を示す。本
実施形態の吸収式冷暖房装置は、アンモニア吸収式冷凍
サイクルによって、蒸発器(1)で冷媒であるアンモニ
アが蒸発し、冷熱媒体である冷却ブラインを0℃以下に
冷却することができる。蒸発器(1)で蒸発したアンモ
ニア冷媒は、吸収器(2)で吸収液である稀溶液に吸収
される。稀溶液は、発生器(3)に送られ、加熱されて
アンモニア冷媒が蒸発し、吸収液は濃溶液になり、吸収
器(2)に送られる。発生器(3)から発生されたアン
モニア冷媒の蒸気は、凝縮器(4)で凝縮され、液冷媒
として蒸発器(1)に送られる。本発明では、後述する
ように、吸収器(2)から温水を取出すことが特徴であ
る。
1 shows a schematic structure of an absorption type refrigerating / heating apparatus as a first embodiment of the present invention. The absorption cooling / heating apparatus of the present embodiment can cool the cooling brine, which is the cooling / heating medium, to 0 ° C. or less by the ammonia absorption refrigeration cycle, in which the ammonia (refrigerant) is evaporated in the evaporator (1). The ammonia refrigerant evaporated in the evaporator (1) is absorbed by the absorber (2) in a dilute solution as an absorbing liquid. The dilute solution is sent to the generator (3) and heated to evaporate the ammonia refrigerant, and the absorbing solution becomes a concentrated solution and is sent to the absorber (2). The vapor of the ammonia refrigerant generated from the generator (3) is condensed in the condenser (4) and sent to the evaporator (1) as a liquid refrigerant. The present invention is characterized in that hot water is taken out from the absorber (2) as described later.
【0021】発生器(3)で吸収液であるアンモニア水
溶液を加熱すると、冷媒であるアンモニアとともに水分
も蒸発する。発生器(3)から純度の高いアンモニア蒸
気を凝縮器(4)に送るため、精留塔(5)が設けられ
る。精留塔(5)の下部には、発生器(3)からのアン
モニアと水の混合水蒸気が送られる。精留塔(5)から
は、精留に利用されたアンモニア水溶液が、発生器
(3)の上部にフィードされる。この溶液は、発生器
(3)で加熱、濃縮され、高温の稀溶液になって溶液熱
交換器(6)に送られる。
When the generator (3) heats the aqueous ammonia solution which is the absorbing liquid, the water is evaporated together with the ammonia which is the refrigerant. A rectification column (5) is provided for sending pure ammonia vapor from the generator (3) to the condenser (4). A mixed vapor of ammonia and water from the generator (3) is sent to the lower part of the rectification column (5). From the rectification column (5), the aqueous ammonia solution used for rectification is fed to the upper part of the generator (3). This solution is heated and concentrated in the generator (3) to become a high temperature dilute solution, which is sent to the solution heat exchanger (6).
【0022】精留塔(5)は、発生器(3)から送られ
てくる純度の低い冷媒ガス、たとえば50〜60%を、
高純度、たとえば99.8%のアンモニアガスに濃縮す
る。精留塔(5)内には、バブルキャプ式等のトレイ
(7)が複数段、たとえば6〜18段設置されている。
各トレイ(7)では、アンモニアの純度の高い濃溶液
と、アンモニアと水との混合蒸気が気液接触し、混合蒸
気中の水蒸気は濃溶液中に吸収され、その時に発生する
凝縮熱で濃溶液中のアンモニアがガス化する。トレイ
(7)の各段毎にこれを繰返すことによって、高純度の
アンモニアガスが得られる。この精留の過程で不可欠な
加熱量として、精留熱(qR )がある。この精留熱qR
は、蒸発温度が低いほど大になる。
The rectification column (5) stores a low-purity refrigerant gas, for example, 50 to 60%, sent from the generator (3).
Concentrate to high purity, for example 99.8% ammonia gas. In the rectification column (5), a plurality of trays (7) of bubble cap type or the like are installed, for example, 6 to 18 trays.
In each tray (7), the concentrated solution of high purity of ammonia and the mixed vapor of ammonia and water come into gas-liquid contact, the water vapor in the mixed vapor is absorbed in the concentrated solution, and the heat of condensation generated at that time concentrates the vapor. The ammonia in the solution gasifies. By repeating this for each stage of the tray (7), highly pure ammonia gas can be obtained. The heat of rectification (qR) is an indispensable amount of heat in this rectification process. This rectification heat qR
Is larger as the evaporation temperature is lower.
【0023】凝縮器(4)は、高純度のアンモニアガス
を冷却して凝縮させ、その一部はリフラックスポンプ
(8)によって、精留塔(5)の頂部に送られ、精留の
ために利用される。凝縮したアンモニア冷媒は冷媒過冷
却器(9)からブリード熱交換器(9)を介して蒸発器
(1)に送られる。冷媒過冷却器(8)では、凝縮器
(4)からの暖かい冷媒液と、蒸発器(1)からの冷た
い冷媒ガスとを熱交換させ、冷媒液を過冷却させて冷凍
効率を向上させることができる。
The condenser (4) cools and condenses high-purity ammonia gas, a part of which is sent to the top of the rectification column (5) by the reflux pump (8) for rectification. Used for. The condensed ammonia refrigerant is sent from the refrigerant subcooler (9) to the evaporator (1) via the bleed heat exchanger (9). In the refrigerant supercooler (8), the warm refrigerant liquid from the condenser (4) and the cold refrigerant gas from the evaporator (1) are heat-exchanged to supercool the refrigerant liquid and improve refrigeration efficiency. You can
【0024】蒸発器(1)では、冷媒液であるアンモニ
ア液が伝熱管内を流れる冷熱媒体から熱を奪い、蒸発し
て純度100%のガスになる。したがって、沸騰してい
る冷媒液側の純度は99.8%よりも低下する。蒸発器
(1)内の冷媒液の純度を96〜98%に保つため、蒸
発器(1)内の冷媒液を冷媒循環量の4〜5%程度ブリ
ード熱交換器(10)に放出する。ブリード熱交換器
(10)は、放出された液冷媒の冷熱を回収するため、
冷媒過冷却器(9)から蒸発器(1)に送られる冷媒液
をさらに過冷却する。ブリード冷媒は、ブリード熱交換
器(10)でガス化して、吸収器(2)で吸収液に吸収
される。
In the evaporator (1), the ammonia liquid, which is a refrigerant liquid, takes heat from the cold heat medium flowing in the heat transfer tube and evaporates into a gas having a purity of 100%. Therefore, the purity of the boiling liquid side of the refrigerant is lower than 99.8%. In order to maintain the purity of the refrigerant liquid in the evaporator (1) at 96 to 98%, the refrigerant liquid in the evaporator (1) is discharged to the bleed heat exchanger (10) at about 4 to 5% of the refrigerant circulation amount. The bleed heat exchanger (10) collects the cold heat of the discharged liquid refrigerant,
The refrigerant liquid sent from the refrigerant subcooler (9) to the evaporator (1) is further supercooled. The bleed refrigerant is gasified in the bleed heat exchanger (10) and absorbed in the absorbing liquid in the absorber (2).
【0025】溶液熱交換器(6)は、発生器(3)から
の高温稀溶液と、吸収器(2)からの低温濃溶液とを熱
交換させて、発生器(3)の必要熱量を削減させるとと
もに、吸収器(2)へは低温の稀溶液を送ることによっ
て、吸収器の吸収性能を向上させる。吸収器(2)で
は、吸収力の強い稀溶液を吸収器伝熱管上に散布し、伝
熱環上の溶液フィルムで冷媒ガスを吸収する。溶液ポン
プ(14)は、吸収器(2)からの濃溶液を、高圧部の
発生器(3)に送るために使用され、約200mmH2
O のヘッド圧が必要であり、一般に多段式のタービン
ポンプが使用される。
The solution heat exchanger (6) heat-exchanges the high-temperature dilute solution from the generator (3) with the low-temperature concentrated solution from the absorber (2) so that the required heat quantity of the generator (3) can be obtained. In addition to reducing the amount, a low temperature dilute solution is sent to the absorber (2) to improve the absorption performance of the absorber. In the absorber (2), a dilute solution having a strong absorbing power is sprinkled on the absorber heat transfer tube, and the refrigerant gas is absorbed by the solution film on the heat transfer ring. The solution pump (14) is used to send the concentrated solution from the absorber (2) to the generator (3) in the high pressure section, and the solution pump (14) is about 200 mmH 2
A head pressure of O 2 is required and generally multi-stage turbine pumps are used.
【0026】溶液制御弁(15)は、冷熱媒体である被
冷却ブラインの温度を温度検出器(16)で検出して、
温度制御器17が開度を制御し、アンモニア濃溶液の循
環流量を調整する。蒸発器(1)の圧力を検出して制御
することもできる。冷凍負荷に比例した溶液循環流量に
絞るため、比例制御で弁開度が制御される。容量制御弁
(18)は、冷凍負荷に応じた入熱量を発生器(3)に
供給するために設けられる。温度検出器(19)が検出
する発生器(3)からのアンモニア稀溶液の温度に比例
するように、温度制御器(20)によって比例制御によ
る弁開度の制御が行われる。
The solution control valve (15) detects the temperature of the brine to be cooled, which is a cooling / heating medium, by the temperature detector (16),
The temperature controller 17 controls the opening degree and adjusts the circulation flow rate of the concentrated ammonia solution. It is also possible to detect and control the pressure of the evaporator (1). Since the solution circulation flow rate is proportional to the refrigeration load, the valve opening is controlled by proportional control. The capacity control valve (18) is provided to supply the heat input amount according to the refrigeration load to the generator (3). The temperature controller (20) controls the valve opening by proportional control so as to be proportional to the temperature of the diluted ammonia solution from the generator (3) detected by the temperature detector (19).
【0027】図2は、本実施形態の吸収器(2)の概略
的な断面構成を示す。胴体(21)内には、冷熱媒体が
流れる冷伝熱管(12)の上方に温熱媒体である温水が
流れる温伝熱管(11)が収納され、吸収熱を吸収して
温熱媒体の加温を行う。なお、温伝熱管(11)および
冷伝熱管(12)は説明の便宜上屈曲させた1本の管と
して表現しているけれども、管群として複数本を組合わ
せて構成することもでき、また直管を束ねて用いること
もできる。このことに関して、他の実施形態でも同様で
ある。
FIG. 2 shows a schematic sectional structure of the absorber (2) of this embodiment. In the body (21), a heat transfer tube (11) in which hot water as a heat transfer medium flows is housed above a cold heat transfer tube (12) in which a heat transfer medium flows, and absorbs absorbed heat to heat the heat transfer medium. To do. Although the hot heat transfer tube (11) and the cold heat transfer tube (12) are expressed as a single bent tube for convenience of description, it is also possible to combine a plurality of tubes as a group of tubes, or directly. The tubes can be bundled and used. In this regard, the same applies to the other embodiments.
【0028】ノズル(13)から散布される吸収液は、
まず温伝熱管(11)上に冷媒ガスを吸収するフィルム
を形成し、次に冷伝熱管(12)上で冷媒ガスを吸収す
る。冷伝熱管(12)を流れる冷却媒体である冷却水の
流量は、冷凍負荷に応じて流量制御弁(22)で調整可
能である。冷却水の温度は、夏季には約30℃に上がる
けれども、暖房を必要とする冬季には22℃程度以下に
下げることができる。冷伝熱管(12)内を流れる冷却
媒体の流量を減少させると、温伝熱管(11)内を流れ
る温熱媒体に得られる熱量が上昇する。
The absorbing liquid sprayed from the nozzle (13) is
First, a film for absorbing the refrigerant gas is formed on the hot heat transfer tube (11), and then the refrigerant gas is absorbed on the cold heat transfer tube (12). The flow rate of cooling water, which is the cooling medium flowing through the cold heat transfer tube (12), can be adjusted by the flow rate control valve (22) according to the refrigeration load. Although the temperature of the cooling water rises to about 30 ° C. in summer, it can be lowered to about 22 ° C. or less in winter requiring heating. When the flow rate of the cooling medium flowing in the cold heat transfer tube (12) is reduced, the amount of heat obtained in the warm heat transfer medium flowing in the hot heat transfer tube (11) increases.
【0029】温伝熱管(11)には、クーリングタワー
(23)からの冷却水を、開閉弁(24,25)を開
き、開閉弁(26,27)を閉じて導くことができる。
たとえば夏季等で冷凍負荷が大きいとき、30℃の冷却
水を温伝熱管(11)に冷伝熱管(12)と同様に流し
て、従来と同様な吸収器(2)の冷却を行わせることが
できる。開閉弁(24,25)を閉じ、開閉弁(26,
27)を開けば、温伝熱管(11)に暖房負荷(28)
に供給する50〜55℃の温水を流すことができる。
Cooling water from the cooling tower (23) can be introduced into the heat transfer tube (11) by opening the on-off valves (24, 25) and closing the on-off valves (26, 27).
For example, when the refrigerating load is large in summer, etc., cooling water at 30 ° C. is caused to flow through the hot heat transfer tube (11) in the same manner as the cold heat transfer tube (12), and the absorber (2) is cooled in the same manner as in the conventional case. You can The on-off valve (24, 25) is closed, and the on-off valve (26,
If you open (27), the heating load (28) on the heat transfer tube (11).
The hot water of 50 to 55 ° C. supplied to
【0030】図3は、本実施形態での吸収サイクルを、
NH3−H2O濃度エンタルピ線図上で示す。実線は冬
季、破線は夏季を示す。夏季は吸収器(2)に30℃の
冷却水を供給して、図1にCとして示す吸収器(2)の
出側の濃溶液の温度が約36℃程度となるような溶液サ
イクルで吸収式冷凍サイクルが運転される。冬季は、冷
却水の温度が22℃程度に低下するので、凝縮器(4)
での凝縮温度を下げて凝縮圧力を下げることができ、稀
溶液濃度を下げて、実線で示すように、温伝熱管(1
1)上での吸収温度を上げることができ、たとえば55
℃程度に上昇させて、吸収器(2)から温水を得ること
ができる。
FIG. 3 shows the absorption cycle in this embodiment,
The NH 3 —H 2 O concentration is shown on the enthalpy diagram. The solid line indicates winter and the broken line indicates summer. In the summer, cooling water of 30 ° C is supplied to the absorber (2), and absorption is performed by a solution cycle such that the temperature of the concentrated solution on the outlet side of the absorber (2) shown as C in Fig. 1 is about 36 ° C. The freezing cycle is operated. In winter, the temperature of the cooling water drops to around 22 ℃, so the condenser (4)
It is possible to lower the condensing temperature by lowering the condensing pressure, and lowering the dilute solution concentration, as indicated by the solid line, the heat transfer tube (1
1) the absorption temperature above can be increased, for example 55
Hot water can be obtained from the absorber (2) by raising the temperature to about 0 ° C.
【0031】夏季に30℃の冷却水を用いて冷凍のみを
行うと、発生器(3)への入熱に対する蒸発器(1)か
らの冷熱供給量の比としての成績係数は、蒸発温度によ
って変わるが、一例として、冷凍サイクルCOP=0.
55程度の数値が得られる。冬季に、冷却水の温度が2
2℃程度に低下すると、冷凍の成績係数は若干減少し、
COP=0.5程度となる。しかし、温伝熱管(11)
に温水を流して行う暖房で、温水温度の影響を受けるが
COP=0.8程度が得られるので、総合的な成績係数
は、トータルでCOP=1.3まで向上する。
When only freezing is performed using cooling water of 30 ° C. in summer, the coefficient of performance as a ratio of the cold heat supply amount from the evaporator (1) to the heat input to the generator (3) depends on the evaporation temperature. However, as an example, the refrigeration cycle COP = 0.
A value of about 55 is obtained. In winter, the temperature of the cooling water is 2
When the temperature drops to around 2 ℃, the coefficient of performance of freezing decreases slightly,
COP = about 0.5. However, the heat transfer tube (11)
In heating performed by flowing hot water to the inside, COP = 0.8 is obtained although it is affected by the temperature of the hot water, so the overall coefficient of performance improves to COP = 1.3 in total.
【0032】前述のような高いCOPは、冷凍運転と同
時に暖房を行うことによって実現される。すなわち、冷
凍運転で蒸発器(1)で冷熱媒体から奪った熱を、吸収
器)2)での吸収熱として発生させ、温熱媒体に吸収さ
せるヒートポンプの作用で、総合的なCOPを高めるこ
とができる。
The high COP as described above is realized by heating at the same time as the refrigerating operation. That is, the total COP can be increased by the action of the heat pump that causes the heat taken from the cold heat medium in the evaporator (1) in the freezing operation to be generated as absorbed heat in the absorber 2) and absorbed in the hot heat medium. it can.
【0033】図4は、高COP可能なヒートポンプサイ
クルとして使用可能な範囲を、斜線を施して示す。な
お、本発明を適用すれば、冬季のみに暖房を行うばかり
ではなく、夏季にも温水などを冷凍運転を続けながら効
率よく取出すことができる。本発明の対象となる吸収式
冷凍暖房装置は、たとえば冷凍食品工場での冷凍運転用
に設置されたり、コージェネレーションシステムを構成
したりして使用される。このような場合、冬季に暖房が
必要になるばかりではなく、夏季にもシャワーや風呂
用、あるいは洗浄用などに温水が必要になる。本発明を
適用すれば、温水を効率よく取出すことができる。
FIG. 4 shows a range usable as a heat pump cycle capable of high COP by hatching. In addition, if the present invention is applied, not only heating is performed only in winter, but hot water and the like can be efficiently taken out while continuing the refrigeration operation even in summer. The absorption type refrigerating / heating apparatus that is the subject of the present invention is used, for example, for being installed for freezing operation in a frozen food factory or constituting a cogeneration system. In such a case, not only heating is required in winter, but hot water is also required in the summer for showers, baths, or cleaning. By applying the present invention, hot water can be taken out efficiently.
【0034】図5は、本発明の実施の第2形態として、
吸収式冷凍暖房装置の吸収器(29)の概略的な断面構
成を示す。吸収式冷凍サイクル全体の構成は、基本的に
図1の構成と同等であり、COPの向上を図ることがで
きる。本実施形態で、図1の実施形態に対応する部分に
は同一の参照符を付し、重複する説明は省略する。本実
施形態の吸収器(29)の胴体(30)内には、温伝熱
管(31)と冷伝熱管(32)とが横方向に並べて配置
される。温伝熱管(31)および冷伝熱管(32)の上
方には、温ノズル(33)および冷ノズル(34)が配
置され、胴体(30)内部は仕切板(35)によって上
部から中間部まで仕切られる。流量制御弁(37)は冷
ノズル(34)に供給される吸収液の流量を調整するた
めに設けられる。
FIG. 5 shows a second embodiment of the present invention.
The schematic sectional structure of the absorber (29) of an absorption type refrigerating and heating apparatus is shown. The configuration of the entire absorption refrigeration cycle is basically the same as that of FIG. 1, and COP can be improved. In the present embodiment, parts corresponding to those of the embodiment of FIG. 1 are designated by the same reference numerals, and redundant description will be omitted. In the body (30) of the absorber (29) of the present embodiment, the hot heat transfer tubes (31) and the cold heat transfer tubes (32) are arranged side by side in the lateral direction. A hot nozzle (33) and a cold nozzle (34) are arranged above the hot heat transfer tube (31) and the cold heat transfer tube (32), and the inside of the body (30) is divided by a partition plate (35) from an upper part to an intermediate part. Partitioned. The flow control valve (37) is provided to adjust the flow rate of the absorbing liquid supplied to the cold nozzle (34).
【0035】図6は、本発明の実施の第3形態として、
図5の実施形態と同様な吸収器(29)で、吸収液を冷
却器(38)を用いて22℃の冷却水で冷却する構成を
示す。先行して説明している部分と対応する部分には同
一の参照符を付し、重複する説明は省略する。溶液循環
ポンプ(36)によって循環する吸収液を、冷却器(3
8)内の冷却水管(39)に22℃の冷却水を流すこと
によって冷却し、冷ノズル(34)から吸収器(29)
の胴体(30)内に散布する吸収液の温度を低下させ、
吸収能力を増大させることができる。
FIG. 6 shows a third embodiment of the present invention.
In the same absorber (29) as in the embodiment of FIG. 5, a configuration is shown in which the absorbing liquid is cooled with cooling water at 22 ° C. using a cooler (38). Portions corresponding to those described above are designated by the same reference numerals, and a duplicate description will be omitted. The absorption liquid circulated by the solution circulation pump (36) is supplied to the cooler (3
The cooling water pipe (39) in 8) is cooled by flowing cooling water of 22 ° C., and is cooled from the cold nozzle (34) to the absorber (29).
Lowers the temperature of the absorbing liquid sprayed in the body (30) of
The absorption capacity can be increased.
【0036】図7は、本発明の実施の第4形態の概略的
な構成を示す。夏季には、クーリングタワー(23)を
使用するため冷却水の温度は30℃程度に上昇してしま
うけれども、気温が下がって暖房の必要性が高まると、
冷却水の温度が低下し、冷却水を使用する凝縮器(4)
での凝縮温度が低下する。吸収温度を上げることができ
るので、開閉弁(24,25)を閉じて、開閉弁(2
6,27)を開いて、吸収器(40)の伝熱管(41)
から暖房負荷(28)に温水を供給することができる。
暖房負荷が小さいときは、冷却器(42)で伝熱管(4
1)に流入する温水の温度が高くなり過ぎるのを防ぐこ
とができる。冷却器(42)には、22℃の冷却水を冷
却水管(43)で流通させる。
FIG. 7 shows a schematic configuration of the fourth embodiment of the present invention. In summer, the cooling tower (23) is used, so the temperature of the cooling water rises to about 30 ° C, but when the temperature drops and the need for heating increases,
Condenser that uses cooling water because the temperature of the cooling water drops (4)
The condensation temperature at Since the absorption temperature can be raised, the on-off valves (24, 25) are closed and the on-off valve (2
Open the heat transfer tube (41) of the absorber (40)
Can supply hot water to the heating load (28).
When the heating load is small, the heat exchanger tube (4)
It is possible to prevent the temperature of the hot water flowing into 1) from becoming too high. In the cooler (42), cooling water at 22 ° C. is circulated through the cooling water pipe (43).
【0037】図8は、本発明の実施の第5形態として、
図7の実施形態と同様な吸収器(40)で伝熱管(4
1)内に50℃の温水を供給し、55℃程度に昇温させ
て暖房負荷に供給する構成を示す。先行して説明してい
る部分と対応する部分には同一の参照符を付し、重複す
る説明は省略する。本実施形態では、万一温水温度が5
5℃よりも下がると困るので、ノズル(13)に供給す
る稀溶液の温度を上げる必要がある。本実施形態では、
溶液熱交換器(6)にバイパス弁(44,45)を設
け、溶液熱交換器(6)で熱交換を行う吸収液の流量を
100%からたとえば50%に低下させて、熱交換によ
って、ノズル(13)に供給される稀溶液の温度を上昇
させて温水温度の上昇を図ることができる。
FIG. 8 shows a fifth embodiment of the present invention.
An absorber (40) similar to the embodiment of FIG.
1) Shows a configuration in which hot water of 50 ° C. is supplied to the inside, the temperature is raised to about 55 ° C., and the temperature is supplied to the heating load. Portions corresponding to those described above are designated by the same reference numerals, and a duplicate description will be omitted. In this embodiment, the hot water temperature should be 5
It is necessary to raise the temperature of the dilute solution supplied to the nozzle (13), since it is troublesome if the temperature is lower than 5 ° C. In this embodiment,
The solution heat exchanger (6) is provided with the bypass valves (44, 45), the flow rate of the absorbing liquid for heat exchange in the solution heat exchanger (6) is reduced from 100% to, for example, 50%, and the heat exchange is performed. The temperature of the dilute solution supplied to the nozzle (13) can be raised to raise the hot water temperature.
【0038】[0038]
【発明の効果】以上のように本発明によれば、蒸発器
(1)で冷熱媒体を冷却して冷凍用または冷房用の負荷
に冷熱を供給しながら吸収器(2,29,40)で温熱
媒体に熱を吸収させるヒートポンプの作用を行わせ、効
率よく冷凍運転と暖房運転とを行わせることができ、成
績係数としても冷凍運転と暖房運転とを合わせて、総合
的に高いCOPを得ることができる。
As described above, according to the present invention, the cooling medium is cooled by the evaporator (1), and the cooling heat is supplied to the load for freezing or cooling while the absorber (2, 29, 40) is used. A heat pump that causes heat to be absorbed by a heating medium can be operated to efficiently perform a freezing operation and a heating operation, and a high COP is obtained by combining the freezing operation and the heating operation as a coefficient of performance. be able to.
【0039】また本発明によれば、吸収器(2)の胴体
(21)内に上下に温伝熱管(11)と冷伝熱管(1
2)とを配置し、冷伝熱管(12)に低温の冷却媒体を
流すことによって、暖房負荷が減少するときの調整を行
い、温伝熱管(11)内に流す温熱媒体を、温水や暖房
に有効に利用することができる。
According to the present invention, the heat transfer tube (11) and the cold heat transfer tube (1) are vertically arranged in the body (21) of the absorber (2).
2) is arranged and a low-temperature cooling medium (12) is caused to flow through the cold heat transfer pipe (12) to adjust when the heating load is reduced, and the hot heat medium flowing through the hot heat transfer pipe (11) is changed to hot water or heating. Can be used effectively.
【0040】また本発明によれば、吸収器(29)の胴
体(30)内を仕切板(35)で仕切って温伝熱管(3
1)と冷伝熱管(32)とを並べて配置し、冷伝熱管
(32)に低温の冷却媒体を流すことによって、暖房負
荷が減少するときの調整を行い、温伝熱管(31)内に
流す温熱媒体を、温水や暖房に有効に利用することがで
きる。弁(37)によって、温伝熱管(31)側に温ノ
ズル(33)から散布する吸収液と冷伝熱管(32)側
に冷ノズル(34)から散布する吸収液との割合を調整
することができるので、効率的な運転を行うことができ
る。
Further, according to the present invention, the inside of the body (30) of the absorber (29) is partitioned by the partition plate (35) so that the heat transfer tube (3)
1) and the cold heat transfer tube (32) are arranged side by side, and a low temperature cooling medium is caused to flow through the cold heat transfer tube (32) to adjust when the heating load is reduced, and the cold heat transfer tube (32) is placed in the hot heat transfer tube (31). The flowing heating medium can be effectively used for hot water and heating. A valve (37) is used to adjust the ratio of the absorption liquid sprayed from the hot nozzle (33) to the heat transfer pipe (31) side and the absorption liquid sprayed from the cold nozzle (34) to the cold heat transfer pipe (32) side. Therefore, efficient operation can be performed.
【0041】また本発明によれば、冷ノズル(34)に
供給する吸収液の温度を冷却するので、暖房負荷が小さ
いときに、冷伝熱管(32)側での吸収能力を向上させ
ることができる。
Further, according to the present invention, since the temperature of the absorbing liquid supplied to the cold nozzle (34) is cooled, it is possible to improve the absorbing capacity on the cold heat transfer tube (32) side when the heating load is small. it can.
【0042】また本発明によれば、吸収器(40)内の
伝熱管(41)に冷却媒体と温熱媒体とを切換えて流す
ことができるので、冷凍運転のみと、暖房運転との併用
とを効率よく切換えることができる。
Further, according to the present invention, since the cooling medium and the heating medium can be switched and flow in the heat transfer pipe (41) in the absorber (40), only the refrigerating operation and the heating operation can be combined. You can switch efficiently.
【0043】また本発明によれば、吸収器(40)から
発生器(3)に送る吸収液と発生器(3)から吸収器
(40)に送る吸収液との間で熱交換する熱交換器
(6)をバイパスして、吸収器(40)内に散布される
吸収液の温度を上昇させることができ、伝熱管(41)
内の温水を効率よく加温することができる。
Further, according to the present invention, heat exchange for exchanging heat between the absorption liquid sent from the absorber (40) to the generator (3) and the absorption liquid sent from the generator (3) to the absorber (40). By bypassing the vessel (6), the temperature of the absorbing liquid dispersed in the absorber (40) can be raised, and the heat transfer tube (41)
The hot water inside can be efficiently heated.
【0044】さらに本発明によれば、暖房を必要とする
時季に、冷却水などの冷却媒体の温度が低温になること
を利用して、高い成績効率COPで、冷凍運転と暖房運
転とを平行して行うことができる。
Further, according to the present invention, by utilizing the fact that the temperature of the cooling medium such as cooling water becomes low at the time when heating is required, the freezing operation and the heating operation are performed in parallel with a high performance efficiency COP. You can do it.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の実施の第1形態としての吸収式冷凍暖
房装置の全体的な構成を示す配管系統図である。
FIG. 1 is a piping system diagram showing an overall configuration of an absorption type refrigerating and heating apparatus as a first embodiment of the present invention.
【図2】図1の実施形態の吸収器(2)の概略的な構成
を示す簡略化した断面図である。
2 is a simplified cross-sectional view showing a schematic configuration of an absorber (2) of the embodiment of FIG.
【図3】図1の実施形態の吸収器(2)での溶液サイク
ルを示すNH3−H2O溶液エンタルピ線図である。
FIG. 3 is a NH 3 —H 2 O solution enthalpy diagram showing a solution cycle in the absorber (2) of the embodiment of FIG. 1.
【図4】図1の実施形態での冷凍負荷と使用可能な暖房
負荷との関係を示グラフである。
FIG. 4 is a graph showing a relationship between a refrigerating load and a usable heating load in the embodiment of FIG.
【図5】本発明の実施の第2形態としての吸収器(2
9)の概略的な構成を示す簡略化した断面図である。
FIG. 5 is an absorber (2 according to a second embodiment of the present invention.
FIG. 9 is a simplified sectional view showing a schematic configuration of 9).
【図6】本発明の実施の第3形態として、吸収器(2
9)に関連する構成を示す簡略化した断面図である。
FIG. 6 shows an absorber (2) as a third embodiment of the present invention.
FIG. 9 is a simplified cross-sectional view showing a configuration related to 9).
【図7】本発明の実施の第4形態としての吸収器(4
0)の概略的な構成を示す簡略化した断面図である。
FIG. 7 is an absorber (4 according to a fourth embodiment of the present invention.
It is a simplified sectional view showing a schematic configuration of (0).
【図8】本発明の実施の第5形態として、溶液熱交換器
(6)のバイパスに関連する構成を示す簡略化した断面
図である。
FIG. 8 is a simplified sectional view showing a configuration related to bypass of a solution heat exchanger (6) as a fifth embodiment of the present invention.
【符号の説明】[Explanation of symbols]
1 蒸発器 2,29,40 吸収器 3 発生器 4 凝縮器 5 精留塔 6 溶液熱交換器 11,31 温伝熱管 12,32 冷伝熱管 13 ノズル 14 溶液ポンプ 21,30 胴体 22,37 流量制御弁 23 クーリングタワー 24,25,26,27 開閉弁 28 暖房負荷 33 温ノズル 34 冷ノズル 35 仕切板 36 溶液循環ポンプ 38,42 冷却器 39,43 冷却水管 41 伝熱管 44,45 バイパス弁 1 evaporator 2,29,40 absorber 3 generators 4 condenser 5 rectification tower 6 Solution heat exchanger 11,31 Heat transfer tube 12,32 Cold heat transfer tube 13 nozzles 14 Solution pump 21,30 torso 22,37 Flow control valve 23 Cooling tower 24, 25, 26, 27 open / close valve 28 Heating load 33 hot nozzle 34 Cold nozzle 35 Partition Plate 36 Solution circulation pump 38,42 Cooler 39,43 Cooling water pipe 41 heat transfer tube 44,45 Bypass valve
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−182064(JP,A) 特開 平5−45020(JP,A) 実公 平7−44917(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 301 F25B 15/00 F25B 37/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-182064 (JP, A) JP-A-5-45020 (JP, A) Jikken-hei 7-44917 (JP, Y2) (58) Field (Int.Cl. 7 , DB name) F25B 15/00 301 F25B 15/00 F25B 37/00

Claims (5)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】 蒸発器(1)で冷媒を蒸発させる際の蒸
    発熱で冷熱媒体を冷却し、蒸発した冷媒を吸収器(2)
    で吸収液に吸収し、冷媒を吸収した吸収液を発生器
    (3)で加熱して冷媒を蒸発させ、蒸発した冷媒を凝縮
    器(4)で凝縮させてから蒸発器(1)で蒸発させると
    ともに、発生器(3)から冷媒を蒸発させた吸収液を吸
    収器(2)に導いて吸収式冷凍サイクルを形成するヒー
    トポンプサイクル型吸収式冷凍および暖房同時取出し機
    であって、 吸収器(2)は、冷媒の吸収液への吸収熱を吸収するた
    めの温熱媒体が流通する伝熱路(11)を備え、 冷熱媒体は、冷凍用または冷房用の負荷に供給され、温
    熱媒体は暖房用の負荷(28)に供給され、 吸収器(2)は、 胴体(21)内の上側に配置され、前記温熱媒体が流通
    する伝熱路としての温伝熱管(11)と、 胴体(21)内で温伝熱管(11)の下側に配置され、
    該温熱媒体よりも低温の冷却媒体が流通する冷伝熱管
    (12)と、 胴体(21)内の上部に配置され、該温伝熱管(11)
    および該冷伝熱管(12)に吸収液を散布するノズル
    (13)とを備えることを特徴とするヒートポンプサイ
    クル型吸収式冷凍および暖房同時取出し機。
    1. A cold heat medium is cooled by the heat of vaporization when the refrigerant is vaporized by the evaporator (1), and the vaporized refrigerant is absorbed by the absorber (2).
    Is absorbed in the absorption liquid, and the absorption liquid having absorbed the refrigerant is heated in the generator (3) to evaporate the refrigerant, and the evaporated refrigerant is condensed in the condenser (4) and then evaporated in the evaporator (1). At the same time, a heat pump cycle type absorption refrigeration and heating simultaneous take-out machine for guiding an absorption liquid obtained by evaporating a refrigerant from a generator (3) to the absorber (2) to form an absorption refrigeration cycle, ) Is provided with a heat transfer path (11) through which a heat transfer medium for absorbing heat absorbed by the refrigerant to the absorption liquid flows, the heat transfer medium is supplied to a load for freezing or cooling, and the heat transfer medium is used for heating. The absorber (2) is disposed on the upper side of the body (21), and the heat transfer tube (11) as a heat transfer path through which the heat transfer medium flows, and the body (21) Located inside the heat transfer tube (11) inside,
    A cold heat transfer tube (12) through which a cooling medium having a temperature lower than that of the hot heat transfer medium flows, and a heat transfer tube (11) arranged at an upper part of a body (21).
    And a heat pump cycle type absorption refrigeration / heating simultaneous take-out machine, characterized in that the cold heat transfer tube (12) is provided with a nozzle (13) for spraying an absorbing liquid.
  2. 【請求項2】 蒸発器(1)で冷媒を蒸発させる際の蒸
    発熱で冷熱媒体を冷却し、蒸発した冷媒を吸収器(2
    9)で吸収液に吸収し、冷媒を吸収した吸収液を発生器
    (3)で加熱して冷媒を蒸発させ、蒸発した冷媒を凝縮
    器(4)で凝縮させてから蒸発器(1)で蒸発させると
    ともに、発生器(3)から冷媒を蒸発させた吸収液を吸
    収器(29)に導いて吸収式冷凍サイクルを形成するヒ
    ートポンプサイクル型吸収式冷凍および暖房同時取出し
    機であって、 吸収器(29)は、冷媒の吸収液への吸収熱を吸収する
    ための温熱媒体が流通する伝熱路(31)を備え、 冷熱媒体は、冷凍用または冷房用の負荷に供給され、温
    熱媒体は暖房用の負荷(28)に供給され、 吸収器(29)は、 胴体(30)内の上部から中間部までを仕切る仕切板
    (35)と、 仕切板(35)によって仕切られる胴体(30)内の一
    方の空間に配置され、前記温熱媒体が流通する伝熱路と
    しての温伝熱管(31)と、 該温伝熱管(31)に吸収液を散布する温ノズル(3
    3)と、 該仕切板(35)によって仕切られる胴体(30)内の
    他方の空間に配置され、該温熱媒体よりも低温の冷却媒
    体が流通する冷伝熱管(32)と、 該冷伝熱管(32)に吸収液を散布する冷ノズル(3
    4)と、 該冷ノズル(34)に供給する吸収液の流量を調整する
    弁(37)とを備えることを特徴とするヒートポンプサ
    イクル型吸収式冷凍および暖房同時取出し機。
    2. A cooling medium is cooled by the heat of vaporization when the refrigerant is vaporized by the evaporator (1), and the vaporized refrigerant is absorbed by the absorber (2).
    In (9), the absorption liquid absorbed in the refrigerant is heated in the generator (3) to evaporate the refrigerant, the evaporated refrigerant is condensed in the condenser (4), and then in the evaporator (1). A heat pump cycle-type absorption refrigeration / heating simultaneous take-out machine that evaporates and guides an absorption liquid obtained by evaporating a refrigerant from a generator (3) to an absorber (29) to form an absorption refrigeration cycle. (29) is provided with a heat transfer path (31) through which a heat transfer medium for absorbing heat absorbed by the refrigerant to the absorption liquid flows, the heat transfer medium is supplied to a load for freezing or cooling, and the heat transfer medium is The absorber (29) is supplied to the heating load (28), and the absorber (29) is a partition plate (35) for partitioning the upper part to the middle part of the body (30), and a body (30) partitioned by the partition plate (35). The heating medium is placed in one of the Temperature heat transfer tube as the heat transfer path to (31), temperature nozzle for spraying the absorption liquid into temperature heat transfer tube (31) (3
    3), a cold heat transfer tube (32) which is arranged in the other space in the body (30) partitioned by the partition plate (35) and through which a cooling medium having a temperature lower than the hot heat medium flows, and the cold heat transfer tube Cold nozzle (3) for spraying the absorbing liquid on (32)
    4) and a valve (37) for adjusting the flow rate of the absorption liquid supplied to the cold nozzle (34), a heat pump cycle type absorption refrigeration / heating simultaneous take-out machine.
  3. 【請求項3】 前記冷ノズル(34)に供給する吸収液
    を、前記冷却媒体を用いて冷却する冷却器(38)をさ
    らに含むことを特徴とする請求項2記載のヒートポンプ
    サイクル型吸収式冷凍および暖房同時取出し機。
    3. The heat pump cycle type absorption refrigeration according to claim 2, further comprising a cooler (38) for cooling the absorbing liquid supplied to the cold nozzle (34) using the cooling medium. And heating simultaneous unloader.
  4. 【請求項4】 蒸発器(1)で冷媒を蒸発させる際の蒸
    発熱で冷熱媒体を冷却し、蒸発した冷媒を吸収器(4
    0)で吸収液に吸収し、冷媒を吸収した吸収液を発生器
    (3)で加熱して冷媒を蒸発させ、蒸発した冷媒を凝縮
    器(4)で凝縮させてから蒸発器(1)で蒸発させると
    ともに、発生器(3)から冷媒を蒸発させた吸収液を吸
    収器(40)に導いて吸収式冷凍サイクルを形成するヒ
    ートポンプサイクル型吸収式冷凍および暖房同時取出し
    機であって、 吸収器(40)は、冷媒の吸収液への吸収熱を吸収する
    ための温熱媒体が流通する伝熱路(41)を備え、 冷熱媒体は、冷凍用または冷房用の負荷に供給され、温
    熱媒体は暖房用の負荷(28)に供給される、 吸収器(40)は、 温熱媒体の伝熱路としての伝熱管(41)を備え、 該伝熱管(41)には、該温熱媒体、または外部の放熱
    器(23)で放熱するための冷却媒体のいずれかが流通
    するように、切換可能であり、 吸収器(40)から冷媒を吸収した吸収液を発生器
    (3)に導く経路に、 発生器(3)からの冷媒を蒸発させた吸収液と熱交換さ
    せる熱交換器(6)と、 該熱交換器(6)に対し、冷媒を吸収した吸収液または
    冷媒を蒸発させた吸収液をバイパスさせるバイパス弁
    (44,45)とを備えることを特徴とするヒートポン
    プサイクル型吸収式冷凍冷および暖房同時取出し機。
    4. The cooling medium is cooled by the heat of vaporization when the refrigerant is vaporized by the evaporator (1), and the vaporized refrigerant is absorbed by the absorber (4).
    The absorption liquid absorbed in 0) and the refrigerant absorbed in the generator (3) is heated to evaporate the refrigerant, and the evaporated refrigerant is condensed in the condenser (4) and then in the evaporator (1). A heat pump cycle-type absorption refrigeration / heating simultaneous take-out machine that evaporates and guides an absorption liquid obtained by evaporating a refrigerant from a generator (3) to an absorber (40) to form an absorption refrigeration cycle. (40) comprises a heat transfer path (41) through which a heat transfer medium for absorbing heat absorbed by the refrigerant into the absorbing liquid flows, the cool heat medium is supplied to a load for freezing or cooling, and the heat transfer medium is The absorber (40) supplied to the heating load (28) is provided with a heat transfer tube (41) as a heat transfer path for the heat transfer medium, and the heat transfer tube (41) includes the heat transfer medium or the outside. One of the cooling media for heat dissipation in the radiator (23) As described above, heat can be exchanged with the absorption liquid obtained by evaporating the refrigerant from the generator (3) in a path that is switchable and guides the absorption liquid that has absorbed the refrigerant from the absorber (40) to the generator (3). A heat exchanger (6), and a bypass valve (44, 45) for bypassing the heat exchanger (6) with an absorption liquid that has absorbed a refrigerant or an absorption liquid that has evaporated the refrigerant. Heat pump cycle absorption absorption refrigeration and heating simultaneous take-out machine.
  5. 【請求項5】 蒸発器(1)で冷媒を蒸発させる際の蒸
    発熱で冷熱媒体を冷却し、蒸発した冷媒を吸収器(2,
    29,40)で吸収液に吸収し、冷媒を吸収した吸収液
    を発生器(3)で加熱して冷媒を蒸発させ、蒸発した冷
    媒を凝縮器(4)で凝縮させるとともに、発生器(3)
    から冷媒を蒸発させた吸収液を吸収器(2,29,4
    0)に導いて形成される吸収式冷凍サイクルで、 暖房を必要とする時季に、暖房が不要な時季の冷却媒体
    よりも低温の冷却媒体を用いて凝縮器(4)を冷却し、
    一部は吸収器(2,29,40)も冷却し、 蒸発器(1)で吸収する冷熱媒体からの熱を、暖房を必
    要とする時季に暖房が不要な時季の冷却媒体よりも高温
    の温熱媒体を用いて、吸収器(2,29,40)で回収
    し、 該温熱媒体で暖房負荷への熱の補給を行うことを特徴と
    するヒートポンプサイクル型吸収式冷凍および暖房同時
    取出し方法。
    5. The cold heat medium is cooled by the heat of vaporization when the refrigerant is vaporized by the evaporator (1), and the vaporized refrigerant is absorbed by the absorber (2.
    29, 40) is absorbed by the absorption liquid, and the absorption liquid having absorbed the refrigerant is heated by the generator (3) to evaporate the refrigerant, and the evaporated refrigerant is condensed by the condenser (4), and the generator (3 )
    The absorption liquid obtained by evaporating the refrigerant from the absorber (2, 29, 4
    In the absorption refrigeration cycle formed by leading to (0), the condenser (4) is cooled with a cooling medium having a lower temperature than the cooling medium of the season when heating is not required,
    Part of it also cools the absorber (2, 29, 40), and the heat from the cold heat medium absorbed by the evaporator (1) is heated to a higher temperature than the cooling medium of the season when heating is not required. A heat pump cycle-type absorption refrigeration and heating simultaneous extraction method, characterized in that a heat medium is used for recovery by an absorber (2, 29, 40), and heat is replenished to a heating load by the heat medium.
JP08194999A 1999-03-25 1999-03-25 Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method Expired - Fee Related JP3397164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08194999A JP3397164B2 (en) 1999-03-25 1999-03-25 Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08194999A JP3397164B2 (en) 1999-03-25 1999-03-25 Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method

Publications (2)

Publication Number Publication Date
JP2000274860A JP2000274860A (en) 2000-10-06
JP3397164B2 true JP3397164B2 (en) 2003-04-14

Family

ID=13760759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08194999A Expired - Fee Related JP3397164B2 (en) 1999-03-25 1999-03-25 Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method

Country Status (1)

Country Link
JP (1) JP3397164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679613A (en) * 2011-12-22 2012-09-19 河南科技大学 Ammonia water adiabatic absorption refrigerating system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776343A (en) * 2009-11-09 2010-07-14 李华玉 Solution series circulated two-stage first-type absorption heat pump using single effect as first stage
CN102353174A (en) * 2011-09-13 2012-02-15 东南大学 Method for strengthening ammonia water absorption type refrigeration solution circulation by using micro-fine particles
CN103090593B (en) * 2011-11-07 2016-01-20 北京科技大学 Heat pump circulating system and heat pump cycle method and vapo(u)rization system
CN104154674A (en) * 2014-08-21 2014-11-19 珠海格力电器股份有限公司 Second-class absorption heat pump system and heating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679613A (en) * 2011-12-22 2012-09-19 河南科技大学 Ammonia water adiabatic absorption refrigerating system

Also Published As

Publication number Publication date
JP2000274860A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP4885481B2 (en) Cooling device operation method
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP3013673B2 (en) Absorption refrigerator
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
US6581405B2 (en) Airconditioning system utilizing absorption chiller cell
JPH08159594A (en) Multiple effect absorption refrigerator
KR100981672B1 (en) Two-stage driven hot water absorption chiller
JP2000018762A (en) Absorption refrigerating machine
KR20080094985A (en) Hot-water using absorption chiller
JPH09159300A (en) Air cooling absorption heat pump chiller using ammonia-water absorption cycle
JP2007333342A (en) Multi-effect absorption refrigerating machine
CN210070284U (en) Heat pump unit comprising a plurality of cold and heat source heat exchangers
JP2580275B2 (en) Air conditioning system using absorption refrigerator
JP4100462B2 (en) Heat utilization system
JP3889655B2 (en) Absorption refrigerator
JP4330522B2 (en) Absorption refrigerator operation control method
JP3813348B2 (en) Absorption refrigerator
JP3832191B2 (en) Absorption refrigerator
JP3429905B2 (en) Absorption refrigerator
JP3429906B2 (en) Absorption refrigerator
JP2011163615A (en) Absorption type refrigerating machine
CN112413925A (en) Low-temperature heat source refrigerating device
JP3874263B2 (en) Refrigeration system combining absorption and compression
JP3448681B2 (en) Absorption type cold heat generator
JP2000074521A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees